

U.S. Department of Energy Ethanol Workshop Series

Hawaii

WELCOME

Ethanol Fuel: Coming Soon to a Car Near You

SPONSORED BY:

U.S. Department Of Energy, Office of Fuels Development Pacific Regional Biomass Energy Program City and County of Honolulu Hawaii Department of Agriculture Hawaii Department of Business, Economic Development & Tourism Hawaii Department of Health Hawaii Natural Energy Institute JN Automotive Group Honolulu Clean Cities

RECEPTION SPONSORED BY:

ED & F Man Alcohol, Inc. Hawaiian Commercial & Sugar Company

> Ala Moana Hotel Honolulu, Hawaii

November 14, 2002 8:00 a.m. – 4:30 p.m.

Hawaii

Ala Moana Hotel Honolulu, Hawaii

November 14, 2002

Agenda

8:00 AM REGISTRATION & COFFEE

8:30 AM WELCOME & INTRODUCTION

Eileen Yoshinaka - Pacific Liaison, United States Department of Energy (USDOE) The USDOE-Seattle Regional Office provides funding for a wide variety of biomass energy programs in the Pacific Northwest, Alaska, and Hawaii. This is the first fuel ethanol workshop they are sponsoring in Hawaii.

• National Energy and Fuels Policy

Maurice Kaya, P.E. - Administrator, State of Hawaii, Energy, Resources & Technology Division

The Energy, Resources, and Technology Division of the State of Hawaii Department of Business, Economic Development, and Tourism is the state agency responsible for developing plans and recommendations for Hawaii's energy future. It's also the agency through which federal funding under the State Energy Program comes to Hawaii.

• Workshop Purpose and Objective

9:00 AM ETHANOL OVERVIEW

Doug Durante - Executive Director, Clean Fuels Development Coalition

The Clean Fuels Development Coalition is a national not-for-profit organization based in Washington, D.C., that actively supports the development and production of fuels that can reduce air pollution and lessen America's dependence on imported oil.

- Energy Sources, Uses, and Concerns
- Fuel Supplies domestic and foreign, existing and projected
- Environmental Issues

Gary Herwick, Director - Transportation Fuels, General Motors Corporation-Presented by Doug Durante

• Ethanol as a Vehicle Fuel

Larry Schafer - Legislative Counsel, Renewable Fuels Association

The Renewable Fuels Association works in tandem with state governments, agriculture, environment, and public interest groups, and ethanol advocates nationwide.

- Ethanol Fuel and the Economy
- Renewable Fuels Standard
- Costs past, present, future
- Federal incentives

10:30 AM FUEL ETHANOL AND HAWAII'S ECONOMY

Mark Yancey - Director of Consulting Services, BBI International

BBI International performs ethanol impact studies for a variety of clients, including private companies, financial institutions, and state governments. Following his presentation of BBI's preliminary review of the situation in Hawaii, there will be opportunity for discussion, suggestions, and comment.

- Potential for ethanol production in Hawaii
- Costs, benefits, and other effects short and long-term
- Bottom line

Discussion

11:00 AM FUEL ETHANOL FOR HAWAII: PAST & PRESENT

Warren Hall - Hawaii Manager, EA Engineering, Science, and Technology, Inc. EA Engineering, Science, and Technology is a national energy and environmental consulting firm recognized for its work in the alternative fuel vehicle and energy efficiency arena.

• Ethanol Use in Hawaii: Historical Perspective

Maurice Kaya - Energy Program Administrator, Hawaii State Energy Office The State Energy Office works collaboratively with Hawaii companies and organizations to develop projects and partnerships that further Hawaii's energy objectives.

State Energy Policy, Incentives, & Mandates

Discussion

11:45 AM LUNCH

Topic Tables: Experts in different subject areas will be seated at designated tables to allow small group discussion of various topics

1:15 PM FUEL ETHANOL PRODUCTION

Moderated by Sue Conroe, BBI International

Rick Elander – Team Leader for Biomass Pretreatment R&D, *National Renewable* Energy Laboratory (NREL)

NREL is the U.S. Department of Energy's premier laboratory for renewable energy and energy efficiency research & development

• Ethanol from cellulosic materials

Jayant Godbole – Regional Director of the Americas, Praj International

Praj is the world's single largest supplier of cane molasses-based ethanol production facilities.

• Ethanol from molasses

Bob Shleser – President, The 'Aina Institute

Dr. Shleser, author of the 1994 report for the State of Hawaii on "Processes, Feedstocks, and Current Economic Feasibility of Fuel-Grade Ethanol Production in Hawaii" is actively involved in further economic analysis and project feasibility assessments in Hawaii.

• Ethanol from wastes, sugarcane

Larry Johnson –Business Development Manager, Delta-T Corporation Delta-T combines technological innovation with environmental stewardship in the energy and chemical processing industries to contribute to cleaner air and water around the world.

• Steps to building an ethanol plant

2:15 PM FUEL ETHANOL DISTRIBUTION

Moderated by William Maloney, ED&F Man Alcohol, Inc.

Barry Duffin - Quality Control Specialist, ConocoPhillips (Tosco "76" Brand) ConocoPhillips is one of the largest ethanol blenders in the U. S. Recently, 100% of their California system was converted to ethanol.

Mike Allen - President, Allen Oil Company

Allen Oil Company is a family owned business engaged primarily in the wholesale distribution of petroleum products, ethanol, and biodiesel throughout Montana.

3:00 PM BREAK

3:15 PM FUEL ETHANOL USE

Moderated by George Nitta, Nitta's Auto Repair and Hawaiian Automotive 101 radio show

Larry Johnson – Business Development Manager, Delta-T Corporation Minnesota's "Ethanol Answerman" answers your questions about the use of ethanol blended fuels in cars, trucks, boats, lawnmowers, etc.

• Your car can use ethanol

Joe Collette - Certified Automotive Technician, Bob's Auto Repair

This motorcycle racing mechanic can explain a thing or two about engines and high performance fuels to motorheads and non-motorheads alike.

• Ethanol in racing engines

Larry Schafer - Legislative Counsel, Renewable Fuels Association

Tomorrow's fuels, tomorrow's vehicles, and tomorrow's fueling stations: What might they look like? How do we get from here to there? Does ethanol fit in with a transition to the "Hydrogen future?"

• Ethanol for fuel cells

Doug Vind - President & Chief Operating Officer, Western Ethanol Company, LLC, & Regent International

Diesel engines: Can ethanol be used there too? What engine modifications are required? Doug Vind will explain at least two approaches.

• Ethanol in diesel engines (oxydiesel and biodiesel)

4:30 PM SUMMARY & CLOSE

5:00 PM RECEPTION – Sponsored by ED & F Man Alcohol, Inc. and Hawaiian Commercial & Sugar Company

U.S. Department of Energy - Ethanol Workshop Series Ala Moana Hotel – Honolulu, Hawaii November 14, 2002

Speaker Biographies

MICHAEL W. ALLEN - President, Allen's Inc., Allen Oil Company

Mike Allen has been president of Allen Oil Company and Allen's Inc. since 1994, and it's general manager before that. Mike has 22 years in the fuel marketing business. He has been instrumental in promoting and marketing ethanol and other renewables in Helena and throughout Montana. He is active in EPAC (Ethanol Producers and Consumers) as a board member and is the winner of the 1999 ACE (American Coalition for Ethanol) Grass Roots Award.

Community and industry minded, Mike has served as President of the Montana Petroleum Marketers Association and on the Board of Directors of the WPMA (Western Petroleum Marketers Association). Mike has a BS degree in Education with a double major in business and physical education from Northern Montana College (now MSU-Northern). He resides in the capital city of Helena, Montana.

JOE COLLETTE – Certified Automotive Technician, Bob's Auto Repair

Joe Collette is a certified automotive technician at Bob's Auto Repair. He has been drag racing motorcycles since 1995 and using ethanol as a race fuel since 1999. He attended General Motor's automotive service excellence program at Cerritos College. Joe is ASE certified in all fields with the exception of transmission. Joe has been an automotive technician since 1992. He served on board USS Michigan (SSBN 727 Gold) from 1986-1989 as a machinist mate repairing hydraulics, pneumatics, and atmosphere control equipment. He served on board USS Proteus (AS-19) from 1989-1992 in the field of nuclear repair.

SUE CONROE – Assistant to the President, BBI International

Sue works for BBI International -- a biofuels consulting firm based in Colorado. Last year Sue worked with eight different states to plan and conduct Department of Energy Ethanol Workshops similar to this one today. Sue also helped with a series of renewable diesel workshops conducted last year by the National Renewable Energy Laboratory and DOE.

BARRY A. DUFFIN - Quality Control Specialist, ConocoPhillips

Barry Duffin is the Quality Control Specialist at ConocoPhillips. Barry was instrumental in the development of a tactical implementation plan for the removal of MTBE and introduction of Ethanol blending at ConocoPhillips locations in California. He has 21 years in the downstream petroleum industry with broad experience in product quality. Barry Duffin began his career in the petroleum industry at Unocal's Science and Technology Center where he gained experience in process and product development, engine testing and knock laboratory management along with ASTM, SAE, STLE, NLGI, API & OEM requirements. He carried this experience to several key positions in Refining, Marketing and Transportation, which allowed him to obtain a diverse background in the industry. Barry Duffin has been responsible for laboratory operations, internal audit programs, training, SPC programs, supplier and subcontractor evaluations, and for the successful development of Quality Management Systems to meet ISO 9000 requirements. Two of his facilities achieved Freightliner's Masters of Quality Award. He is an RAB Quality Systems Auditor and Accredited Safety Auditor as well as a member of ASTM, ASQ and SEMA. Mr. Duffin oversees the quality of products at 25 terminals located in 11 western states for ConocoPhillips.

DOUGLAS A. DURANTE - Executive Director, Clean Fuels Development Coalition

Douglas Durante serves as the Executive Director and Washington Representative of the Clean Fuels Development Coalition (CFDC), a non-profit organization he assisted in forming in 1987. The CFDC works in support of renewable alcohols and ethers and has a broad-based membership including automotive, agricultural, and other alternative energy interests.

Doug has been working in the fields of energy, transportation, and the environment since 1977. He was the Director of Public Affairs for the National Alcohol Fuels Commission and also served as a Special Assistant in the Office of Alcohol Fuels at the U.S. Department of Energy. He has been involved in the development of several ethanol projects throughout the U.S. Doug has served on numerous state and federal advisory committees, including Chair of the Fuels Subcommittee of the Federal Biomass Advisory Committee.

Doug holds a B.A. degree in English and Journalism from Elon University (North Carolina) and has completed a number of graduate courses and programs in business and government affairs. He served on the U.S. Environmental Protection Agency's Clean Fuels Advisory Committee, and the Department of Energy's Business Roundtable Advisory Group.

RICHARD ELANDER – Team Leader for Biomass Pretreatment R&D, National Renewable Energy Laboratory (NREL)

Rick joined NREL in 1991 as a process engineer and is currently the Team Leader for Biomass Pretreatment Research and Development in the Biotechnology Division for Fuels and Chemicals. He has expertise in biomass conversion processes, including biomass pretreatment and thermochemical hydrolysis, enzymatic hydrolysis and fermentation, equipment design, pilot-scale engineering and operations, and process economic analysis. He has also been involved in several industrial collaboration projects, including New Energy Company of Indiana that was the recipient of a prestigious *R&D 100* Award in 1993. Rick will be the NREL technical leader of a recently-awarded \$38MM, 4 year collaborative project involving DuPont, Diversa Corporation, John Deere, Michigan State University, and NREL to develop an integrated corn-based biorefinery.

Prior to joining NREL, Rick was a process development engineer at Genencor International Inc. At Genencor, Rick worked on processes for the production and recovery of several industrial enzymes, including cellulase. Rick holds a B.S. degree in Chemical Engineering from the University of Pennsylvania and a M.S. degree in Chemical Engineering from Colorado.

JAYANT GODBOLE – Regional Director, Americas, Praj Industries Limited

Jayant Godbole is the Regional Director for the Americas at Praj Industries Limited. He has worked with Chemical Engineering Companies including Alfa Laval in India before joining PRAJ. He started and headed the international business division of PRAJ from 1994 to 1998. He has developed and successfully secured several international projects in Indonesia, Philippines, Sri Lanka, Nepal, South Africa, Peru, and Colombia. In 1999 he established PRAJ 's regional office for Latin America & the Caribbean's at Bogotà, Colombia. He has worked closely with sugar factory & distillery clients in Colombia, Peru, Venezuela, Guatemala, El Salvador, Nicaragua, Dominican Republic, Trinidad, Barbados, and Jamaica. He speaks both English and Spanish. He heads the operations in Latin America and Caribbean's for PRAJ.

Jayant is a graduate of the University Department of Chemical Engineering, Mumbai, India. He has a postgraduate diploma in International Business.

WARREN HALL – Manager, Hawaii Operations, EA Engineering, Science, and Technology, Inc.

Warren Hall is the Manager of Hawaii Operations for EA Engineering, Science, and Technology, Inc., a national environmental engineering and energy consulting firm based in Hunt Valley, Maryland with unique capabilities in the alternative fuels arena. Warren has worked for various federal and private clients in Hawaii and the Pacific Basin on various environmental, energy use, and alternative fuels issues. He has provided consulting services to private fleets related to alternative fuel vehicle use and infrastructure requirements and is an active member of the Honolulu Clean Cities organization.

LARRY JOHNSON – Business Development Manager; Delta-T Corporation

Larry Johnson is the Business Development Manager at Delta-T Corporation. For 15 years, Larry managed his own consulting company called Ethanol Marketing and Management Services. He became known as the "Ethanol Answerman" for his work with engine mechanics, fuel distributors and consumers, while developing the Minnesota ethanol market and organizing more than a dozen farmer-owned cooperatives.

On January 1, 2000, he took the position of U.S. Business Development Manager with Delta-T Corporation of Williamsburg, Virginia. Delta-T is a leading design/engineering firm with more than 60 ethanol installations around the world. His primary role today is the development of new ethanol projects. Mr. Johnson now combines his 20 years of experience in ethanol marketing and project development with the technology, engineering, financing and project development resources of Delta-T Corporation. This combination of resources can provide any feasible project with the most experienced and comprehensive project support and development services available today.

MAURICE H. KAYA – Administrator, State of Hawaii-Energy, Resources & Technology Division

Maurice Kaya is the Administrator for the State of Hawaii Energy, Resources & Technology Division. Maurice has 30 years experience in energy and environmental engineering in the State of Hawaii in both the public and private sectors. He currently administers statewide energy programs for the State of Hawaii. He is responsible for the planning and execution of energy policy in three major areas: statewide energy emergency preparedness, energy conservation programs, and development of renewable energy projects.

As director of Hawaii's Energy program, Maurice has lead efforts to implement renewable energy and energy efficiency programs in the state, including the successful development of a Model Energy Code, performance contracting programs, and widespread adoption of statewide utility demandside management programs. These efforts have resulted in national recognition for Hawaii's energy code, Million Solar Roofs Partnership, Rebuild America program, and numerous other innovations.

The U.S. Energy Secretary appointed Maurice to a two-year term as Chair of the federal State Energy Advisory Board (STEAB). He serves on the Advisory Board of the Natural Energy Laboratory of Hawaii (NELHA); Hawaii Natural Energy Institute, University of Hawaii; and is current Chair of the Emerging Energy Technologies technical committee, Energy Division, American Society of Civil Engineers. He holds a B.S. in Civil Engineering and a M.S. in Environmental Engineering from the University of Hawaii.

WILLIAM MALONEY – Director of Business Development, ED & F Man Alcohol, Inc.

Since 1998, William has been serving in a consulting role in the capacity of Director of Business Development to ED & F Man Alcohols, one the world's largest alcohol trading companies. In this position he has been responsible for the marketing of fuel ethanol in the United States as well as project development in the US and Central America.

Prior to joining ED & F Man, William was the principal owner and director of Caribbean Pacific Alcohol Company, a twelve million gallon per annum ethanol plant in Kingston, Jamaica. He was concurrently Managing Director of Tropicana Holdings Ltd., a 7,000-acre sugar estate and sugar factory located in St. Thomas, Jamaica. Under his direction the company increased its annual sugar production from less than 7,000 tons per annum to more than 15,000 tons. Mr. Maloney also served as a director of the Sugar Manufacturing Corporation of Jamaica, and on the Board of Management of the sugar producer's federation.

From 1984-1990 Mr. Maloney was the General Manager and then President (1990-1992) of Tropicana International Ltd., owner and operator of a 25 million gallon per annum ethanol facility in Kingston, Jamaica. Mr. Maloney guided the company from inception to production.

Mr. Maloney received a Bachelor of Arts degree with honors from the University of San Diego majoring in Economics and History.

GEORGE NITTA – Host, Hawaiian Automotive 101 Radio Talk Show & Owner, Nitta's Auto Repair

George Nitta hosts the Hawaiian Automotive 101 Radio Talk Show, and is the owner of Nitta's Auto Repair. He began working on cars as a teenager. In 1961, George began working as a mechanic for Servco Pacific's Motor Imports. Soon, his love of cars found him at the local racetrack. George would go on to become a fixture at the track for the next twenty years, racing for major sponsors like Autolite, Fram, Pennzoil, Crane Cams, Hurst Shifters, and Goodyear Tires. He founded the 50th State Pro Gas Association in the late 70's, which continues today.

In 1965, while working at Import Motors, George started a part-time auto repair business, Nitta's Auto Repair. Two years later, he quit the dealership and has been in business for himself ever since. In the mid 70's, George founded the Kaka'ako Business Association, later serving as Chairman; and he served two terms on the Ala Moana/Kaka'ako Neighborhood Board, also as Chairman. He has taught many classes including a course called Practical Auto at the University of Hawaii at Manoa. In 1995, he began his radio call-in show, Automotive 101. Major companies have also noticed his expertise in cars. Honda America and Chrysler have drawn on George's knowledge in courtroom cases, as have several large insurance companies. Their manufacturers have adopted some of George's product improvements.

LARRY H. SCHAFER – Legislative Counsel, Renewable Fuels Association

Mr. Schafer is the Legislative Counsel for the Renewable Fuels Association (RFA). He specializes in the political tax arena and serves as RFA's lead lobbyist before the tax and trade writing U. S. House of Representative Ways and Means Committee, the U.S. Senate Finance Committee, the U.S. Department of Treasury, and the Internal Revenue Service.

Prior to coming to RFA, Mr. Schafer served as Vice President of Legal, Tax & Accounting (LTA) Policy with the National Council of Farmer Cooperatives (NCFC). Where he was the policy director and lead lobbyist on legal, tax and accounting issues.

Prior to joining NCFC, Mr. Schafer served as Legislative Counsel to U.S. Congressman Earl Pomeroy (D-ND), where he provided legal and legislative analysis concerning agriculture, trade and other important issues. Mr. Schafer is a native of Mandan, North Dakota. He received his law degree from the University of North Dakota School of Law, and holds a B.S. in Business Administration with a concentration in accounting from Valley City State University in North Dakota.

ROBERT SHLESER, Ph.D. – President, The 'Aina Institute

Bob Shleser is the President of The 'Aina Institute, a Non-Profit Organization established to conduct research development and technology transfer on methods of recapturing value from biomass. He has been a resident of Hawaii for 26 years. Bob has worked on projects and activities that have contributed to the foundation for Biomass Energy Opportunities in Hawaii.

In 1991, Bob and others formed the 'Aina Institute. He became directly involved with evaluation of technologies for production of ethanol from biomass in 1993 when he was consultant to Department of Business Economic Development and Tourism (DBEDT) of the State of Hawaii to evaluate the technical and economic performance of seven emerging technologies for conversion of lignocellulosic biomass to ethanol.

He is author of the 1994 report "Ethanol Production in Hawaii". During the period 1994-96, he was the Manager of the Sustainable Biomass Energy Program at the Pacific International Center for High Technology Research (PICHTR). He developed programs to evaluate technologies that might contribute to the economic performance of sugar production in Hawaii.

He holds a B.S., Agriculture, Purdue University, M.S., Genetics, Purdue University, and a Ph.D. Biophysics/ Molecular Genetics, Purdue University.

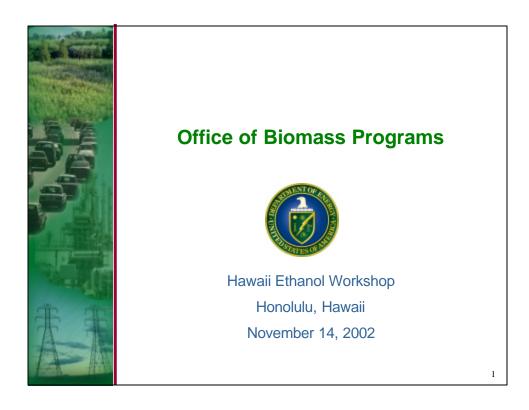
DOUGLAS B. VIND – President and Chief Operating Officer, Western Ethanol Company, LLC & Regent International

Douglas Vind is President and Chief Operating Officer of Western Ethanol Company LLC, ("WEC"), and Regent International. Doug has been working in the fuel and fuel-alcohol manufacturing and distribution business since 1982.

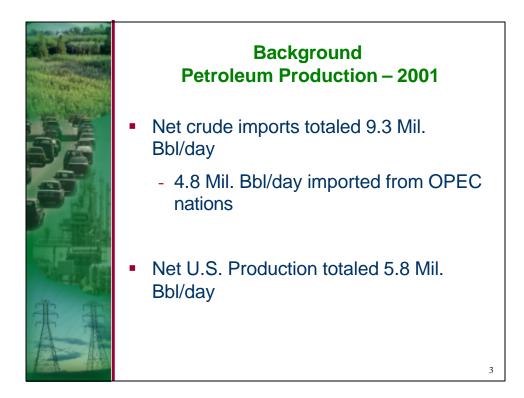
WEC is both a manufacturer and distributor of fuel grade ethanol throughout the Western United States. WEC dehydrates alcohol and distributes finished fuel grade ethanol through bulk storage and terminal facilities in the United States. In addition to its own proprietary production, WEC also maintains significant purchase, distribution and exchange agreements with domestic ethanol producers.

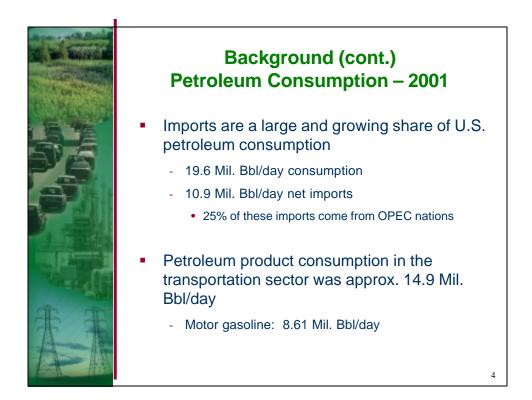
Regent International focuses on niche market opportunities and new fuel related technologies involving the use of ethanol. Regent was involved as an early participant in the operation and fueling infrastructure of E-85 vehicles. Regent has since focused on "emerging" ethanol demonstration projects including E-diesel, and ethanol used in electrical power generation in turbines and portable generators.

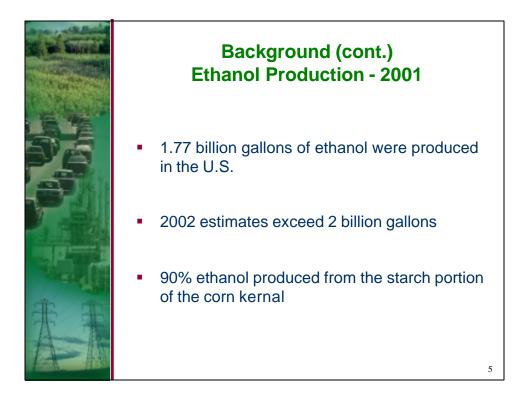
Doug is also directly involved in the adoption of fuel and alternative fuel legislative and regulatory activities in his capacity as Chairman of the California Renewable Fuels Council. He also serves as a member of the Washington, D.C. based Renewable Fuels Association, and has sponsored regulations and legislation promoting the alternative fuels industry throughout the United States.

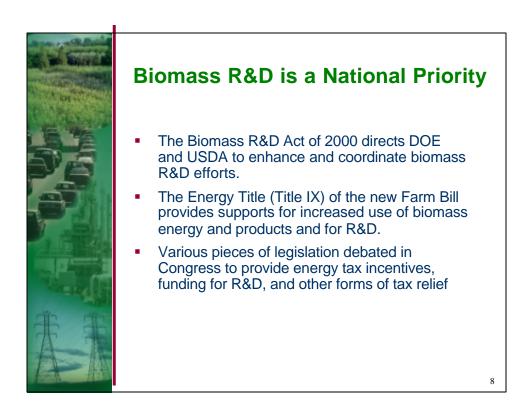

MARK YANCEY – Director of Consulting Services, BBI International

Mark Yancey is the Director of Consulting Services for BBI International – a biofuels consulting firm based in Colorado. Mark provides feasibility studies, business plans, project development advice and economic impact analyses for both national and international clients. Mark has twenty-three years of experience in the fields of renewable energy and bioengineering and holds a B.S. in Chemical Engineering from Stanford University.


EILEEN YOSHINAKA - Pacific Liaison, Seattle Regional Office, U.S. Department of Energy

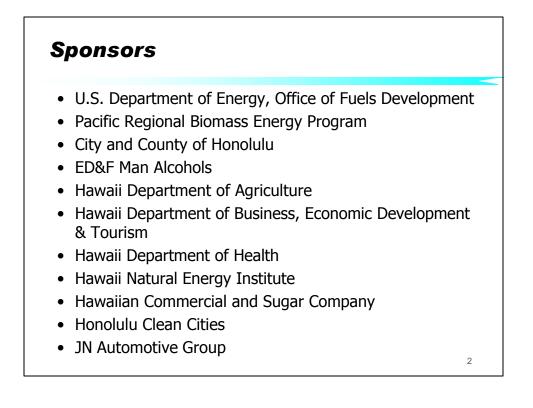

Eileen is the Pacific Liaison for the U.S. Department of Energy (DOE) Seattle Regional Office. Eileen is responsible for oversight, technical/field management, coordination and implementation of DOE's programs and projects administered in the Pacific Insular Area comprised of the State of Hawaii, Territory of American Samoa, Territory of Guam, Commonwealth of the Northern Mariana Islands and the Republic of Palau.

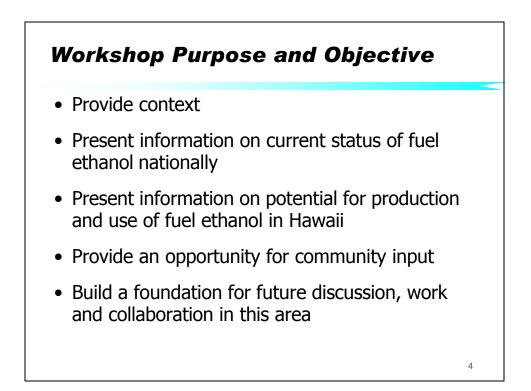

Eileen was born in Hawaii. Graduated from San Francisco State University with a degree in Business Administration.

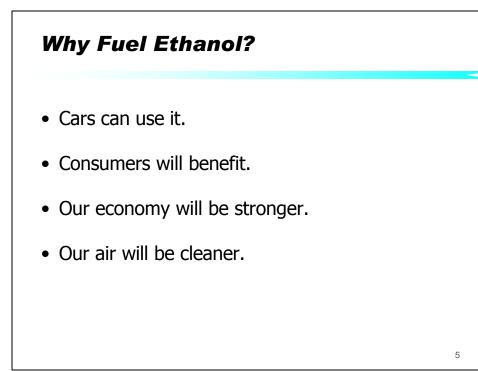


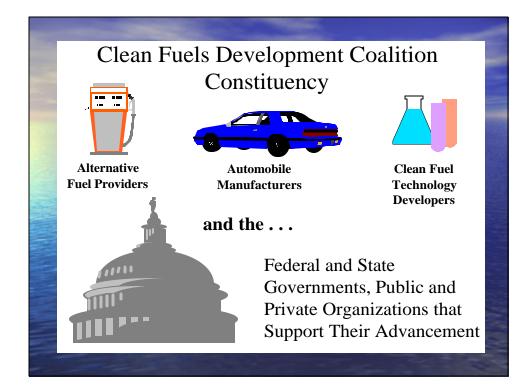
Program Mission

Mission

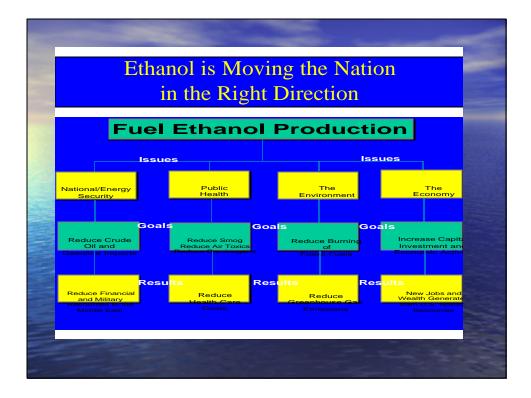

• To foster research and development on advanced technologies to transform our abundant biomass resources into clean, affordable, and domestically-produced biofuels, biopower, and high-value bioproducts for improving the economic development and enhancing the energy supply options of the U.S.

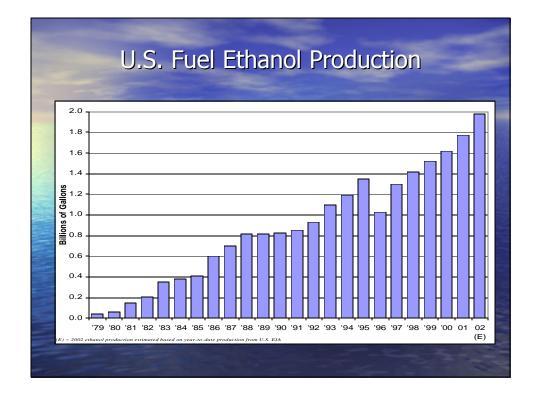


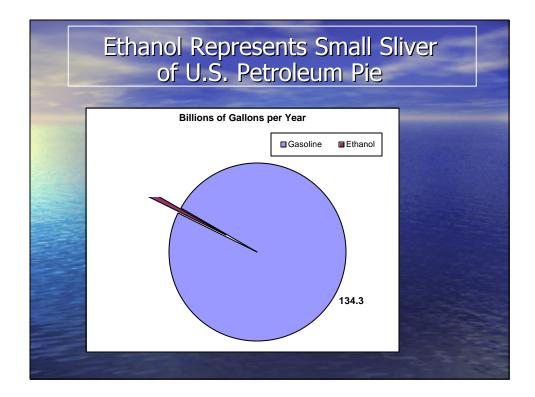


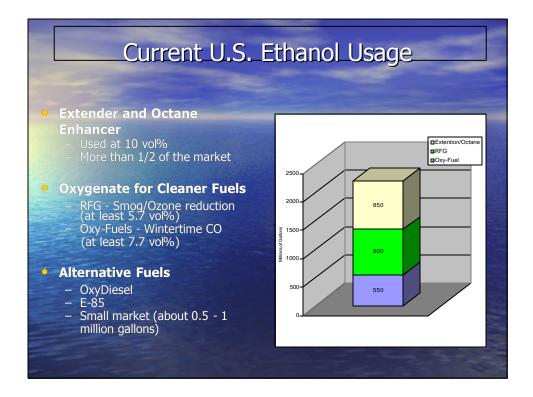


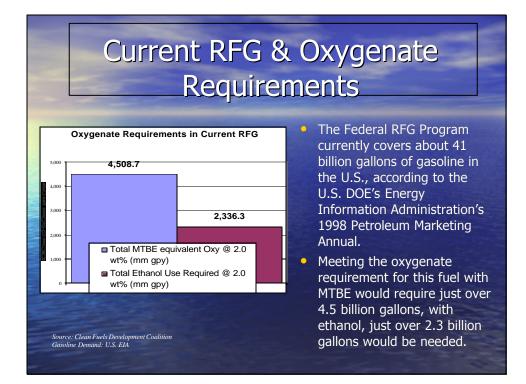
Wo	rkina	Group		
	niig	Ulup		
				-
Mr.	Richard	Akana	Akana Petroleum Inc.	
Mr.	Barry	Ching	State Department of Health	
Mr.	Wayne	Condit	Shell Oil Products US	
Mr.	Eric		WEG-Kauai LLC	
Mr.	Douglas	Durante	Clean Fuels Development Coalition	
Mr.	Michael	Edwards	Sustainable Kauai	
	Beverly	Harbin	Chamber of Commerce of Hawaii	
Mr.	Mark	Hepburn	ChevronTexaco Corporation	
Mr.	0.010	Holaday	Hawaiian Commercial and Sugar	
	Sabra	Kauka	Garden Island RC&D	
Mr.	David	Keith	Aloha Petroleum, Ltd.	
Mr.	Daniel	Kenknight	Oahu Ethanol Corporation	
Mr.	Alan	Kennett	Gay and Robinson	
Mr.	. ten	Kobayashi	County of Maui Energy Office	
Ms.	Susan	Kusunoki	Tesoro Hawaii Corporation	
Mr.	Calvin	Lee	State Department of Agriculture	
Mr.	Ray	Levinson	U.S. Postal Service Pacific Area Operations	
Mr.	William	Maloney	ED & F Man Alcohol Inc.	
Mr.	Brad	Nicolai	JN Automotive	
Mr.	William	Pierpont	State Department of Agriculture	
Mr.	Robert	Primiano	Honolulu Clean Cities	
Dr.	Richard	Rocheleau	Hawaii Natural Energy Institute	
Mr.	Ralph	Saito	Leeward Petroleum Inc.	
Mr.	Glenn	Sato	County of Kauai	
Dr.	Bob	Shleser	The 'Aina Institute	
Mr.	Robert	Tam	State Department of Health	
Ms.	Stephanie	Whalen	Hawaii Agriculture Research Center	
Mr.	Gordon	Wong	Tesoro Hawaii Corporation	
Mr.	Gordon	Yorke	Hawaiian Commercial and Sugar	

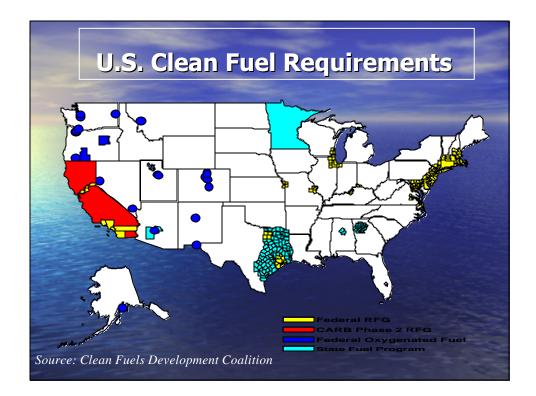


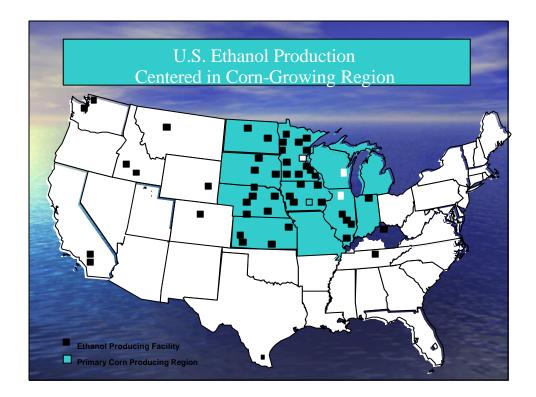


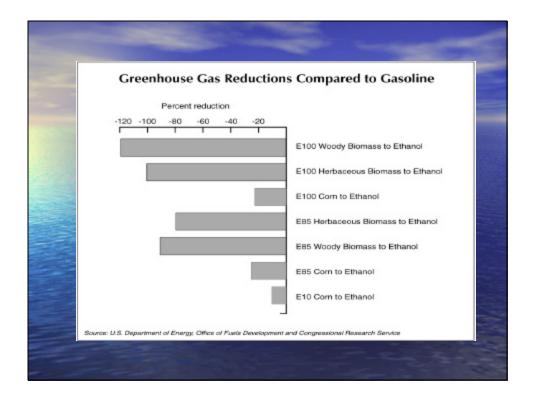


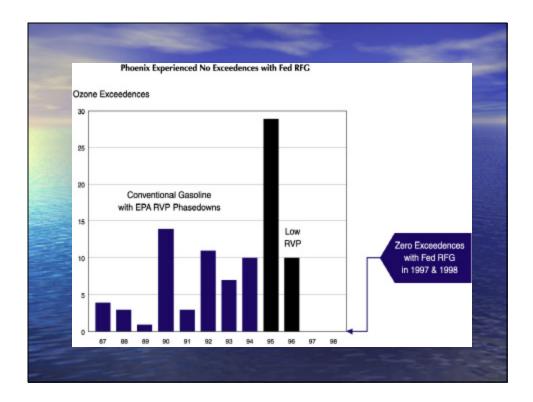


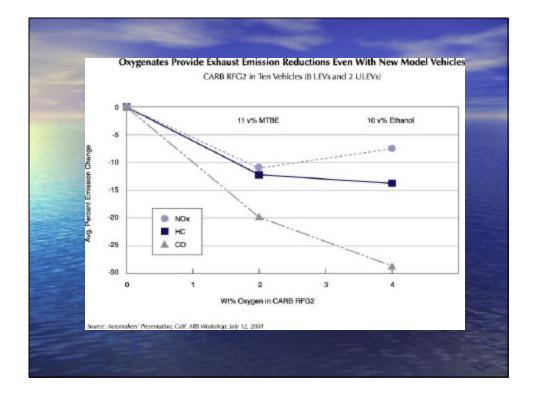




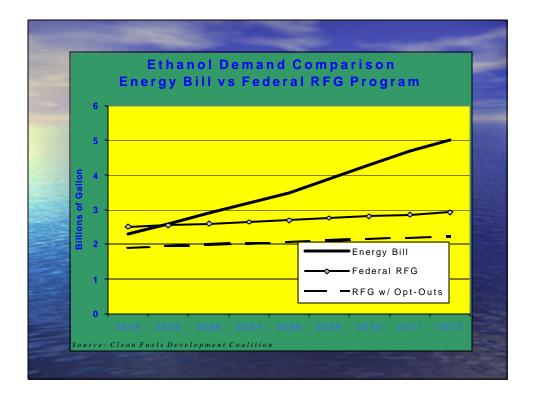

Hawaii Ethanol Workshop: November 14, 2002

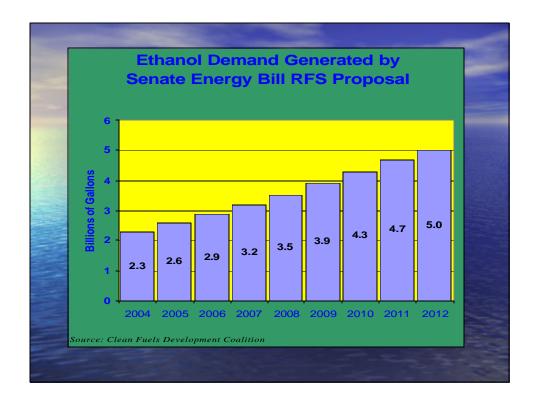


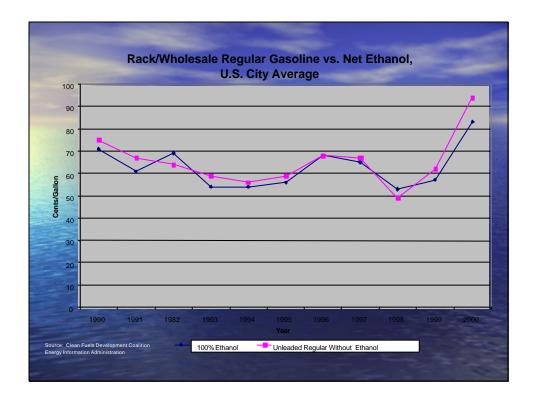


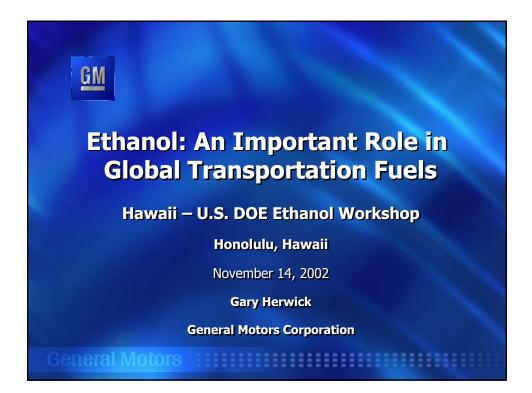


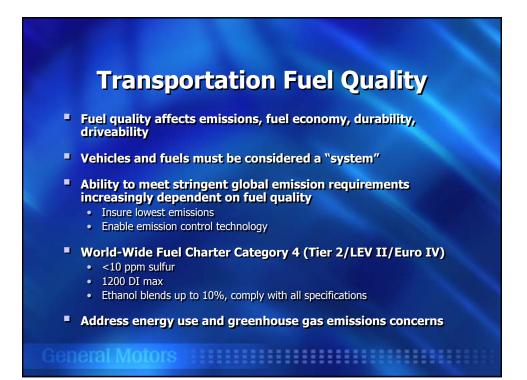
Hawaii Ethanol Workshop: November 14, 2002

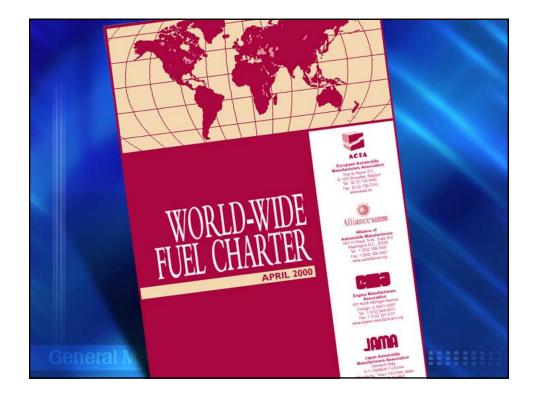


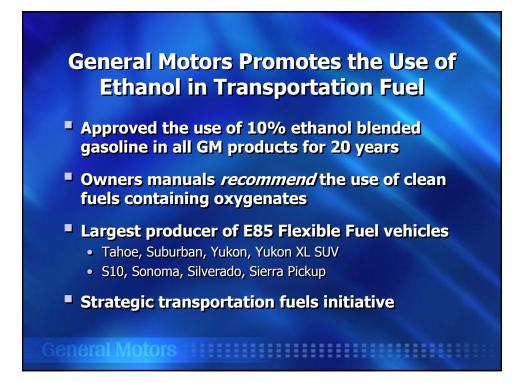




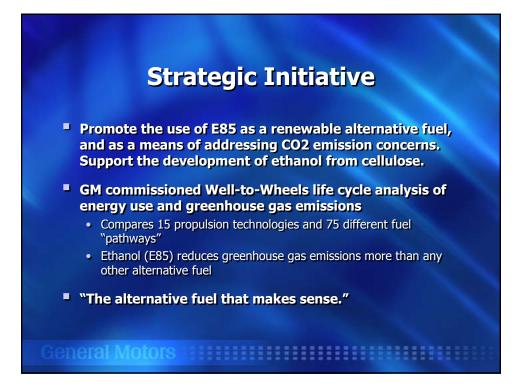

Hawaii Ethanol Workshop: November 14, 2002

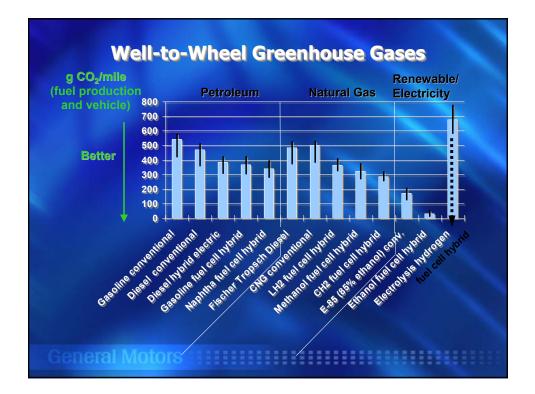


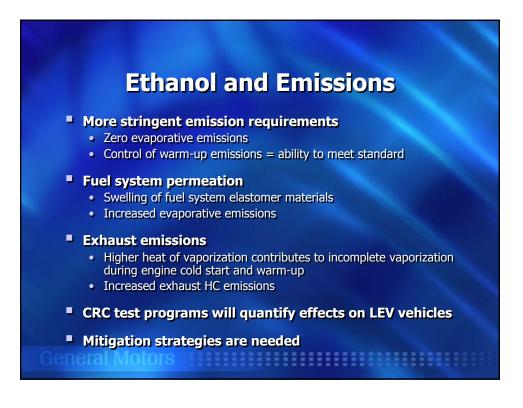


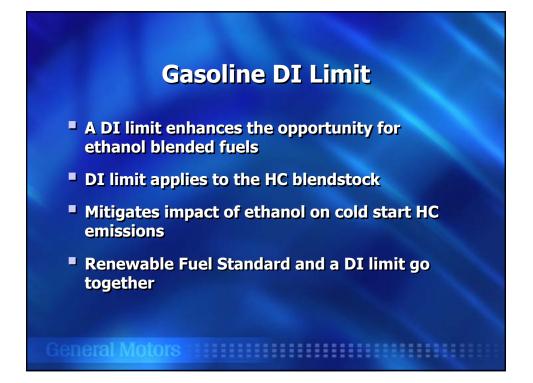


Ethanol: An Important Role in Global Transportation Fuels


Gary Herwick - 1

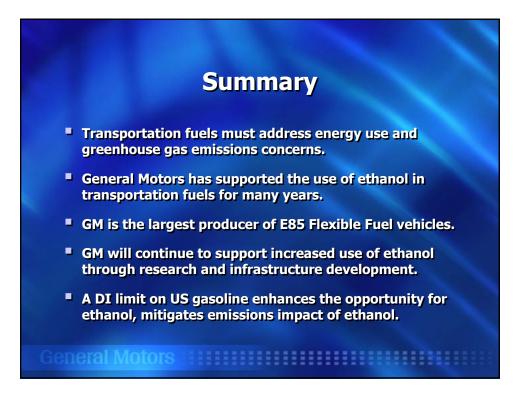






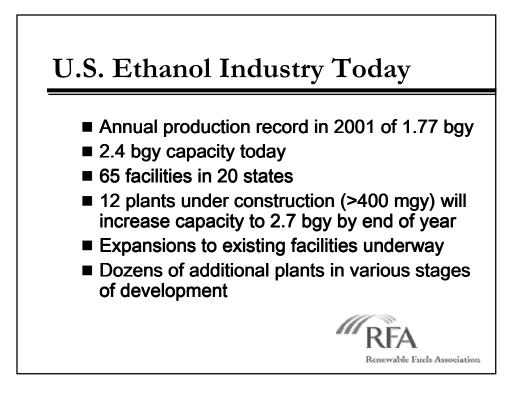
Ethanol: An Important Role in Global Transportation Fuels

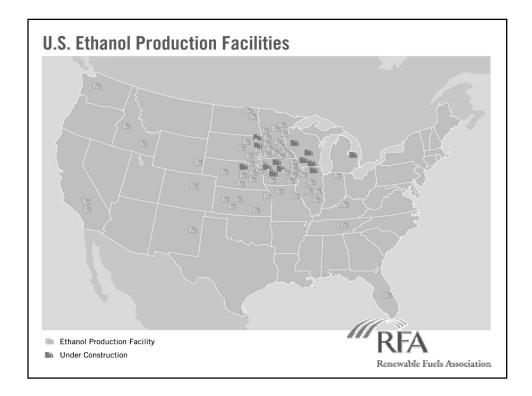
Gary Herwick - 4

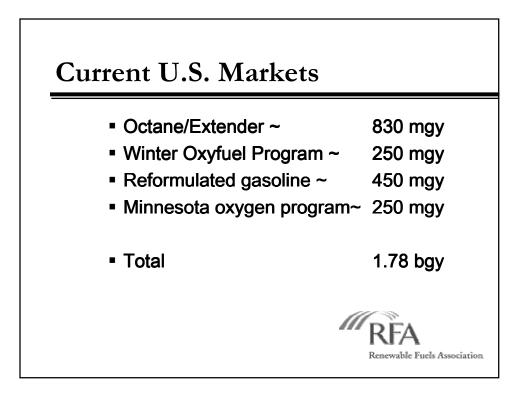


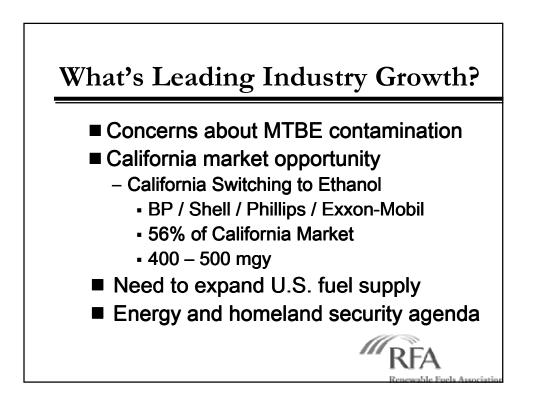
Ethanol: An Important Role in Global Transportation Fuels

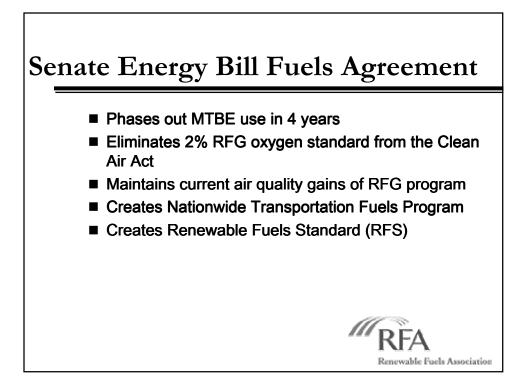
Gary Herwick - 6

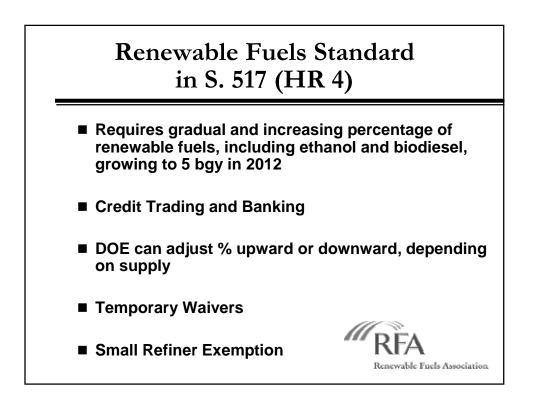


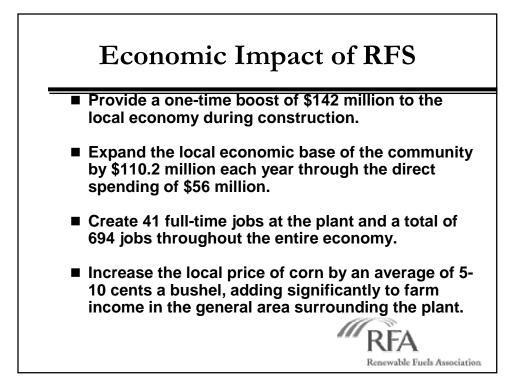

Hawaii

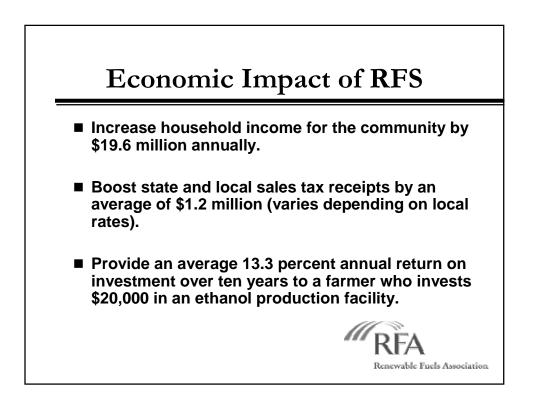

Larry Schafer Legislative Counsel Renewable Fuels Association

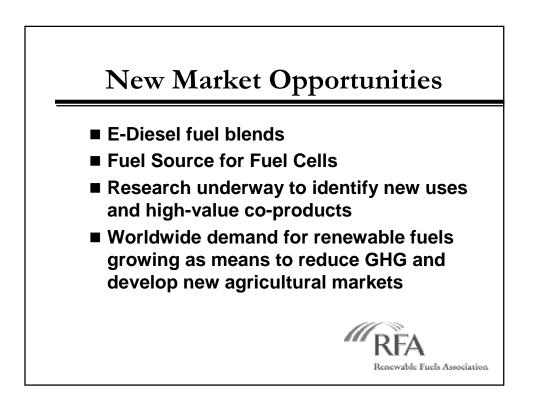






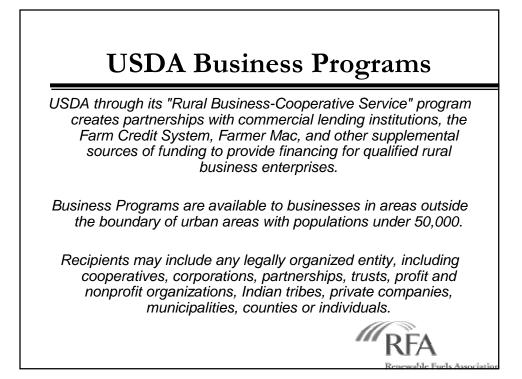


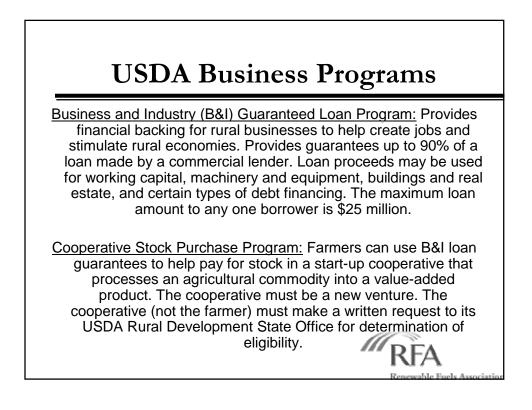




USDA Programs – Starting an Ethanol Facility

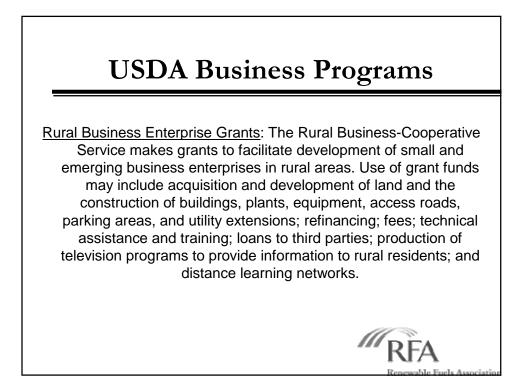
On the federal level, the U.S. Department of Agriculture (USDA) Rural Development Office provides financial assistance in the form of grants and loans to improve the economy and quality of life in rural America. Technical assistance and information resources are also available. These programs can assist entities seeking to develop and build an ethanol production facility.


USDA Programs – Starting an Ethanol Facility

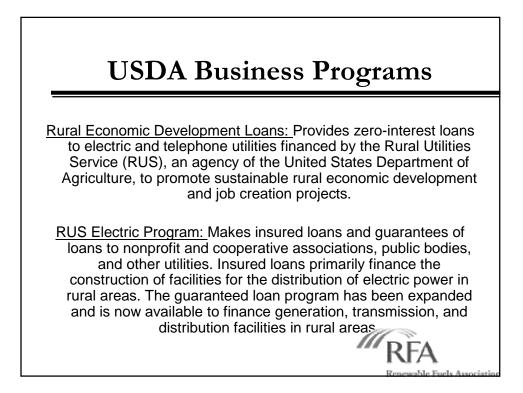

USDA provides two types of Programs:

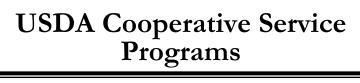
Business Programs &

Cooperative Services.



<u>Rural Business Opportunity Grants:</u> Designed to promote economic development in rural communities by making grants to pay the costs of providing economic planning, technical assistance, or training. Applicants must be a public body, nonprofit corporation, Indian tribe, or cooperative with members that are primarily rural residents. Applicants must have expertise in the activities proposed and be able to demonstrate that funding will result in rural economic development. A maximum of \$1.5 million is available for the program, with most grants of \$50,000 or less.

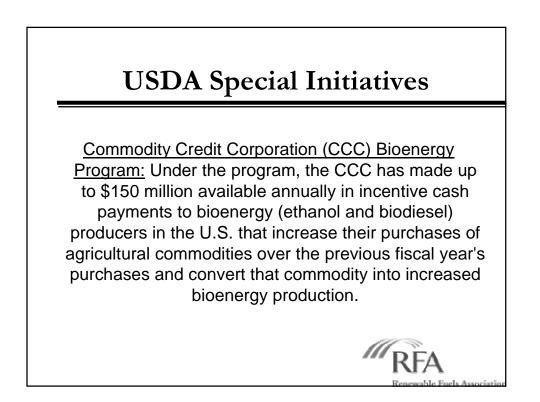




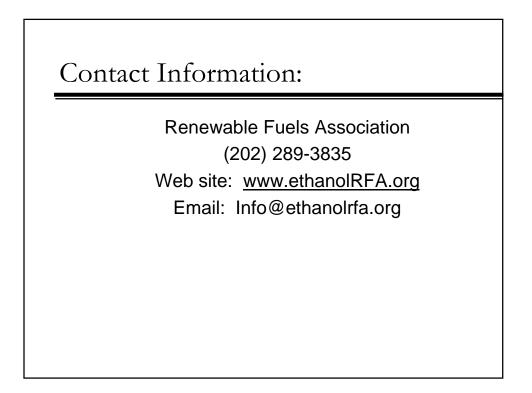
Intermediary Relending Program: The purpose of the Intermediary Relending Program (IRP) is to finance business facilities and community development projects in rural areas. This is achieved through loans made by the Rural Business-Cooperative Service (RBS) to intermediaries. Intermediaries re-lend funds to ultimate recipients for business facilities or community development. Intermediaries establish revolving loan funds so collections from loans made to ultimate recipients in excess of necessary operating expenses and debt payments will be used for more loans to ultimate recipients.

Promotes understanding and use of the cooperative as a viable organizational option for marketing and distributing agricultural products. Helps rural residents form new cooperative businesses and improve the operations of existing cooperatives.

<u>Value-Added Agricultural Product Market Development Grants -</u> <u>Independent Producers:</u> This grant program seeks to encourage independent agricultural producers to further refine their products for value-added benefits. These grants will facilitate greater participation by farmers in markets for value-added agricultural commodities and facilitate the opening of new markets for value-added products. The proposed project must change the form of an agricultural product, such as processing grain into ethanol, wheat into flour, etc.

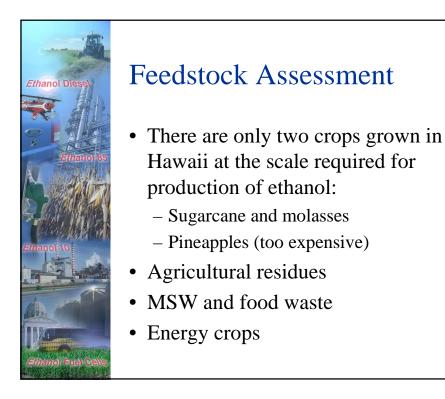

USDA Cooperative Service Programs

<u>Cooperative Development Technical Assistance:</u> Provides assistance for those interested in forming a new cooperative, from an initial feasibility study to the creation and implementation of a business plan.


<u>Technical Assistance:</u> Could include helping a cooperative develop a strategic marketing plan, determine whether to merge or form a joint venture with other coops, or find a way to turn raw products into value-added products. Assistance often includes an analysis of operations or assessing the economic feasibility of new facilities or adding new products or services.

Presentation Overview

- Economic impact assessments
- Resources for ethanol production on Hawaii
- Ethanol market potential
- Ethanol production scenario
- Capital and operating cost estimates for ethanol production in Hawaii
- Economic impact results


Economic Impact Assessments

- Determine the impact of new economic activity on jobs, income, total spending and taxes for a specific region or area
- Determine the direct impacts and then use "multipliers" to determine indirect and induced impacts
- Not a feasibility study

Hawaii's Resources for Ethanol Production

- Ethanol is typically produce by fermentation of sugars by yeast
- All plants contain sugar, starch or cellulose all can be used to make ethanol
- Hawaii has sugar and cellulose feedstocks and few starch crops
- MSW (garbage) can also be used

Ethan

Ethanol Po	otential		
Feedstock Resource	Supply (dry tons)	Ethanol Yield (gal/ton)	Ethanol Potentia (MMGY)
Sugar-based crops			
Raw sugar	300,000	150	45
Molasses	100,000	72	7
Food Waste	40,500	62	3
Organics in MSW	620,000	60	37
Lignocellulosics			
Pineapple residues	181,000	80	14
Sugarcane residues	535,000	75	40
	1,776,500	83	148

Ethanol Market Potential

- Hawaii's transportation market is dependant on imported oil
- Present annual consumption of gasoline by the ground sector in Hawaii is on the order of 400 MMGY
- At 10% ethanol blend by volume = 40 million gallons of ethanol per year

Ethanol Production Scenario

- There are many possible scenarios for ethanol production in Hawaii
- After considering many different scenarios, BBI selected:
- **☆**15 MMGY on Oahu from MSW
- *15 MMGY on Maui from Molasses
- *10 MMGY on Kauai from Molasses

Oahu Ethanol Plant

- 15 million gallon per year capacity
- Assume that at this size the operation of the H-Power facility will not be affected
- Would utilize lignocellulosic biomass to ethanol technology (not commercial)
- An option for future consideration is to integrate an organic recycling program focused on generating biogas from food wastes to fuel the ethanol plant

Maui Ethanol Plant

- 15 million gallon per year capacity
- The Maui plant would utilize molasses from current sugar operations, supplemented with sugar from existing operations or from new sugarcane production

Kauai Ethanol Plant

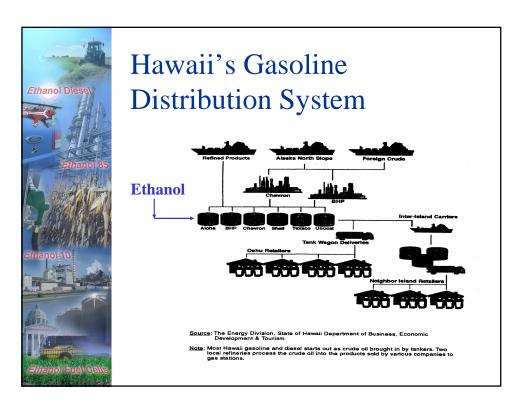
- 15 million gallon per year capacity
- The Kauai plant would utilize molasses from current sugar operations, supplemented with sugar from existing operations or from new sugarcane production

Ethanol Diesey	Capital Cost E	lstima	ites	
	Ethanol Plant Site	Oahu	Maui	Kauai
	Ethanol Production (Gal/Year)	15,000,000	15,000,000	10,000,000
	Project Costs			
Ethanol 85	Ethanol Plant Cost per Gallon	\$2.67	\$1.94	\$2.17
A CONTRACTOR	Engineering & Construction	\$39,981,000	\$29,143,000	\$21,714,000
In a distant	Inventory - Biomass	\$136,000	\$240,000	\$160,000
5/99/10/200	Inventory - Chemicals/Denaturant	\$66,000	\$67,000	\$45,000
	Inventory - Ethanol & Lignin	\$453,000	\$435,000	\$290,000
	Spare Parts	\$300,000	\$300,000	\$200,000
	Startup Costs	\$700,000	\$700,000	\$500,000
Ethanol 10	Land	\$300,000	\$300,000	\$200,000
	Administration Building & Furnishing	\$200,000	\$200,000	\$200,000
	Site Development Costs	\$500,000	\$500,000	\$500,000
	Tools and Laboratory Equipment	\$200,000	\$200,000	\$200,000
A	Organizational Costs	\$700,000	\$700,000	\$500,000
	Capitalized Fees and Interest	\$1,079,000	\$787,000	\$586,000
	Working Capital	\$400,000	\$291,000	\$217,000
Alicinol Fuel Qelle	Estimated Total Project Cost	\$45,015,000	\$33,863,000	\$25,312,000

Ethanol Diese	Operating Cos Ethanol Plant Site Production & Operating Expenses	st Esti _{Oahu}	mates _{Maui}	Kauai
	Feedstocks	\$4.809.524	\$8,487,395	\$5,658,263
Ethanol 85	Purchased Cellulase Enzymes	\$1,454,400	φο,407,000 \$0	\$0 \$0
	Other Chemicals	\$1,115,329	¥ -	¥ -
B- CONTRACT	Fuel Oil	\$2,980,950	\$2,833,333	\$1,888,889
	Electricity	\$2,040,000	\$1,165,714	\$777,143
	Denaturants	\$655,714	. ,	+ -) -
S Jacob Barris	Other costs	\$484,757		
	Direct Labor & Benefits	\$1,059,537		
Ethenoli 10	Total Production Costs	\$14,600,211	\$15,552,836	\$10,422,275
Ethanol 10	Administrative Expenses	\$2,777,196	\$2,387,153	\$1,910,661
	Principal & Interest - Debt	\$4,044,757	\$3,010,711	\$2,259,877
A alter	Annual Operating Expense	\$21,422,164	\$20,950,700	\$14,592,813
Allemoli Buck Gents	Number of Employees	31	31	22

Economic Impacts

- The expenditures of the ethanol plants will become the income of other businesses or individuals, which in turn is re-spent in the economy to provide income for others
- The initial economic activity has a multiplier effect that ripples through the economy
- Economic impact analysis is an analytical method that provides a measure of the economic effects of an activity within a specified region


Ethanol Diese	Economic Imp	act R	esults	5
	Construction Phase Impacts	Oahu	Maui	Kauai
	Ethanol Plant Capital Cost (millions)	\$45.0	\$33.9	\$25.3
Ethanol 85	Final Demand Impact (millions)	\$109.2	\$82.2	\$61.4
A STRAIN	Earnings Impact (millions)	\$35.5	\$26.7	\$19.9
States	Employment Impacts (indirect jobs)	1,108	833	623
The Maler	Operations Phase Impacts	Oahu	Maui	Kauai
thanol 10	Operating Expenditures (millions)	\$21.3	\$20.8	\$14.5
	Final Demand Impact (millions)	\$42.0	\$41.1	\$28.6
	Earnings Impact (millions)	\$7.5	\$7.3	\$5.1
	Employment Impacts (direct jobs)	31	31	22
	Employment Impacts (indirect jobs)	226	221	154
Alternol Fuel Genes	Total Jobs	257	252	176

Ethanol Diese	Tax Impacts			
	Impact of State Producer Payment	Oahu	Maui	Kauai
	Ethanol Plant Average Pre-Tax Income (millions)	\$3.6	\$4.1	\$2.0
Ethanol 85	Hawaii & Federal Corporate Income Tax Revenu	\$3.0 \$1.5	\$4.1 \$1.7	\$0.8
1 TERMAN	Hawaii Personal Income Tax on Earnings	\$0.6	\$0.6	\$0.4
	Total Tax Revenue (millions)	\$2.1	\$2.3	\$1.3
	State Producer Payment (millions)	\$4.2	\$4.2	\$2.7
	Annual Return to State (millions)	(\$2.1)	(\$1.9)	(\$1.4)
ithanol 10				
Allenol Puel Venis				

Impacts to Fuel Refining and Distribution Systems

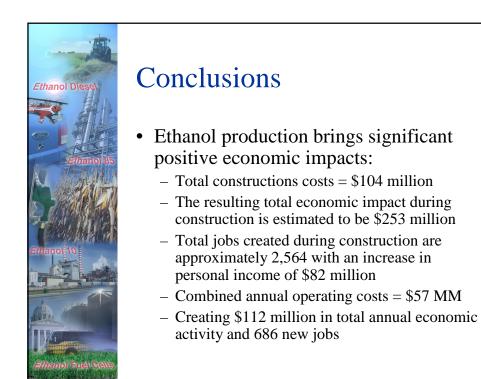
- Dr. Joseph Masin conducted a study to determine the capital and operating cost impacts of blending fuel grade ethanol with gasoline in Hawaii
- Ethanol is assumed to be manufactured in Hawaii and blended with gasoline at 10% by volume

Ethanol Blending

- Petroleum refiners will need to remove light gasoline components, like butanes and pentanes, from current blend recipes in order to accommodate the relatively high vapor pressure that results when ethanol is blended with gasoline at 5 to 10 percent by volume ethanol
- This may require modification of distillation and storage facilities, as well as finding markets for the removed components

		<u>Component</u>	Volume 10^6 gal/y	RVP <u>psi</u>		Weight 10^3 T/yr	LHV 10^9Btu/yr
The second second	Ethanol	Case 1	Existing BI	and			
Ethanol Diesel	Linunoi	Butane	EXISUING DI		5 92	58	-2295
Ethanol Diesel	Dlanding	LVN	1				-1685
THE END	Blending	Other Gasoline Base	36	0 8.8	89	1206	-45828
	÷	Total	40	0 11.5	5 88.2		-49807
	Scenarios	Content per gallon (#	or Btu)			6.54	-124518
		Case 2	Add ethan	ol, waive F	RVP limit		
		Ethanol	4	4 18.0) 113	145	-3454
Ethanol 85		Butane	2			58	-2295
		LVN	1				-1464
		Other Gasoline Base	<u>36</u>				-45828
		Total	44	2 12.1	90.8		-53041
		Content per gallon (#	or Btu)			6.55	-120027
3 A. M. M. O.		Case 3	Add ethan				
Ciolo Barrel		Ethanol	4				-3375
A REAL PARTY AND A REAL AND A		Butane	1				-1675
Ethanol 10		LVN	1				-1469
		Other Gasoline Base	<u>36</u>				<u>-45828</u>
		Total	43	4 11.5	5 90.7	1428 6.57	-52348 -120485
A COLUMN A COLUMN		Content per gallon (#	or Btu)			6.57	-120485
		Case 4	Replace lig	hts with E	thanol, k	eep RVP	
		Ethanol	4	1 18.0) 113	135	-3211
		Butane		8 51.5	5 92	19	-765
		LVN		0 12.0		0	0
		Other Gasoline Base	<u>36</u>				-45828
- Company of the second		Total	40	9 10.6	6 91.6		-49803
Ethanol Fuel Cells		Content per gallon (#	or Btu)			6.65	-121799

See See
And a
and the second se
10000
Ethanol Diesel
watter Editor
Ethanol 85
THE IS LONG IN
E STATES
Ethanol 10
Emanor to
A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE
Annual Martin Connection
A DATA AND A DATA AND A DATA AND A DATA
Ethanol Fuel Cells
States of Party of the States
Photo and the second second second


Summary of Refinery and Fuel Distribution Impacts

Ethanol Blending	Case 2	Case 3	Case 4
Description	Waive RVP Limit	Keep RVP Limit	Replace Lights with Ethanol
Vapor Pressure (psi) *	12.1	11.5	10.6
Refiner's Capital Costs (\$MM)	\$3.00	\$4.30	\$5.70
Additional Labor (FTE)	8.90	8.80	8.60
Net Refiner Revenue (\$/gal)	\$0.07	\$0.06	\$0.02
Net Decrease in Energy (\$/gal)	(\$0.05)	(\$0.05)	(\$0.03)
Net Savings with Ethanol (\$/gal)	\$0.02	\$0.01	(\$0.01)
* Vapor pressure limit for gasoline in Hav	waii is 11.5 psi		

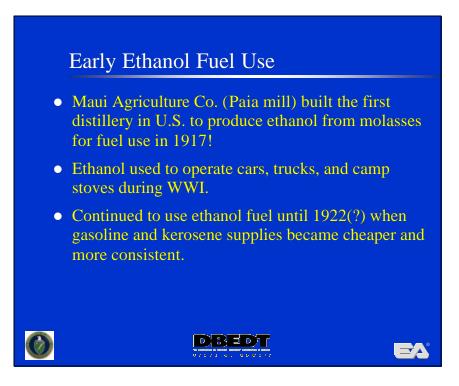
Conclusions for Ethanol Production Impacts

- These results are preliminary! Refinery side impacts are not incorporated
- Sugar and starch feedstocks are in short supply due to declining sugarcane acreage
- Lignocellulosic feedstocks are plentiful, but the corresponding ethanol technology is not yet commercial
- The potential ethanol market on Hawaii is 40 MMGY and growing

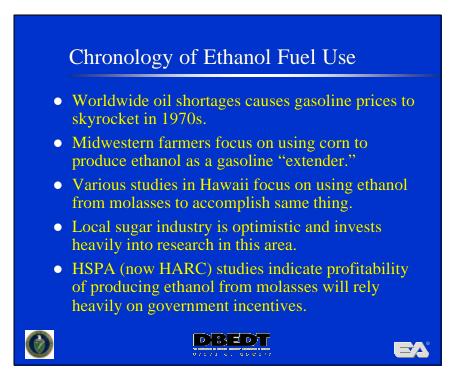
Fuel Ethanol In Hawaii: A Historical Perspective

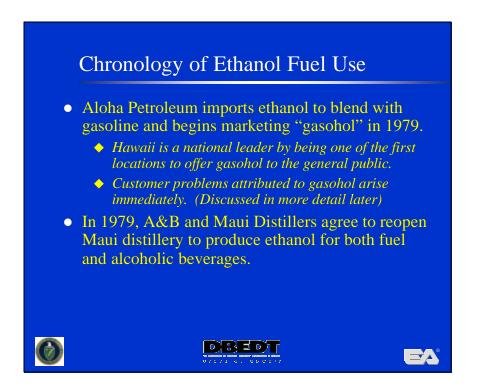
Prepared for: U.S. Department of Energy Ethanol Workshop

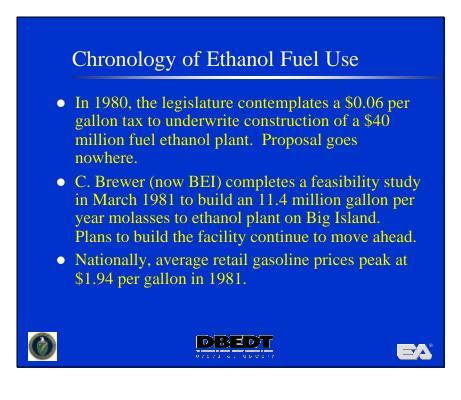
Honolulu, Hawaii Novem<u>ber 14, 2002</u>

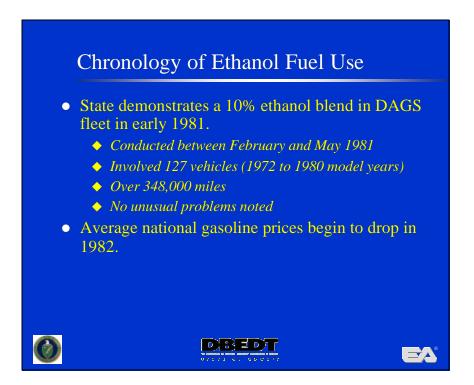


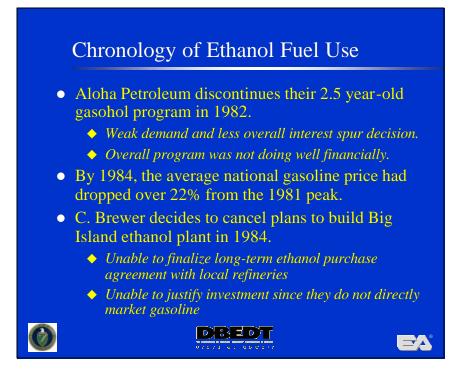
Ethanol Fuel: Coming Soon to a Car Near You

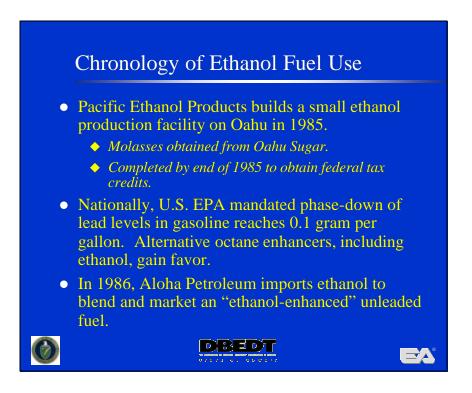


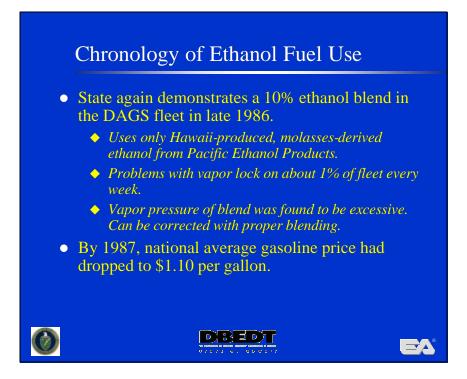

- Early ethanol fuel use
- Notable non-fuel uses
- Chronology of ethanol fuel use
- Past problems experienced in Hawaii
- Typical types of problems reported
- Possible causes and solutions
- Simple steps to eliminate problems

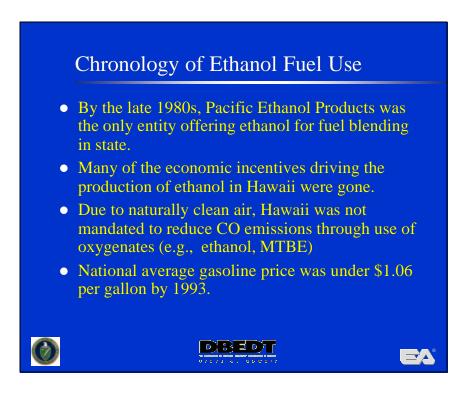


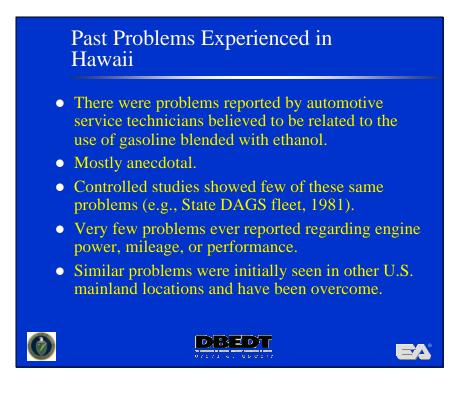


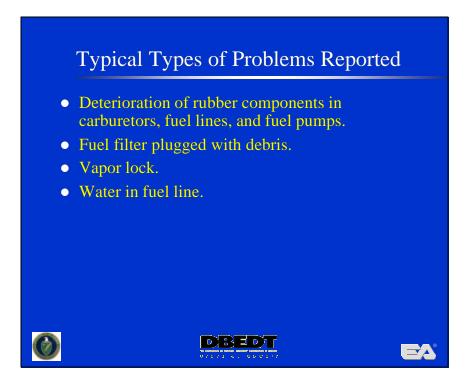


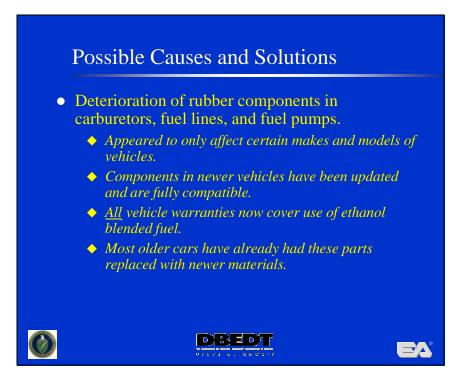


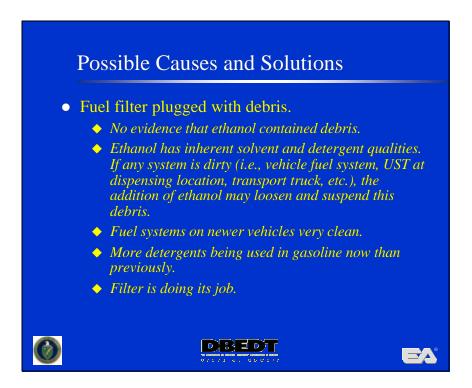


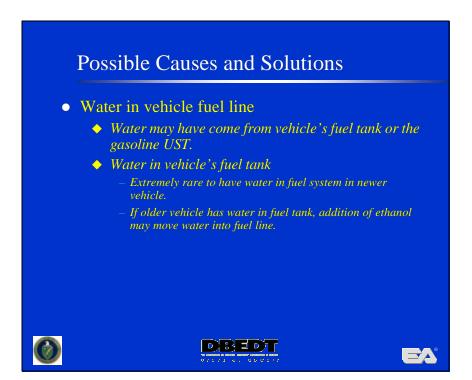


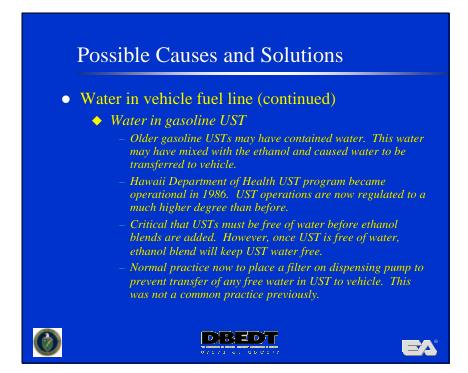


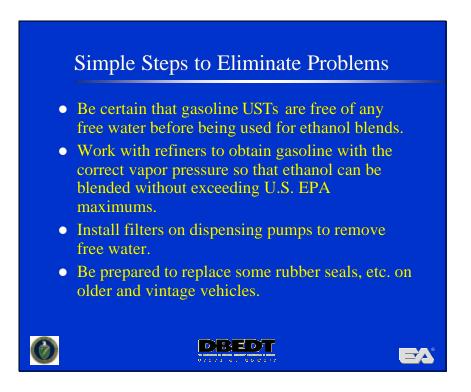


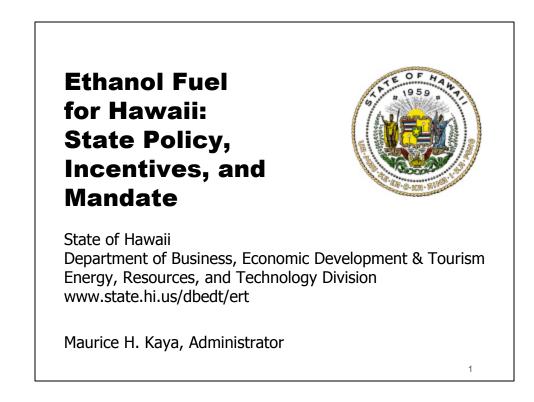


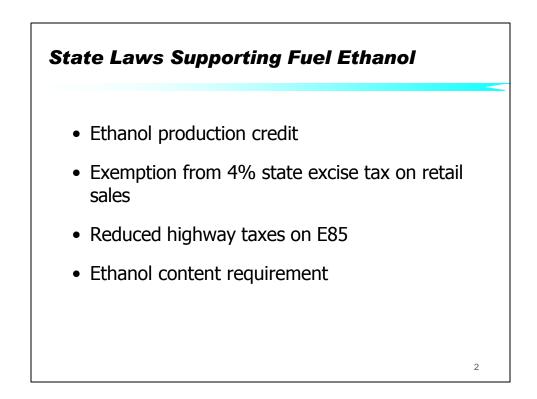


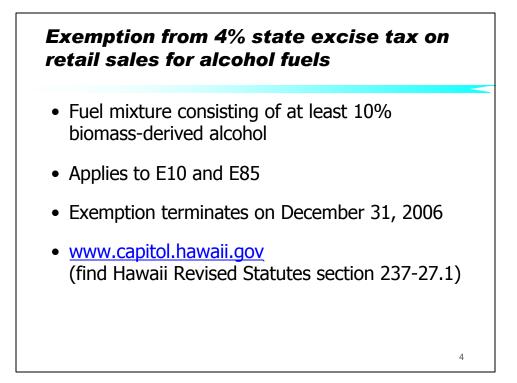


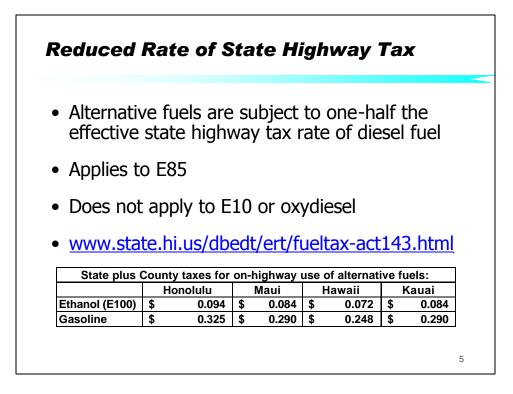


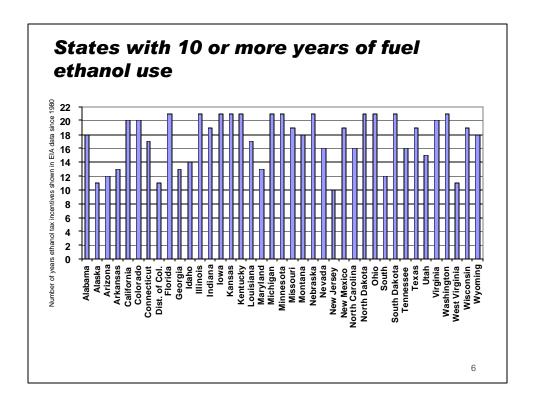


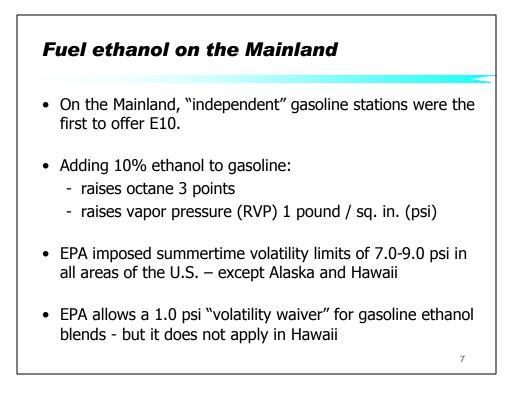


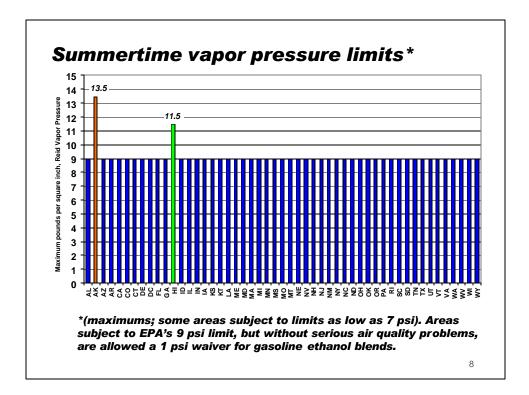


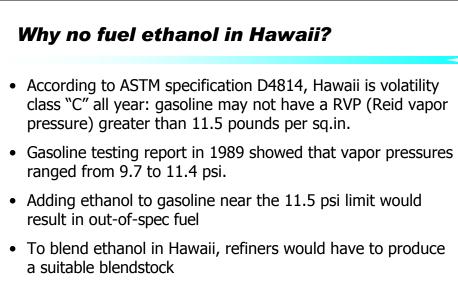


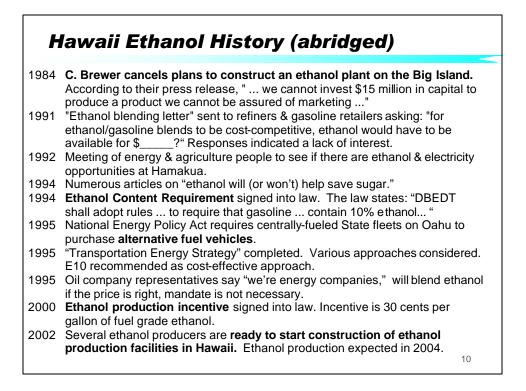







- Equivalent to 30 cents per gallon of fuel-grade ethanol produced
- Credit for up to 15 million gallons / year / facility
- Available up to 8 years if investment was less than \$50 million; up to 10 years for investment greater than \$50 million
- Facility must be in Hawaii and in production before January 1, 2012.
- www.state.hi.us/dbedt/ert/ethanol-incentive.html

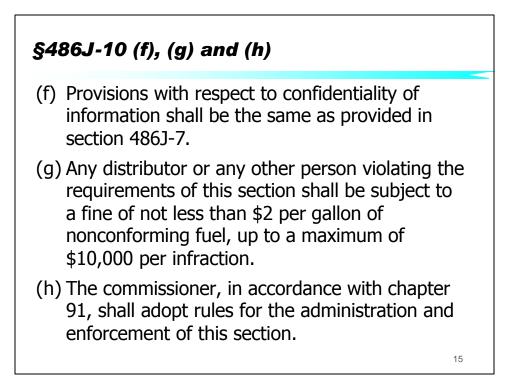


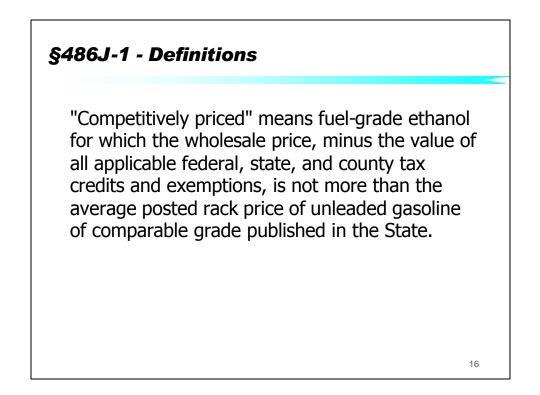


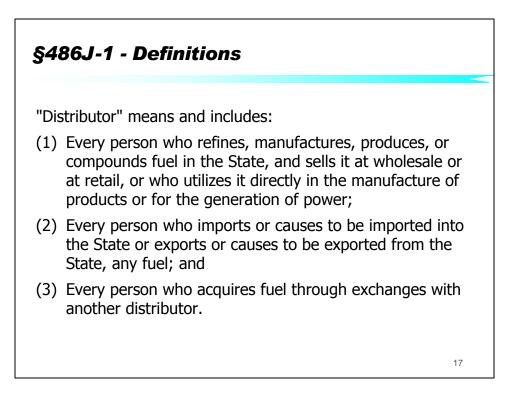
• Bottom line: in Hawaii, refiner participation is necessary.

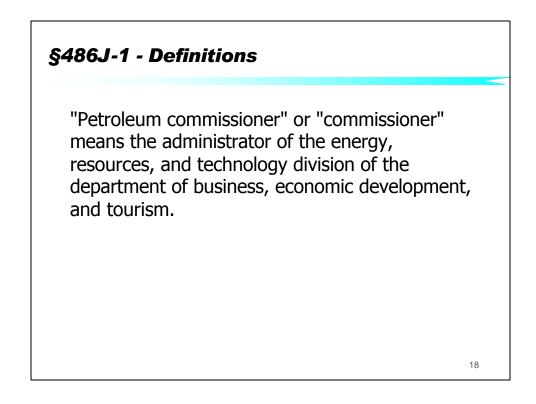
§486J-10 (a) - Ethanol Content Requirement

- The commissioner shall adopt rules ... to require that gasoline sold in the State for use in motor vehicles contain ten per cent ethanol by volume.
- The amounts of gasoline sold in the State containing ten per cent ethanol shall be in accordance with rules as the commissioner may deem appropriate.
- The commissioner may authorize the sale of gasoline that does not meet these requirements as provided in subsection (d).

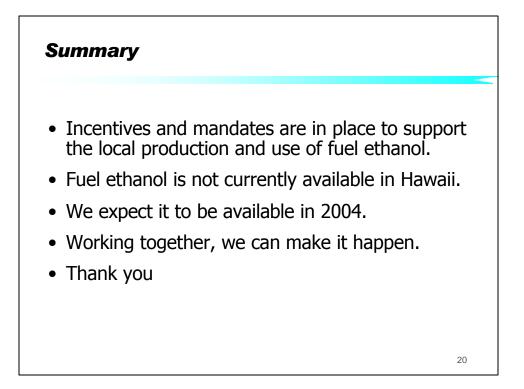

(b) Gasoline blended with an ethanol-based product, such as ethyl tertiary butyl ether, shall be considered to be in conformance with this section if the quantity of ethanol used in the manufacture of the ethanol-based product represents ten per cent, by volume, of the finished motor fuel.
(c) Ethanol used in the manufacture of ethanol-based gasoline additives, such as ethyl tertiary butyl ether, may be considered to contribute to the distributor's conformance with this section; provided that the total quantity of ethanol used by the distributor is an amount equal to or greater than the amount of ethanol required under this section.

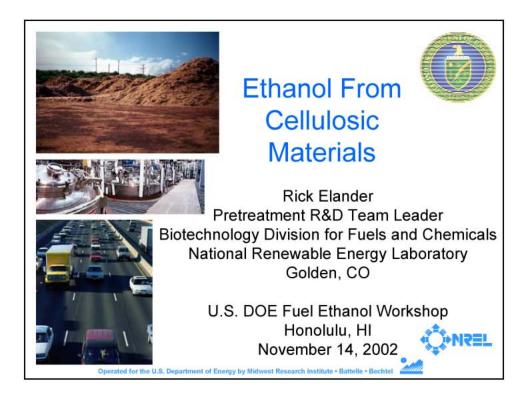

12

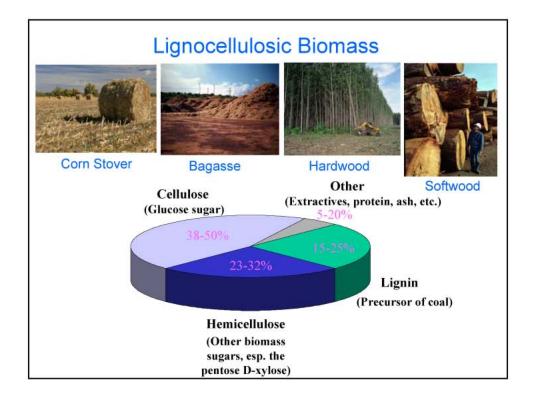



- (d) The commissioner may authorize the sale of gasoline that does not meet the provisions of this section:
- To the extent that sufficient quantities of competitively-priced ethanol are not available to meet the minimum requirements of this section; or
- (2) In the event of any other circumstances for which the commissioner determines compliance with this section would cause undue hardship.

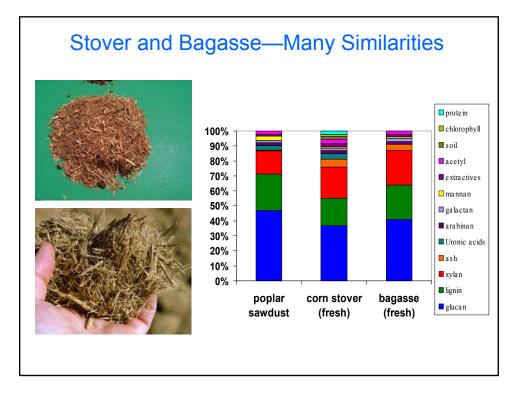
(e) Each distributor, at such reporting dates as the commissioner may establish, shall file with the commissioner, on forms prescribed, prepared, and furnished by the commissioner, a certified statement showing:
(1) The price and amount of ethanol available;
(2) The amount of ethanol-blended fuel sold by the distributor;
(3) The amount of non-ethanol-blended gasoline sold by the distributor; and
(4) Any other information the commissioner shall require for the purposes of compliance with this section.

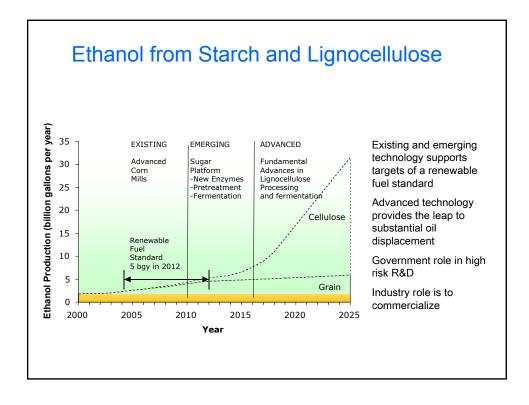


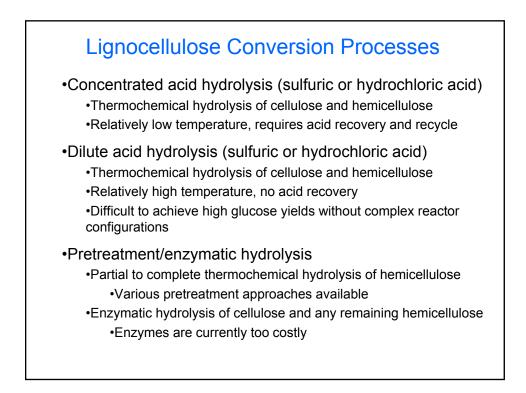


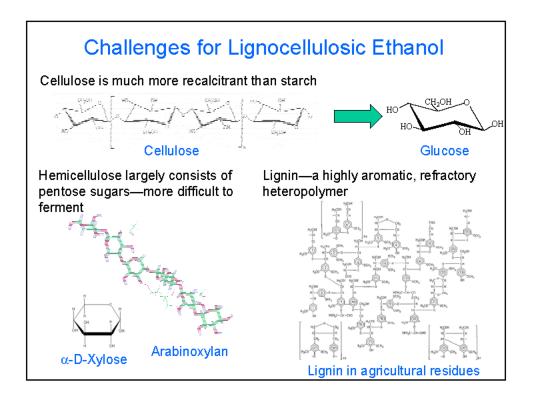


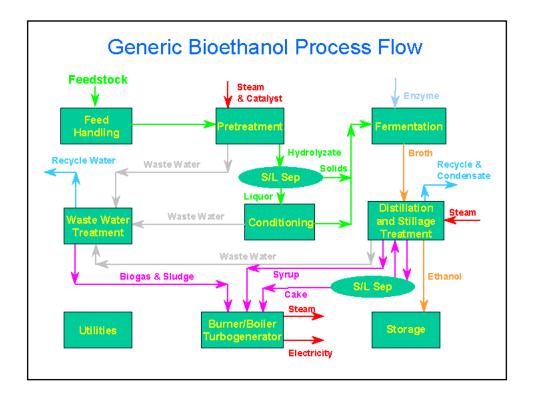
- Rules have not been finalized.
- Rulemaking takes several months.
- There is an opportunity for public input.
- If private companies can reach agreements that result in local production and availability of fuel ethanol, regulation may not be necessary.

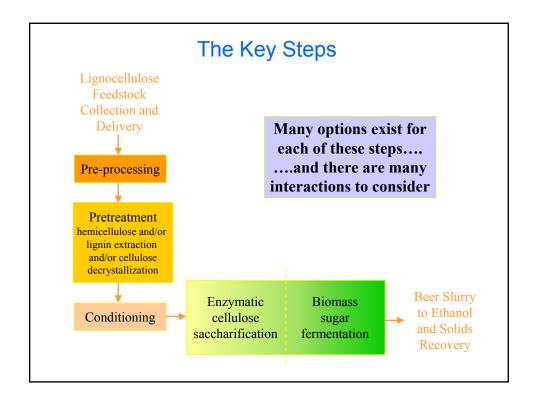


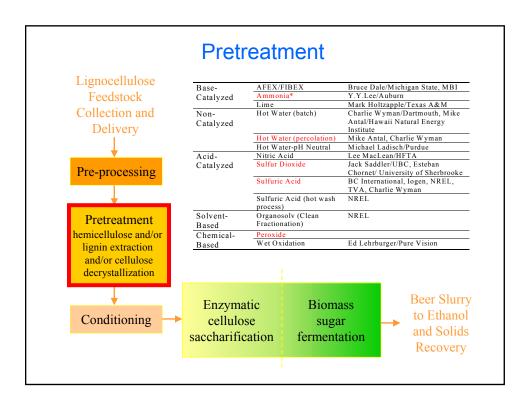

Corn Stover-the "hot" feedstock

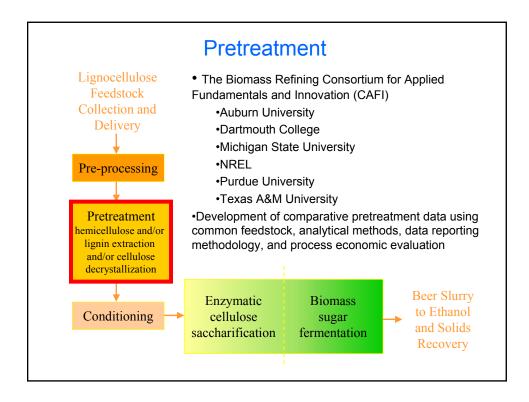

•Up to 60 MM dry tons per year available from the 10 leading corn production states can be collected in a sustainable manner -erosion control -soil carbon levels

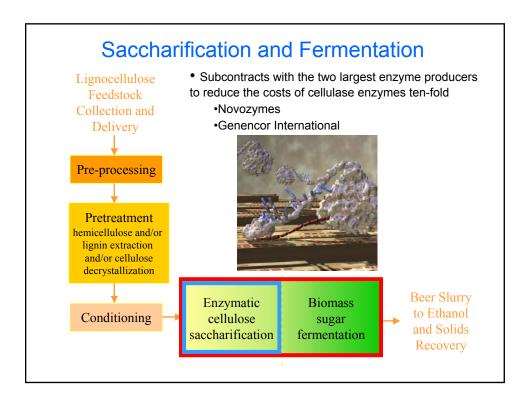

•Enough to produce over 4 billion gallons of ethanol per year

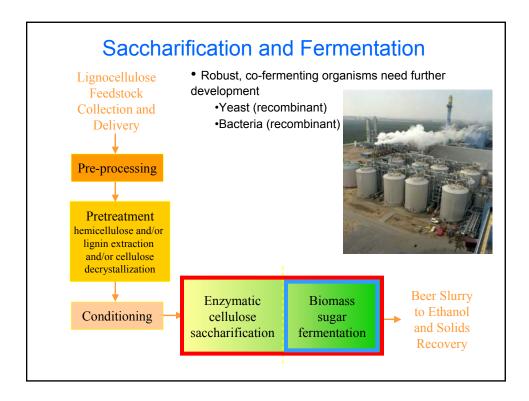


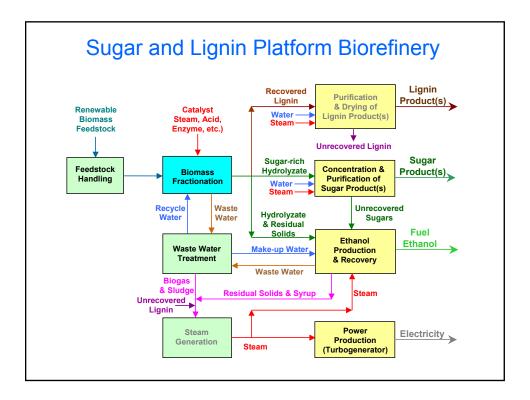




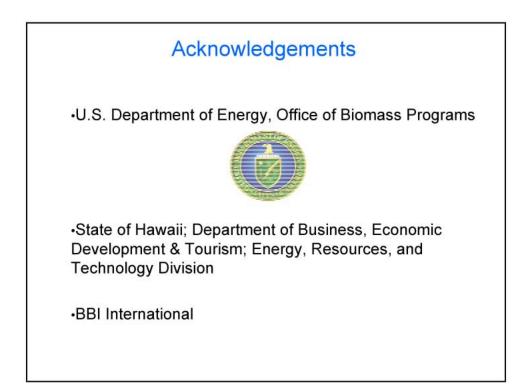


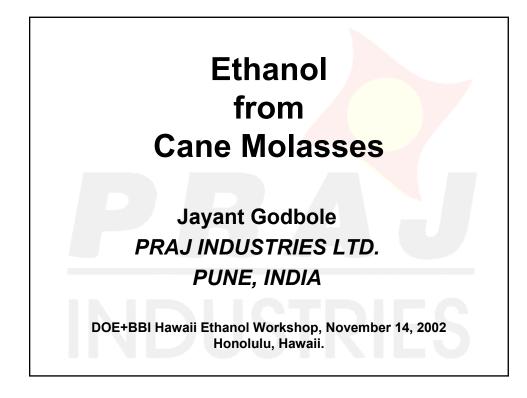


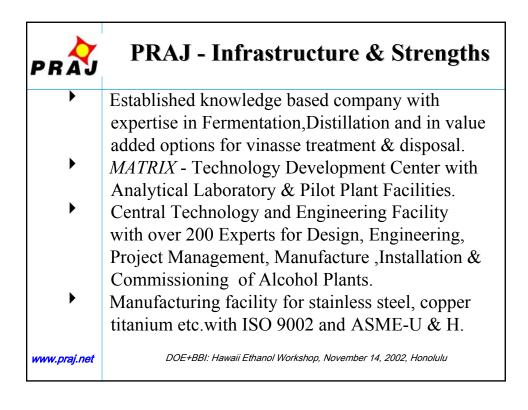


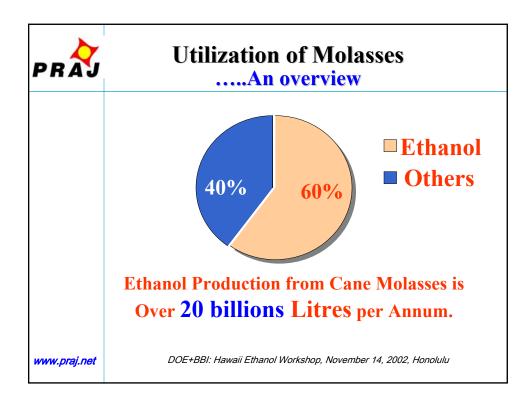


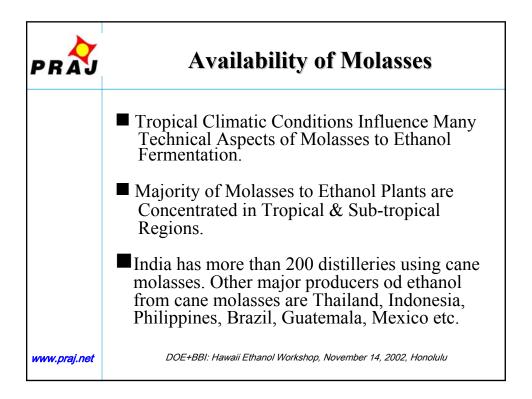
Ethanol from Cellulosic Materials

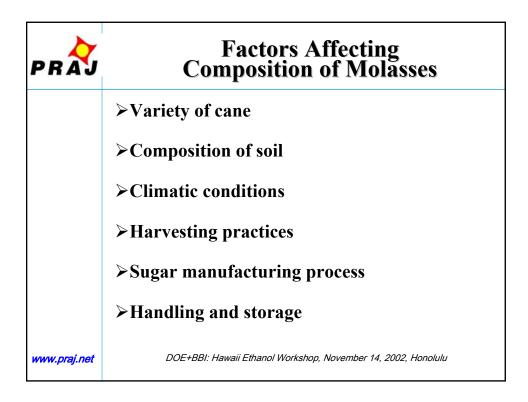


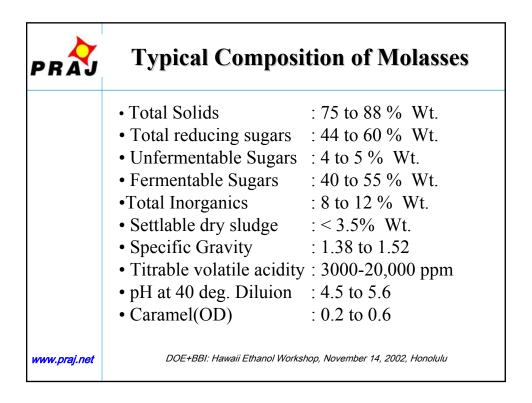




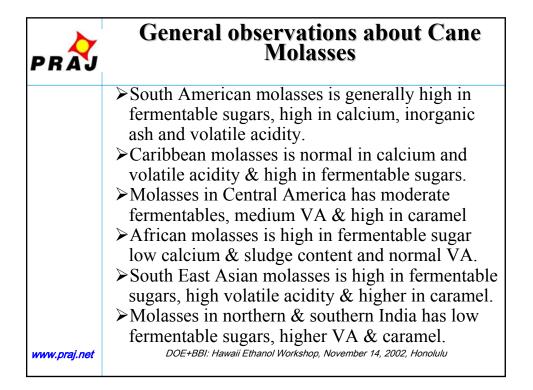


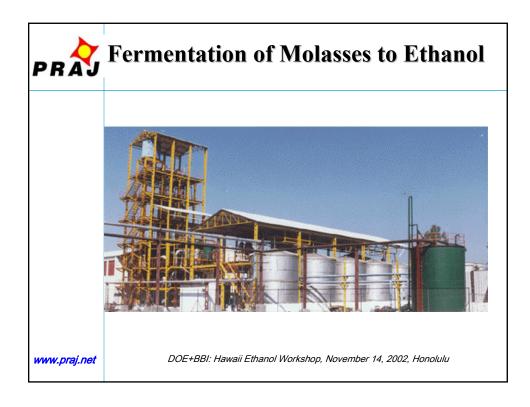


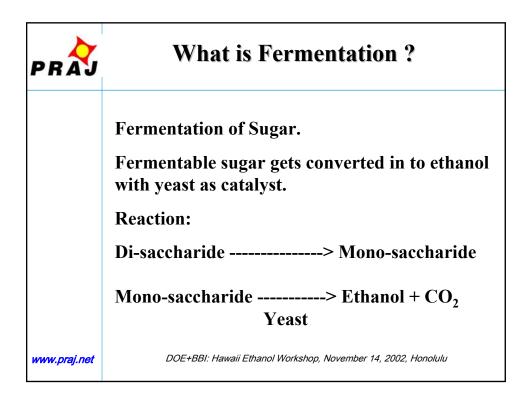

PRAJ	PRAJ - Background
•	Over 250 customers around the world.
•	Over 60 distilleries attached to sugar mills.
•	Fermentation process using cane molasses, syrup of sugarcane juice or mixture, grains, cassava etc.
•	Has mapped molasses characteristics by analyzing more than 1500 cane molasses samples across the world.
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

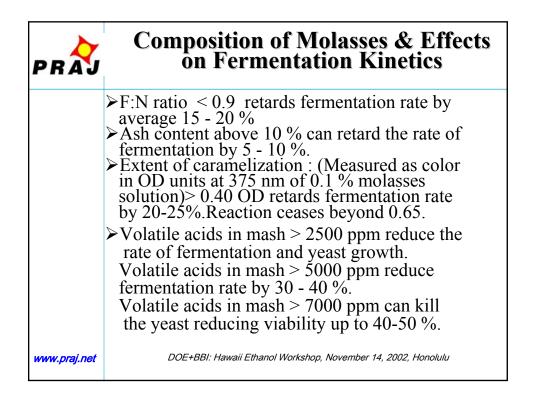


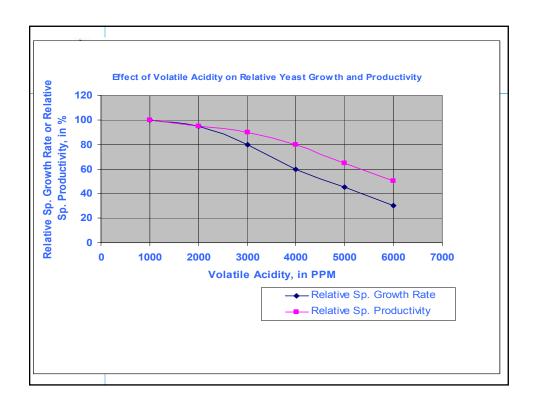
PRAJ	PRAJ - Customers
\checkmark	Seagram India.
\succ	Allied Domeque.
\succ	PT Molindo Raya, Indonesia.
\succ	La Tondena, Philippines.
\succ	Destilerias Unidas, Peru.
\succ	Sucromiles, Colombia
\succ	Destileria Brugal, Dominican Republic.
\succ	West Indies Rum, Barbados.
\succ	Thai Alcohol Company.
\succ	McDowell & Company.
	Shaw Wallace.
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

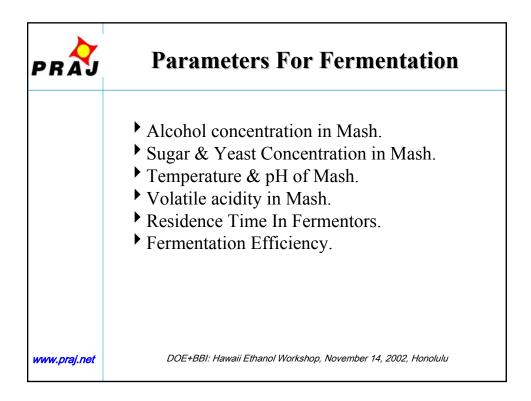


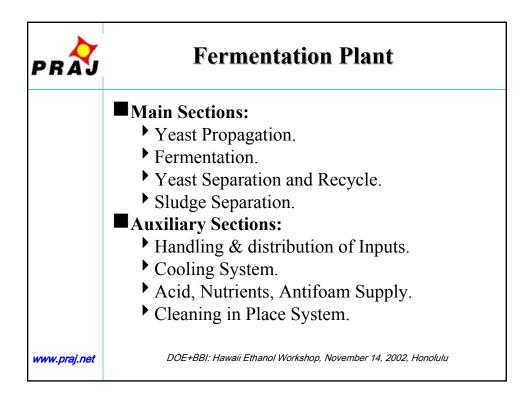


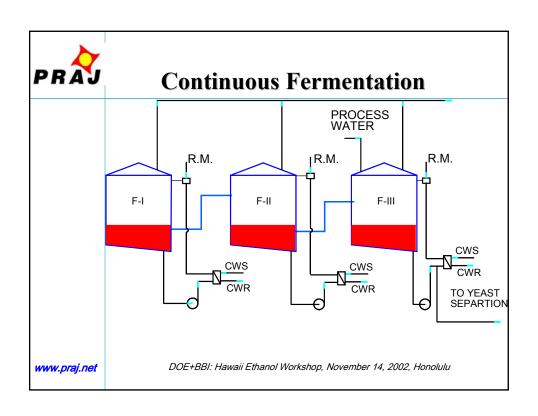


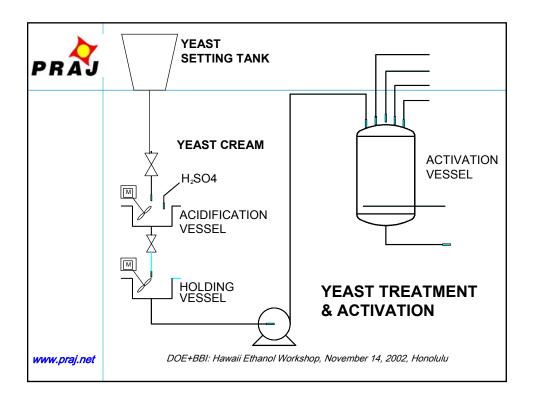

S _	Analytical Parameter	SOUTH AMERICA	AFRICA	SOUTH EAST ASIA	CARRABIAN	
A	Chemical Analysis					
1	Brix (Degree Brix) At ambient temp.	87-93	83 - 91	78 - 85	84 - 93	
2	Total Solids (% w/w) Total sugars as reducing matter (%	81 - 86 49 - 54	82 - 85 48 - 55	78 - 85 50 - 60	74 - 79 52 - 56	
3	I otal sugars as reducing matter (% w/w)	49 - 54	48 - 55	50 - 60	52 - 56	
4	Un-fermentable sugars as reducing matter (% w/w)	2.5 - 5.2	2.3-5.4	3.7-4.9	3.5 - 4.5	
5	Fermentable sugars (% w/w)	43.5 - 50	43- 49.5	45 - 60	47.5 -52	
6	F:N Ratio	1.0 - 1.6	1.0 - 1.5	1.2 - 2.8	1.7-2.8	
7	Total inorganic matter (% w/w)	7.8 - 14	6.5 - 8.5	4 - 5	9 - 12	
8	Calcium as CaO (% w/w)	1.3 - 3.9	2 - 3	1.9 - 2.5	1.8 - 2.6	
9	Total Settlable dry sludge at pH 4.5 and 40 Brix dilution (% w/w of raw molasses)	0.7- 4.5	0.5 - 3.0	0.5 -1.0	1 - 1.5	
10	Total settlable sludge at pH 4.5 – 4 Hr settling (by Vol. %)	15 - 26	5 - 20	1-6	0 - 12	
11	Specific Gravity(at ambient temperature)	1.46 - 1.50	1.43 - 1.51	1.40 - 1.45	1.44 - 1.49	
12	Titrable volatile acidity in terms of acetic acid and acetate salts (PPM)	5500 - 22500 Average 12000	6500-12500	5500-11500	4000 - 5500	
13	PH at 40 Brix dilution	5-5.5	4.8-5.5	4.6-5.3	4.8 - 5.4	
14	Dry suspended particles (> 100 µ) (% w/w)	ND	ND	ND	ND	
15	Colour in terms of optical density (OD) at 375 nm with 0.1 % w/v dilution.	0.2- 0.32	0.3 - 0.49	0.2 - 0.55	0.35 - 0.4	
В.	Microbiological Analysis					
1	Total Viable count cfu/gm	100 - 20000	100-600	3000-40000	1000-4000	
	strumental (GC) analysis of Individual Fi			ducts of bacterial 5000-7000		
1	Acetic Acid (PPM)	4000-22000	2000-3000		4000-5000	
2	Propionic Acid (PPM)	30-250	30-50	80-90	35-40	
3	Isobutyric acid (PPM)	300-600	10-20	40-60	20-40	
4	Butyric acid (PPM)	100-220	60-70	40-60	300-355	
5	Isovaleric acid (PPM) Valeric acid (PPM)	10-50 10-40	200-230	100-114	400-430	
0	Total Acids by GC (PPM)	4450- 23200	2300-3400	5300-7350	4700- 5900	

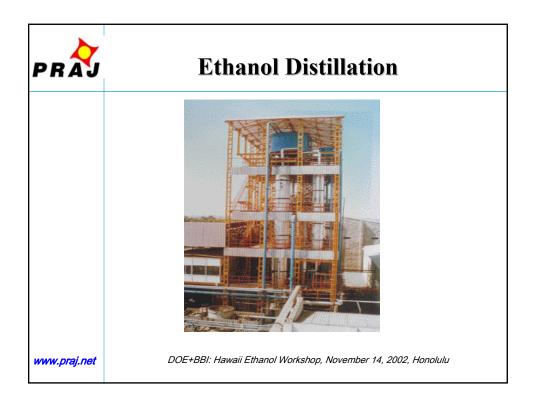


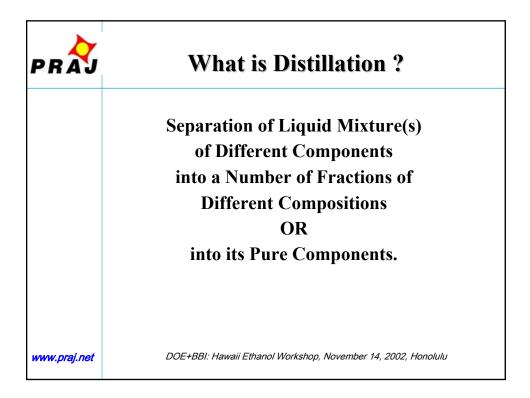


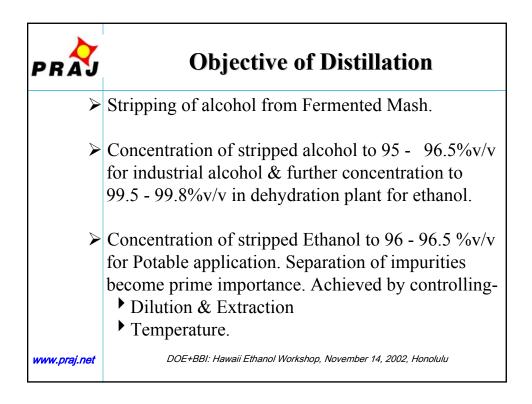


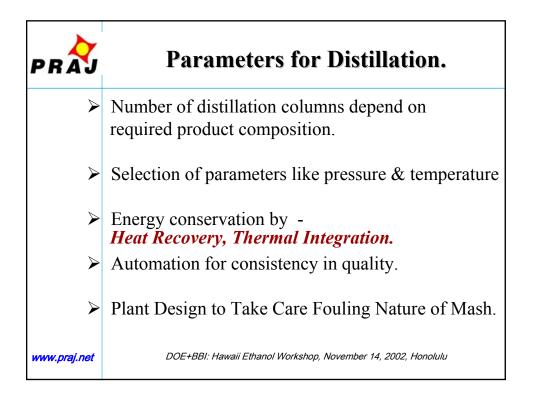


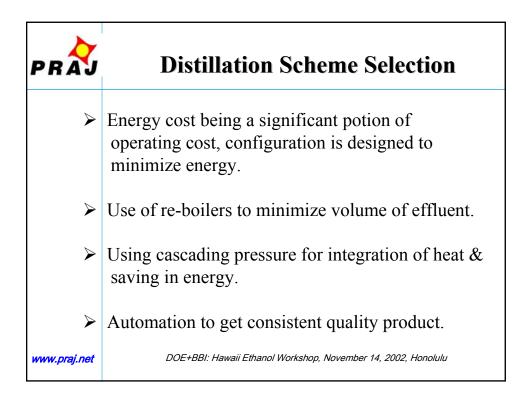


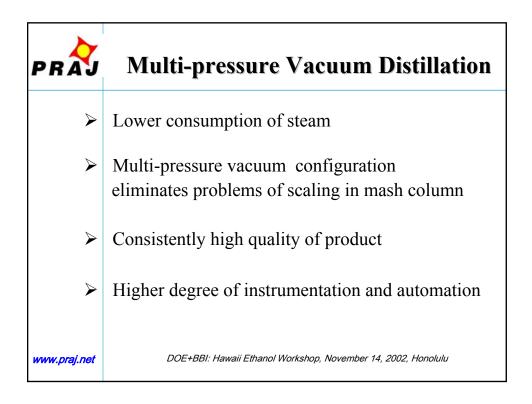


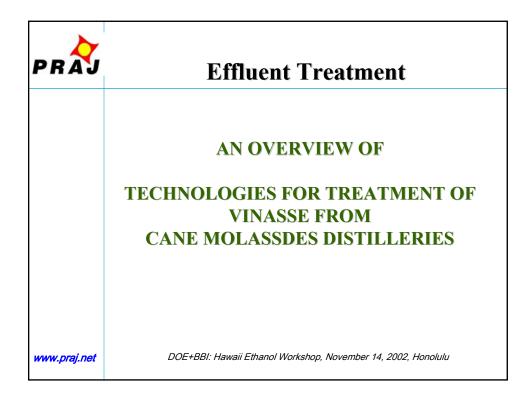


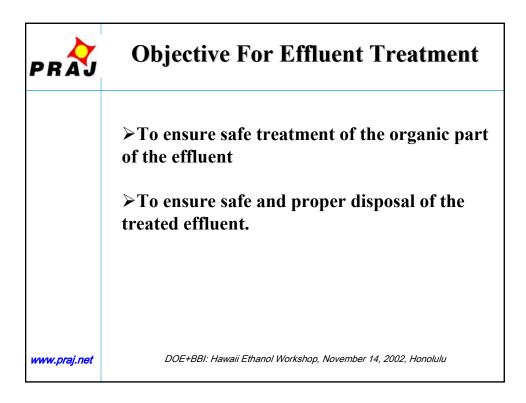

PRĂJ	Continuous Fermentation
	More than 100 distilleries in Asia & India use continuous fermentation on cane molasses.
	➤Easier to operate with 2-4 fermentors , consistent quality & no need to propagate yeast daily.
	≻Higher efficiency of 89-90 % instead of 80-84 % in a batch process.
	Alcohol yield of 270-274 Lit of 99.5 % v/v Ethanol/ MT molasses with 48 % Fermentable Sugars (64-65 gallon/short ton).
	➤Alcohol concentration increases from 5-6 % in the 1st fermentor to 8-9.5 % in the last one.
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

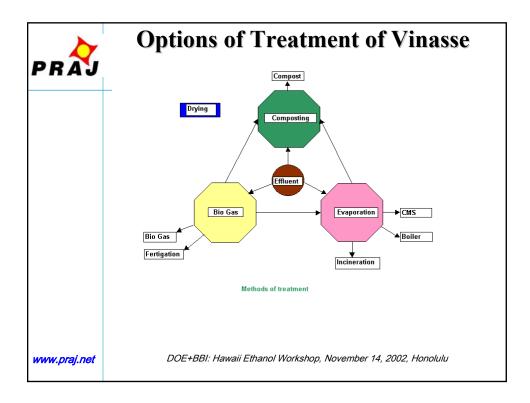


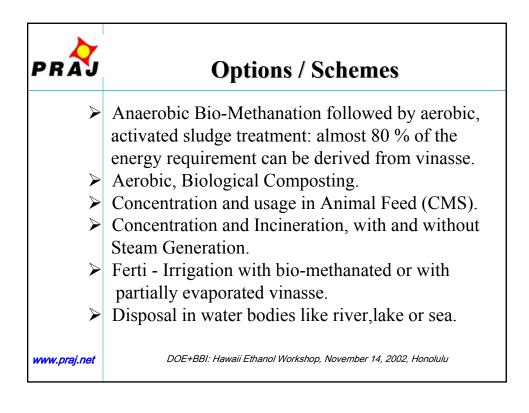


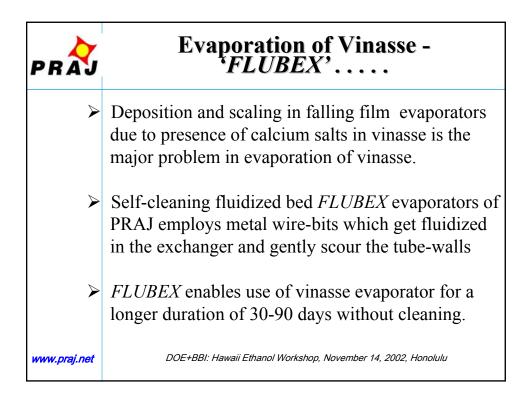


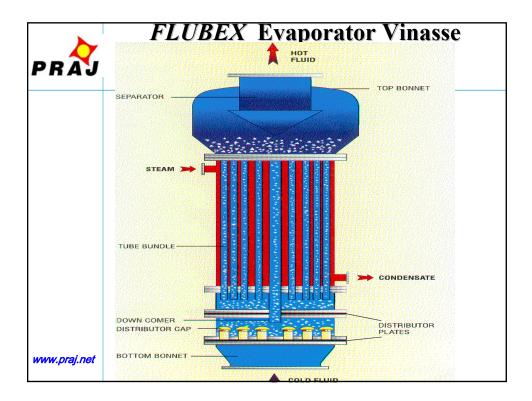


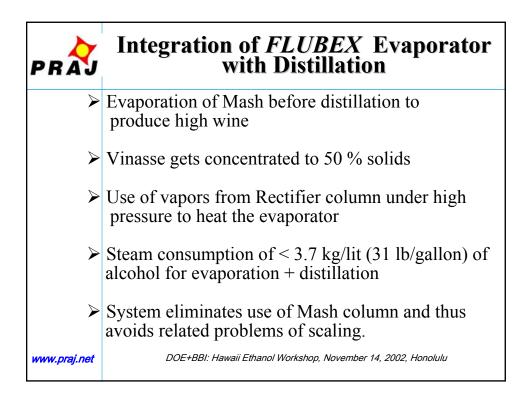


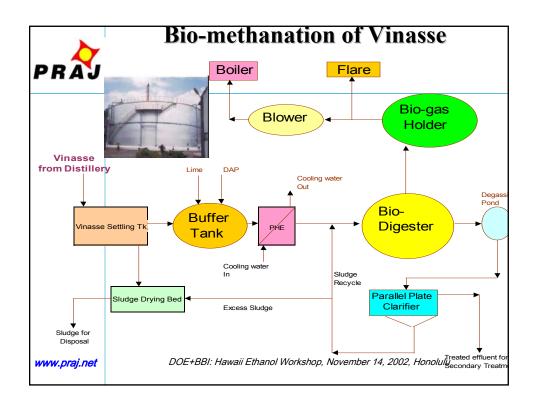


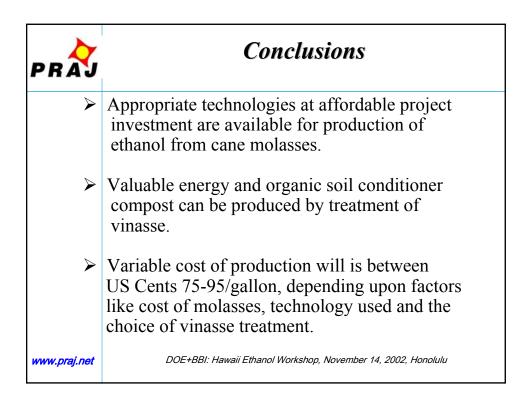


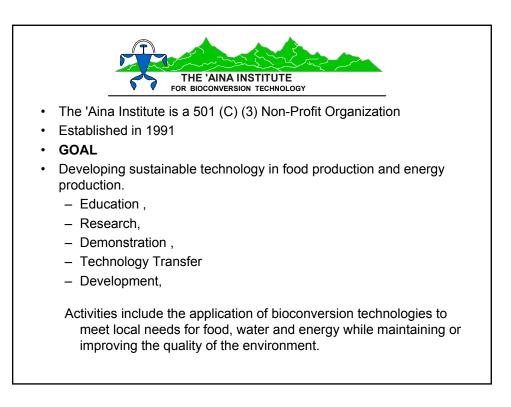

PRAJ	Characteristics of Effluent
	Effluent generated by molasses based distilleries has following characteristics:
	Volume: 9 to 12 KL per KL of alcohol produced.
	<u>B.O.D.</u> : 40,000 to 60,000 mg./ lit or ppm.
	<u>C.O.D.</u> : 80,000 to 120,000 mg./lit or ppm.
	Total solids: 7 to 12 % w/w.
	Organic solids: 4 to 8 % w/w
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

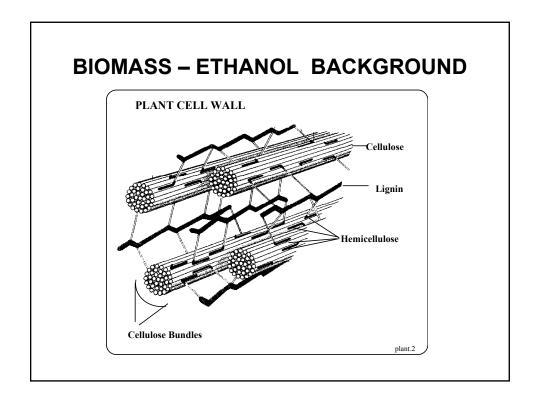


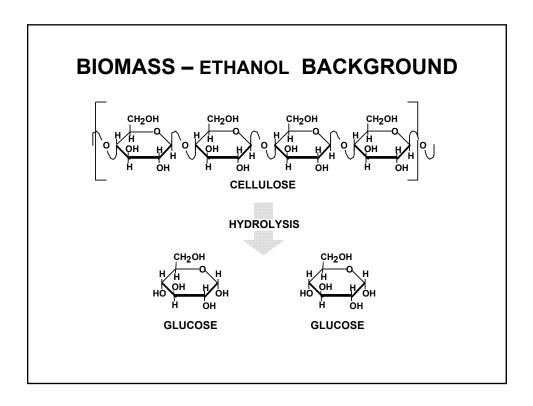


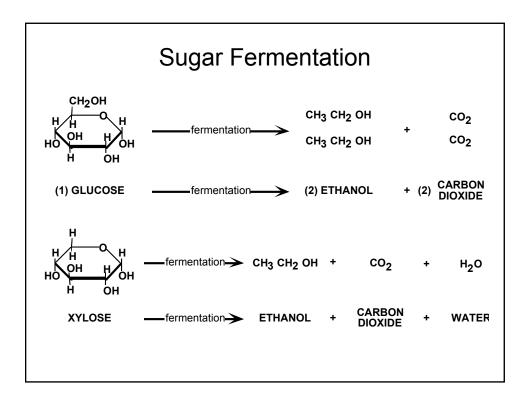

P R AJ	Recycle of Vinasse
	When using cane molasses or juice syrup, up to 50 % of vinasse can be recycled.
	Vinasse gets concentrated to 25-30 % solids.
	Careful process design required to avoid excessive build-up of bacterial contamination.
	Aspects like content of calcium & inorganic ash and content of bacteria & volatile acids need to be considered carefully.
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

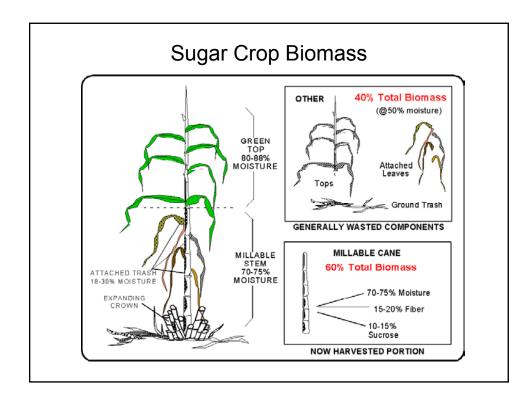


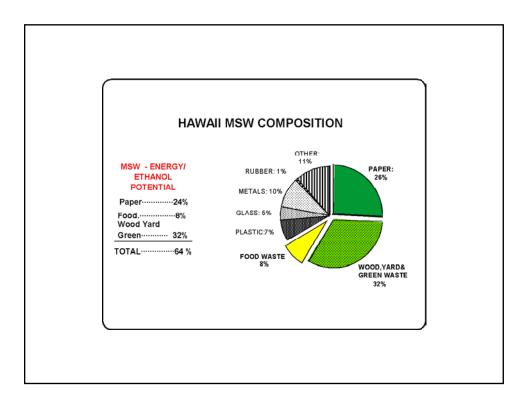


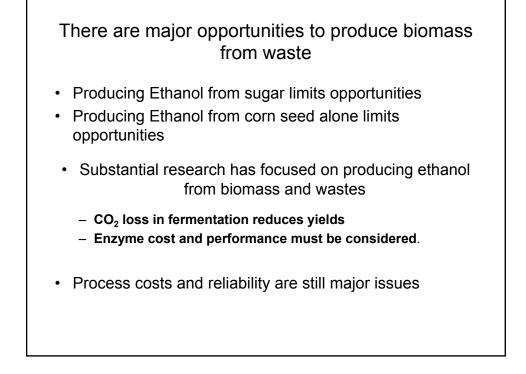


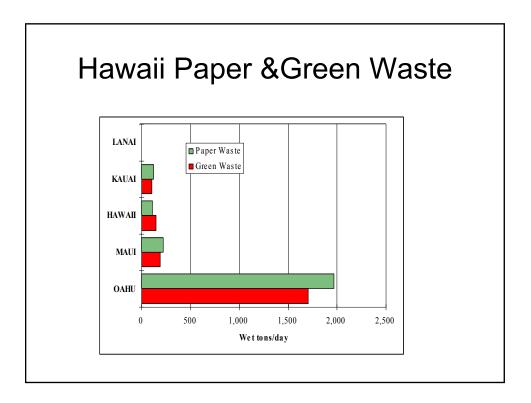


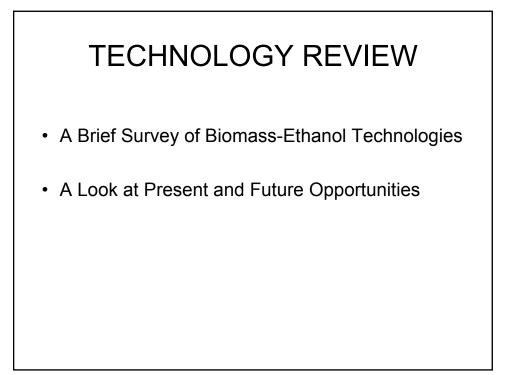


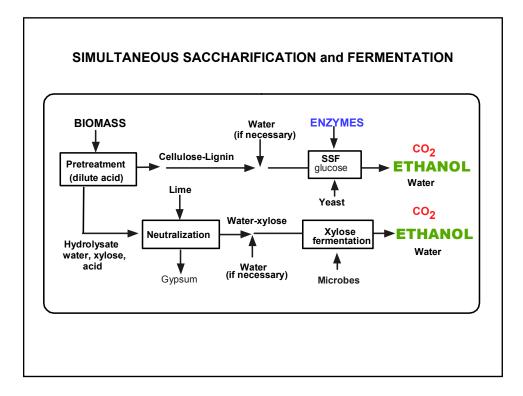






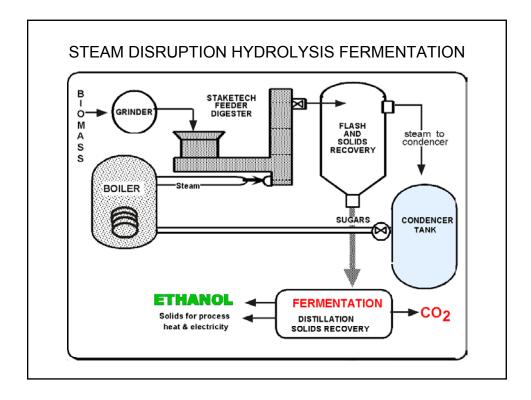


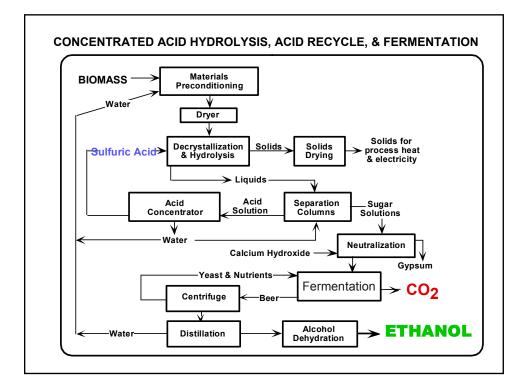

2 1 1	ignin 20 11	12
1		
		9
1	16	27
	12	13
	9	39
1	10	3
3	37	12
2	25	18
	25	18
		41
1	17	
		10 37 25

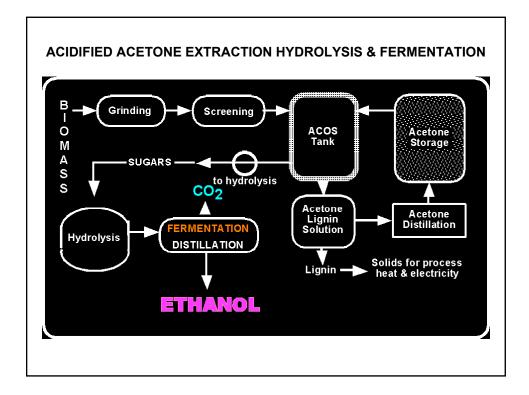


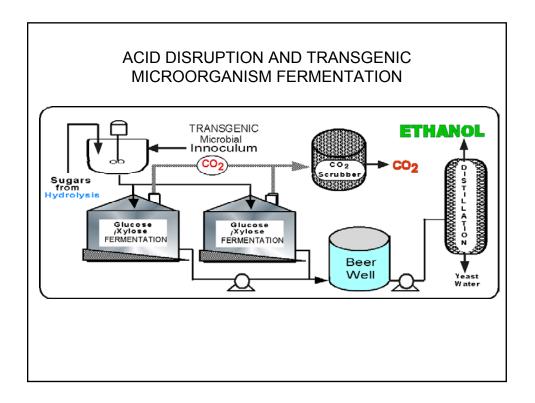


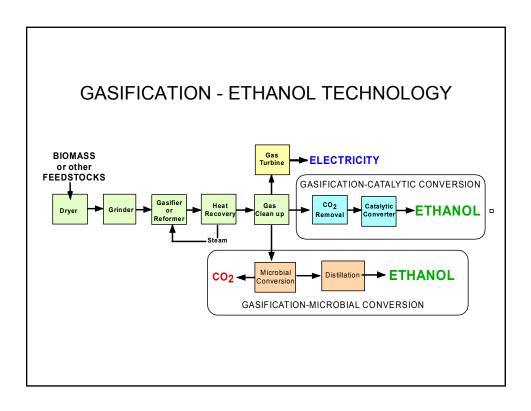


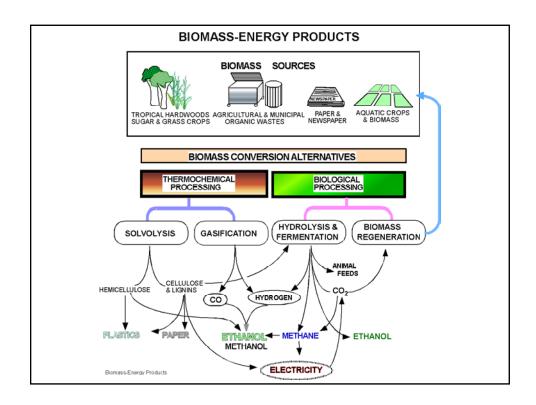


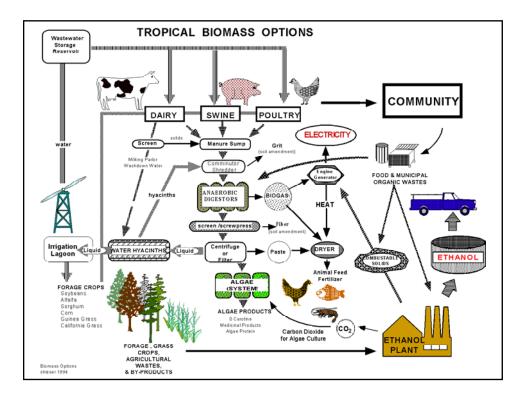




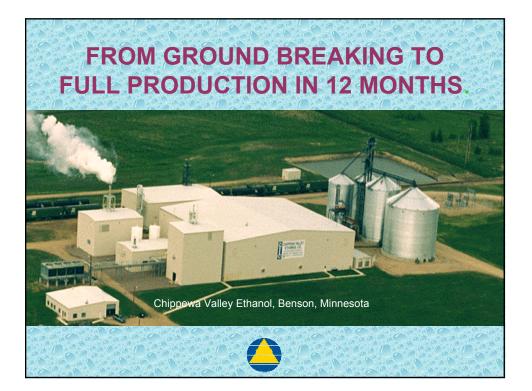


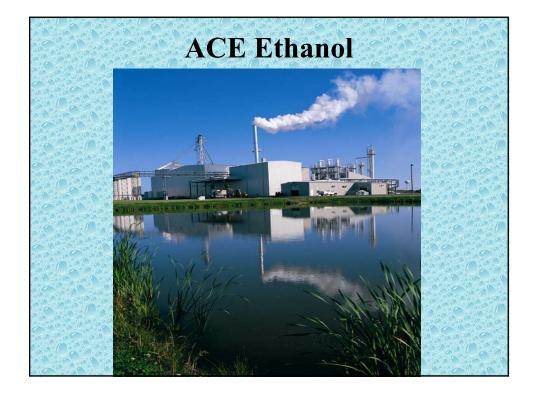


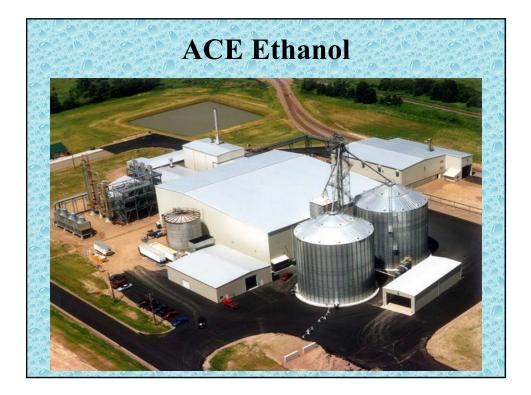

Ethanol from Sugarcane and Other Biomass



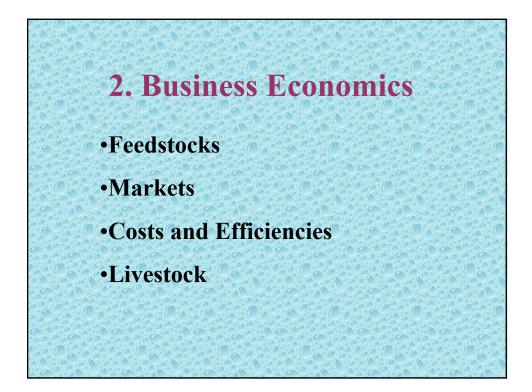
ETH	-		S COMPARI	SONS	
METHOD	PRODUCTS	US OF ETHANOL PRODUCT ADVANTAGES	ION TECHNOLOGY DISADVANTAGES	COMMENTS	YIELD (gal./ dry ton)
Molasses > Fermentation> Ethanol	Ethanol , Carbon Dioxide, Concentrated Molasses solids	Simple traditional yeast fermentation method	residue is concentrated molasses solids / may have	Depends on Molasses from sugar indstry Lack of efficiency, Only 50% of sugars converted to ethanol	70-80
Corn> Processing > Fermentation > Ethanol	Ethanol Distillers dried grains Carbon Dioxide	Good for corn industry		Lack of efficiency, only 50% of sugars are converted to ethanol	110-120
	Ethanol, Carbon Dioxide, Lignin (SSF-BCI)	Converts any fiber source including paper and yard waste to ethanol	dioxide, residue may have	Lack of efficiency, only 50% of sugars are converted to ethanol	50 - 90
Wood fiber and Carbon containing molecules-gasification> carbon monoxide>with bioconversion>ethanol	Ethanol ,Water microbes	Can use most carbon containing materials that can be gasified to produce carbon monoxide and hydrogen		Technologies are not yet demonstrated commercially	80-100
	Ethanol Butanol Propanol	Can use most carbon containing materials that can be gasified to produce carbon monoxide and hydrogen. Ethanol is produced as a gas	Sensitive to performance of catalyst	Technology not demonstrated commercially	180 +

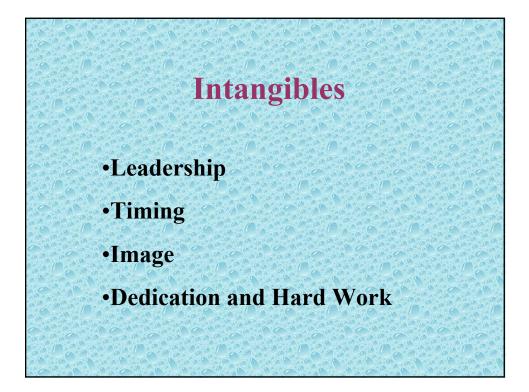


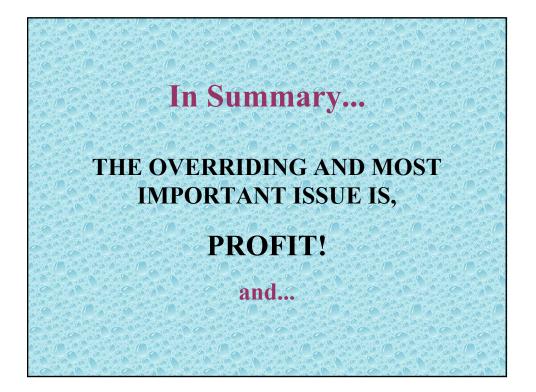


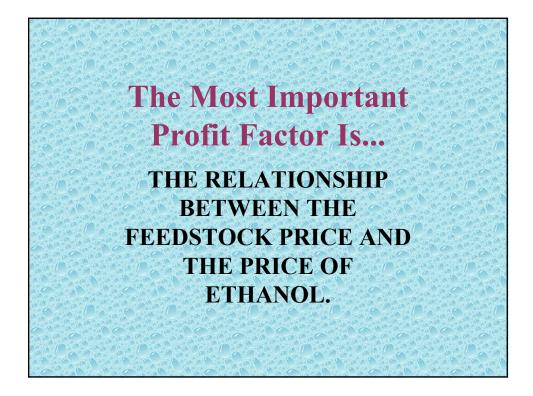

Successful Ethanol Project Development

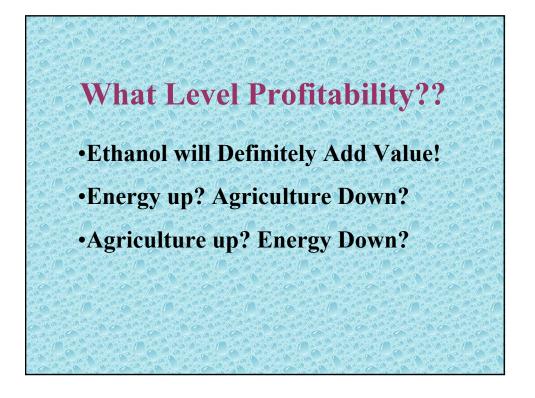
Hawaii Ethanol Workshop: November 14, 2002

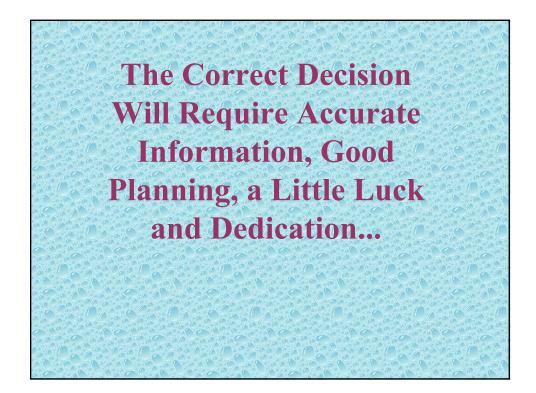

Successful Ethanol Project Development

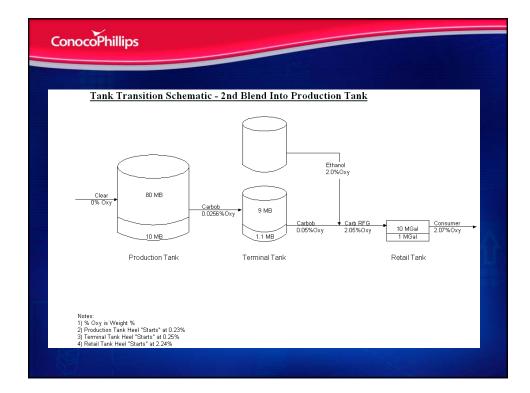


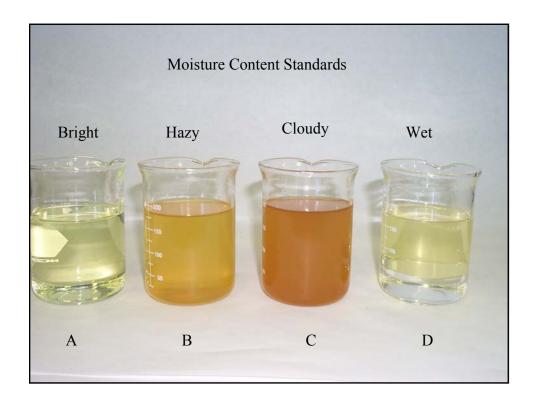




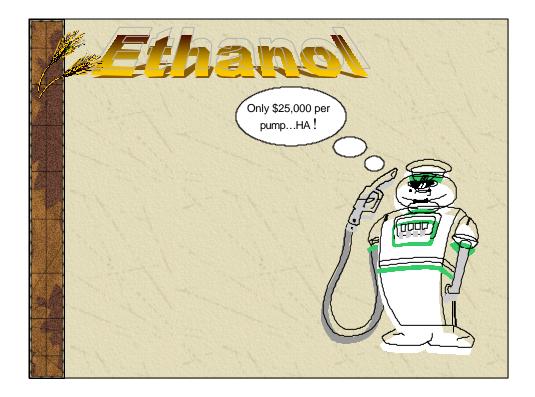


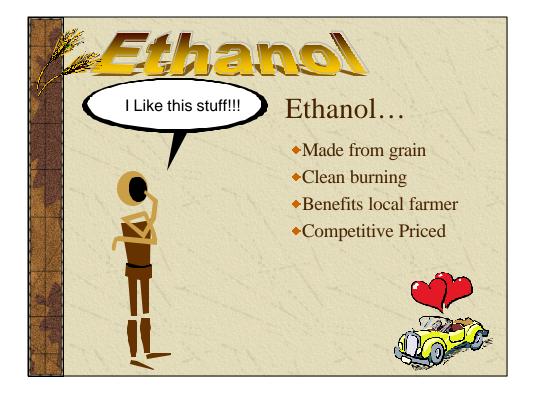


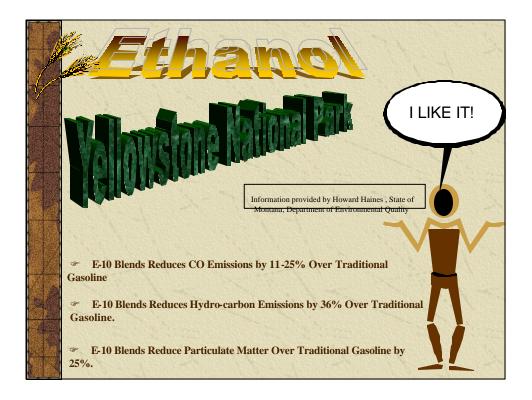


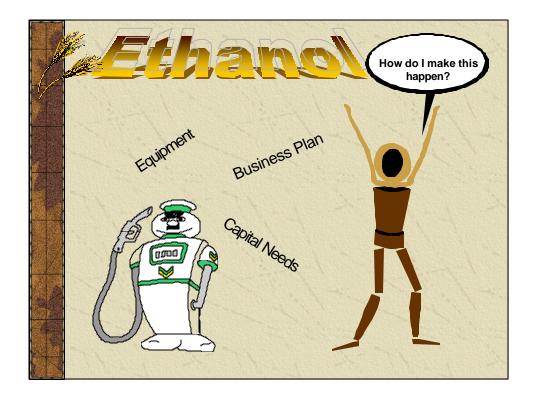


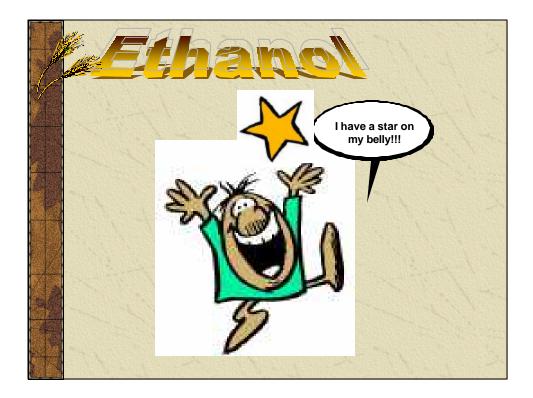
California Ethanol Project Overview: Ethanol Conversion

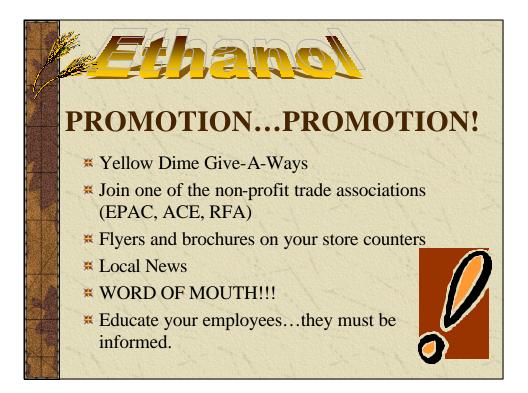

Barry Duffin - 5

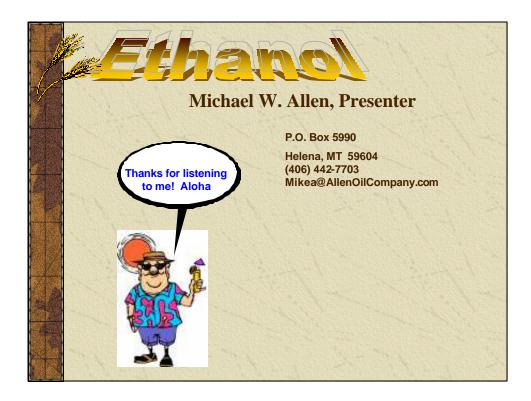


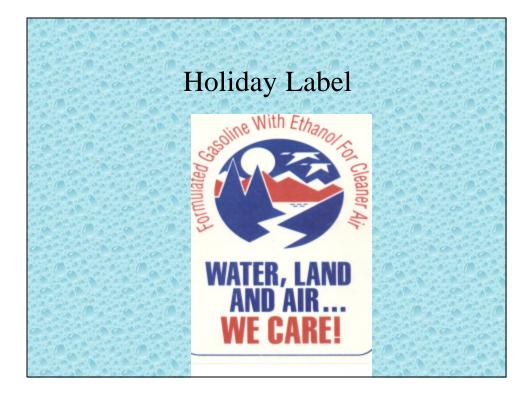

onocoPhillips								
		Speci	fication					
Denatured Fuel Ethanol (1)								
Basic Requirements								
On each occasion that Ethanol is	supplied, the following	shall apply:						
Suppliers shall provide a Certificate	of Conformance identifying	ng the test results	which show th	at the denatured				
ethanol complies with ASTM D4806	and the specifications be	elow.						
The only denaturants shall be natur	al gasoline, gasoline com	ponents, or unlea	ided gasoline.					
Specification Requirements								
Specification	Test N	lethod	Value	Note				
Fuel Ethanol		Min	Max					
Neat Ethanol Vol%	ASTM D5501 ASTM D5501	95.0 92.1		(6) (7)				
Methanol Vol%	ASTM D5501	92.1	0.5	(7)				
		1.96	4.76					
		1.50						
Denaturant Content, vol.%,	ASTM D-381		5.0					
Existent Gum, mg/100ml	ASTM D-381 ASTM E203 or E106	34	5.0					
Existent Gum, mg/100ml Water Content, vol%	ASTM E203 or E106		1.0	(4)				
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n	ASTM E203 or E106 mg/L) ASTM D512, Proc. 0	C (modified)	1.0 40 (32)	(4) (4)				
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg	ASTM E203 or E106 mg/L) ASTM D512, Proc. 0 ASTM D1688, Proc.	C (modified)	1.0 40 (32) 0.1	(4)				
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg Acidity (as acetic acid), wt%, (mg/L)	ASTM E203 or E106 mg/L) ASTM D512, Proc. 0 ASTM D1688, Proc.	C (modified)	1.0 40 (32)					
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg Acidity (as acetic acid), wt%, (mg/L) Phe	ASTM E203 or E106 mg/L) ASTM D512, Proc. (ASTM D1688, Proc.) ASTM D1613	C (modified) D (modified)	1.0 40 (32) 0.1 0.007 (56)	(4) (5)				
Denaturant Content, vol.%, Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg Acidity (as acetic acid), wt%, (mg/L) Phe Appearance Sulfur	ASTM E203 or E106 ng/L) ASTM D512, Proc. (ASTM D1688, Proc.) ASTM D1613 ASTM D 6423	C (modified) D (modified) 6.5	1.0 40 (32) 0.1 0.007 (56)	(4)				
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg Acidity (as acetic acid), wt%, (mg/L) Phe Appearance	ASTM E203 or E106 mg/L) ASTM D512, Proc. 0 ASTM D1688, Proc.) ASTM D1688, Proc.) ASTM D1613 ASTM D 6423 ASTM D4806	C (modified) D (modified) 6.5 C&B	1.0 40 (32) 0.1 0.007 (56)	(4) (5)				
Existent Gum, mg/100ml Water Content, vol% Inorganic Chloride Content, ppm, (n Copper Content, mg/kg Acidity (as acetic acid), wt%, (mg/L) Phe Appearance Sulfur	ASTM E203 or E106 mg/L) ASTM D512, Proc. 0 ASTM D1688, Proc.) ASTM D1613 ASTM D6423 ASTM D4806 ASTM D4806	C (modified) D (modified) 6.5 C&B Report	1.0 40 (32) 0.1 0.007 (56) 9.0	(4) (5) (2)				

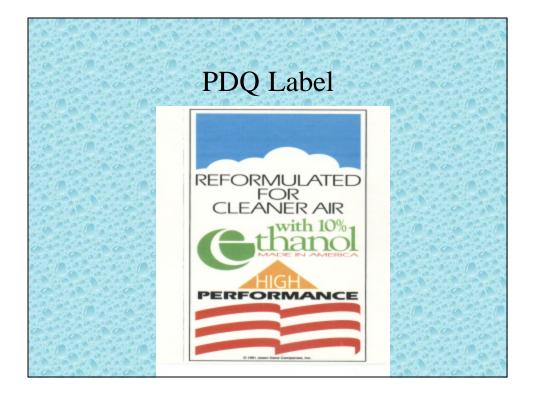


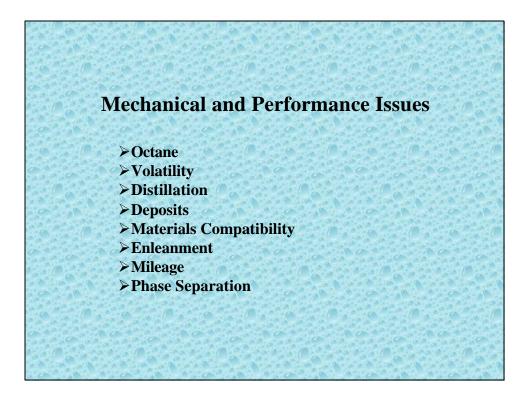











Larry Johnson Delta-T 25 years Production Ag. 15 years Ethanol Consultant 3 years Delta-T Corporation

Why Ethanol – The Discussion A	genda and History
Initially Politically Driven – Today a	
≻Agriculture – Historic	1900s and 1930s
> Energy – Iranian Revolution	1979
> Octane – CAA Lead Phase-out	1985
>Energy – Gulf War	1991
>Air Quality – CAAA Oxy and RFG	1992
Refinery Demand – At Capacity	2000
➢ Renewable Energy – All of the Above	TODAY

Standard Corrected Data for 29.92 inches Hg. 60 F dry air

Test:300 RPM/Sec Acceleration Fuel Spec. Grav.:.716Air Sensor:9.0Vapor Pressure:.19Barometric Pres.:27.34Ratio:1.00 TOEngine Type:4-Cycle SparkEngine displacement:355.0Stroke:3.480

RPM	CBT Lb-Ft	CBHP	FHP	VE %	ME€	FA+FB Lb/Hr	A1 scfm	A/F	BSFC	CAT F	OIL Out	WAT Out	B٤
4100	399.4	311.8	53.9	94.1	83.7	142.0	358.3	11.6	. 51	62	143	167	5.
4200	399.5	319.5	56.3	93.3	83.5	143.7	364.8	11.7	.51	61	143	167	5.
4300	408.2	334.2	58.7	93.9	83.5	146.3	376.0	11.8	.49	61	143	167	5.
4400	414.2	347.0	61.2	94.7	83.5	150.3	387.9	11.9	.49	61	144	167	5.
4500	421.4	361.1	63.6	96.7	83.5	153.4	404.8	12.1	. 48	61	144	167	5.
4600	428.0	374.9	66.1	98.1	83.5	156.4	420.1	12.3	. 47	61	144	167	5.
4700	430.8	385.5	68.6	99.3	83.3	159.5	434.7	12.5	.46	61	144	167	5.
4800	434.1	396.7	71.2	100.4	83.2	166.4	450.2	12.4	.47	59	144	166	5.
4900	436.1	406.9	73.9	101.5	83.1	173.8	464.4	12.3	.48	59	145	166	5.
5000	437.2	416.2	76.5	101.8	82.9	176.1	474.2	12.4	.48	60	145	166	5.
5100	439.7	427.0	79.2	103.0	82.7	183.9	488.6	12.2	.48	61	145	166	5.
5200	439.7	435.3	82.1	103.4	82.5	185.0	499.4	12.4	.48	62	145	166	5.
5300	438.1	442.1	84.9	103.4	82.2	190.2	508.2	12.3	.49	63	145	166	5
5400	435.6	447.9	87.7	103.4	81.9	192.9	517.7	12.3	.49	63	146	167	5.
5500	431.4	451.8	90.7	102.7	81.5	197.4	523.3	12.2	.49	63	146	167	6
5600	427.8	456.1	93.6	102.0	81.2	201.3	529.2	12.1	.50	63	146	167	6
5700	426.3	462.7	96.7	102.2	80.9	204.5	539.8	12.1	.50	63	146	168	6
5800	422.6	466.7	99.7	102.9	80.5	206.7	553.1	12.3	.50	63	146	168	6
5900	421.7	473.7	102.8	103.4	80.3	209.6	565.6	12.4	.50	63	147	168	6
6000	415.7	474.9	106.0	103.3	79.9	208.3	575.8	12.7	.50	62	147	168	6
6100	411.0	477.4	109.6	103.2	79.4	208.1	584.7	12.9	.49	62	147	168	6
6200	405.3	478.5	113.7	102.9	78.8	207.8	593.7	13.1	. 49	61	147	168	6
6300	402.3	482.6	117.7	102.5	78.4	211.3	601.2	13.1	.50	61	147	168	6
6400	397.7	484.6	121.9	102.3	77.8	215.8	609.5	13.0	.50	61	148	169	6
6500	393.6	487.1	126.0	102.2	77.3	216.3	618.3	13.1	.50	61	148	169	6
6600			130.3		76.8	216.9	624.9	13.2	.50			169	6
6700	379.9	484.6	134.6	100.9	76.0	223.2	629.0	12.9	.52			169	6
6800	372.5		139.1	99.9	75.3	235.6	632.3	12.3	.56			169	6
6900	365.6		143.5	99.1	74.6	242.0	635.0	12.0	.57			169	6
7000	362.7	483.4	148.9	98.3	74.0	247.4	639.1	11.9	.58	62	150	169	6

100% 110009. RACE for

13

Test#

--•-

1

Sta	andard (Correcte	d Data	a for	29.92	inches	Hg. 60) F dry	air		Tes	t#	
Test:		PM/Sec A		ration		-		. 73			Sen		9.(
	Pressur					netric		27.3				1.00	
Engine	e Type:	4-Cycle	Spar	ζ	Engi	ne disp	lacemer	nt: 355	. 0	Stro	oke:	3.4	480
RPM	CBT	CBHP	FHP	VE %	ME %	FA+FB	A1	A/F	BSFC		OIL		B٤
	Lb-Ft	21.0 0	F1 (07 1	04 6	Lb/Hr	scfm	4.4 0	50	F	Out	Out	~
4000	418.9	319.0	51.6		84.6	148.1	360.8	11.2	. 52		184		5.
4100	411.8	321.5	53.9	94.9	84.1	147.5	361.5	11.3	. 52	62	184		5.
4200	410.3	328.1	56.3	93.9		143.2	365.7	11.7	.49		184		5.
4300	420.4	344.2	58.7			121.9	377.5	14.2	. 40	63		163	5.
4400	425.4	356.4	61.2	95.5		105.4	389.6	17.0	.33	63	183	163	5.
4500	432.8	370.8	63.6	96.7		112.6	403.6	16.5	.34			164	5.
4600	437.2	382.9	66.1			125.3	417.5	15.3	.37		183	164	5.
4700	443.4	396.8	68.6			127.9	435.9	15.6	.36		183	164	5.
4800	445.2	406.9	71.2	101.0		137.6	450.3	15.0	.38		183	164	5.
4900	446.6	416.7		101.2		140.6	460.7	15.0	.38	62	183	164	5.
5000	451.1	429.5		102.9			477.9	13.6	.42		183	164	5.
5100	452.0	438.9		103.5			490.3	11.4	.51		183	165	5.
5200	450.2	445.7		103.5			500.0	11.6	.50			165	5.
5300	449.0	453.1		103.7			510.1	13.5	.43			165	5.
5400	447.8	460.4		103.7			519.5	13.9	.42			166	5.
5500	444.4	465.4		103.1			526.0	14.2	.41		183		5.
5600	441.3	470.5		102.8		167.0	533.3	14.7	.40			165	5.
5700	438.5	475.9		102.8		165.9	543.7	15.0	.39			165	5.
5800	434.0	479.3		103.1		165.2	555.0	15.4	.39			165	6.
5900	431.5	484.7 1		103.2			565.6	15.6	.39			165	6.
6000	430.7			103.0		165.9	573.7	15.9	.38		184		6.
6100	425.6	494.3 1					585.6	16.7	.37		184		6.
6200	419.2			102.9			595.5	17.4	.36		184		6.
6300	413.9	496.5 1				149.5	601.5	18.5	.34		184		6.
6400	411.7	501.7 1				148.7 153.2	615.0	19.0	.34			167	6.
6500	407.7	504.6 1 506.2 1				153.2	619.2 625.2	18.6 17.4	.34			167	6
6600	402.8 396.5					115.5	630.6	17.4 25.1	.37			167	6
6700 6800	396.5	505.8 1				112.7	636.5	25.1	.26 .25		184 184		6
6900	381.7		43.5			114.2	641.0	25.8	.25		184		6
7000	375.9	501.0 1		99.7 99.4		79.1	648.0	37.6	.20		184		6
1000	575.9	JUI.0 I	70,9	, <u>, , , , , , , , , , , , , , , , , , </u>			0.010.0	57.0	. 10	ΟŢ	104	TOO	U I

20% ETHANOL 80% 110 OCT. PACE fuel

 $\bigvee_{1\leq i\leq j} \sum_{\substack{j\in J_{i},j\\ j\neq j}} |\lambda_{i}|_{i} \leq 1 \leq i \leq n$

29

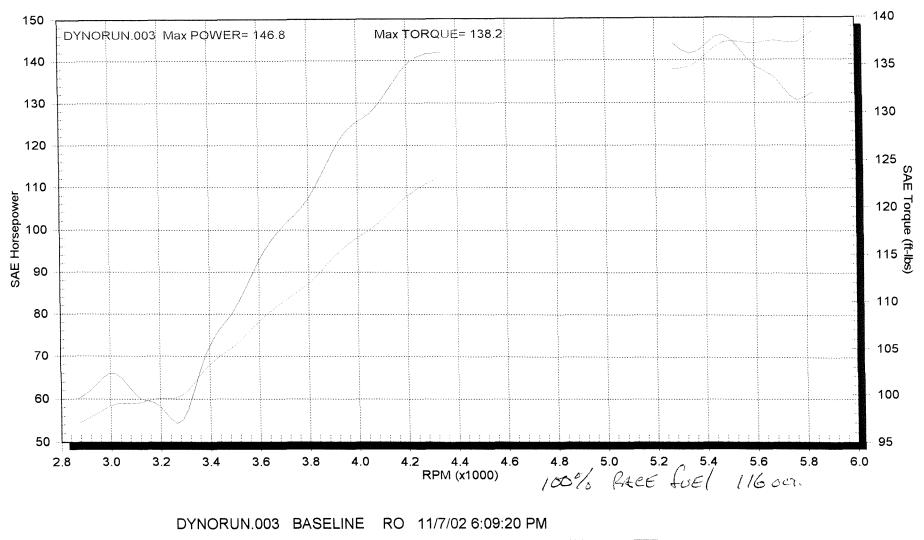
Test:300 RPM/SecAccelerationFuel Spec.Grav.:.793Air Sensor:9.0Vapor Pressure:.20Barometric Pres.:27.74Ratio:1.00 TO 1EngineType:4-Cycle SparkEngine displacement:357.0Stroke:3.480

RPM	CBT	СВНР	FHP	VE%	ME%	FA+FB	A1	A/F	BSFC		OIL		BSAC
	Lb-Ft					Lb/Hr	scom			F		Out	
4600	436.2	382.0	66.5		'83.8	242.2	413.5	7.8	.71	67		164	5.53
4700	437.1	391.2	69.0		83.6	242.9	419.5	7.9	.69	67	158	165	5.48
4800	439.9	402.0	71.7	95.8	83.5	246.8	431.6	8.0	.68	67	158	165	5.48
4900	445.6	415.7	74.3	96.0	83.4	245.8	441.2	8.2	.66	67	158	166	5.42
5000	448.2	426.7	77.0	97.0	83.3	247.6	454.8	8.4	.65	67	158	166	5.44
5100	447.2	434.3	79.7	97.2	83.0	252.8	465.2	8.5	.65	67	159	166	5.47
5200	447.8	443.4	82.5	98.0	82.8	261.8	478.1	8.4	.66	67	159	166	5.51
5300	448.7	452.8	85.4	98.5	82.6	269.9	489.6	8.3	.66	67	160	167	5.53
5400	448.1	460.7	88.2	98.6	82.4	272.5	499.1	8.4	.66	67	160	167	5.54
5500	449.3	470.5	91.2	99.3	82.2	280.3	512.3	8.4	.66	67	160	167	5.57
5600	448.3	478.0	94.2	99.0	82.0	283.9	520.2	8.4	.66	67	160	167	5.57
5700	450.3	488.7	97.2	100.0	81.8	291.9	534.4	8.4	.67	67	160	167	5.60
5800	445.0	491.4	100.3	99.6	81.5	293.5	541.5	8.5	. 67	67	160	167	5.64
5900	446.0	501.0	103.4	100.3	81.3	304.9	555.3	8.4	.68	67	160	167	5.68
6000	444.5	507.8	106.6	100.9	81.0	321.4	567.4	8.1	.71	67	160	167	5.72
6100	441.7	513.0	110.2	100.9	80.7	328.8	577.3	8.1	.72	67	160	167	5.77
6200	440.0	519.4	114.3	100.7	80.3	331.7	585.5	8.1	.71	67	160	167	5.78
6300	437.6	524.9	118.4	100.9	79.9	338.8	596.3	8.1	.72	67	160	167	5.83
6400	433.7	528.5	122.5	100.0	79.4	330.6	600.4	8.3	.70	67	160	167	5.83
6500	429.6	531.7	126.7	99.3	78.9	345.8	605.7	8.0	.73	67	161	167	5.85
6600	427.1	536.7	131.1	99.0	78.5	359.1	611.4	7.8	.75	68	161	167	5.86
3700	421.3	537.5	135.4	98.2	78.0	360.3	614.3	7.8	.75	69	161	167	5.89
6300	416.4	539.1	139.8	97.8	77.4	354.4	620.8	8.0	.74	69	161	167	5.94
6900	409.8	538.4	144.4	97.1	76.8	353.5	625.7	8.1	.74	69	161	167	6.00
7000	406.1	541.3	149.7	96.9	76.3	357.7	633.4	8.1	.74	69	161	168	6.05
7100	398.9	539.3	155.2	96.4	75.5	358.6	639,9	8.2	.75	68	161	168	6.13
7200	390.4	535.2	160.8	95.7	74.7	362.7	646.5	8.2	.76	67	161	168	6.24
7300	385.2	535.4	166.5	95.3	74.0	382.0	650.7	7.8	. 81	68	161	169	6.29
7400	380.4	536.0	172.3	94.7	73.4	390.4	656.1	7.7	.82	68	161	169	6.35
7500	373.9	533.9	178.2	94.2	72.6	399.3	660.7	7.6	.85	68	161	169	6.42

100% ETHANOl

40° 2" open 1.6 5x. Rockey

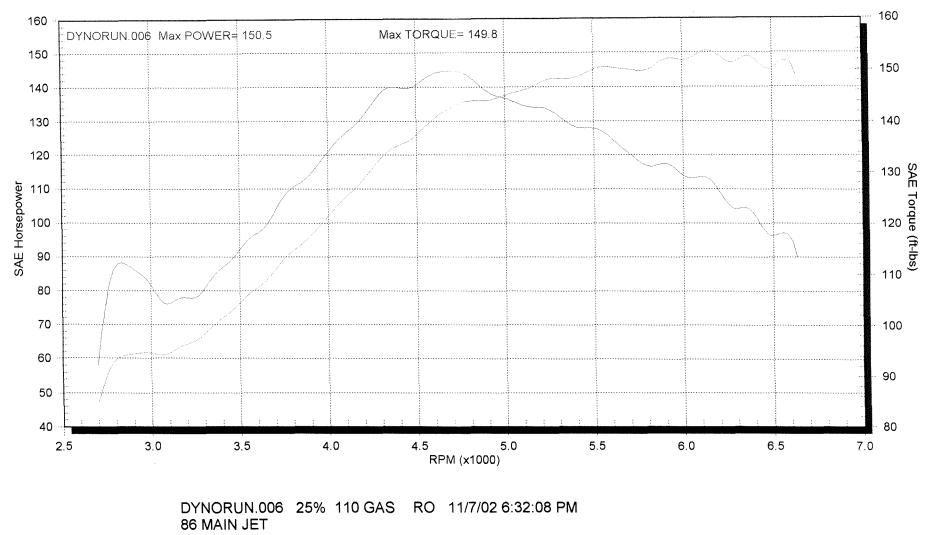
97


-

DYNOJET Performance Evaluation Program

DYNORUN.003 BASELINERO 11/7/02 6:09:20 PM

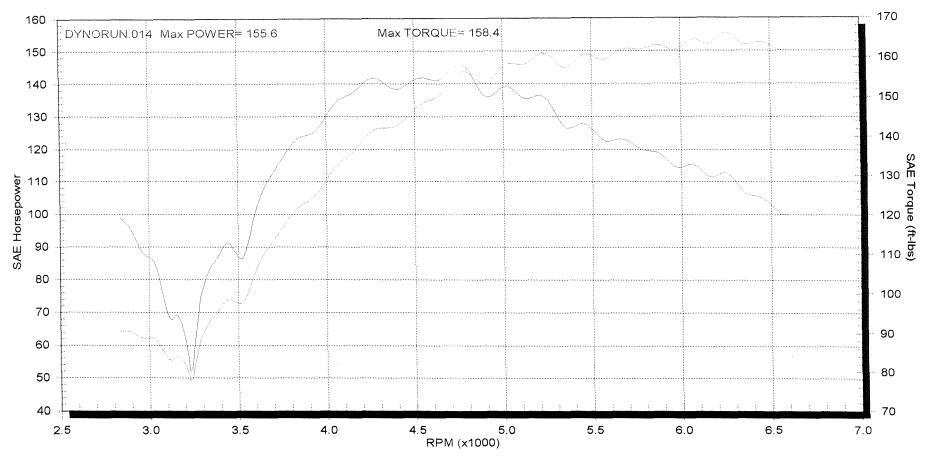
CYCLE NUTS & BOLTS HARLEY- DAVIDSON



DYNOJET Performance Evaluation Program

DYNORUN.006 25% 110 GASRO 11/7/02 6:32:08 PM

CYCLE NUTS & BOLTS HARLEY- DAVIDSON



DYNOJET Performance Evaluation Program

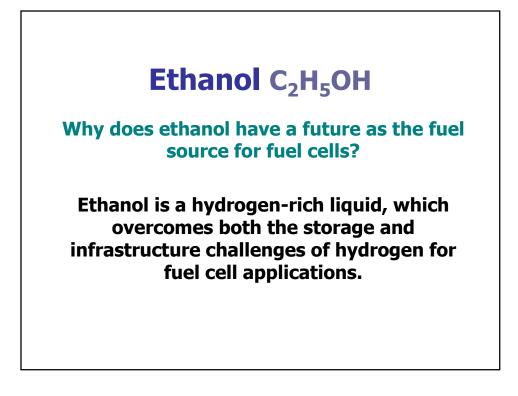
DYNORUN.014 50%A 110 GASRO 11/7/02 8:42:54 PM

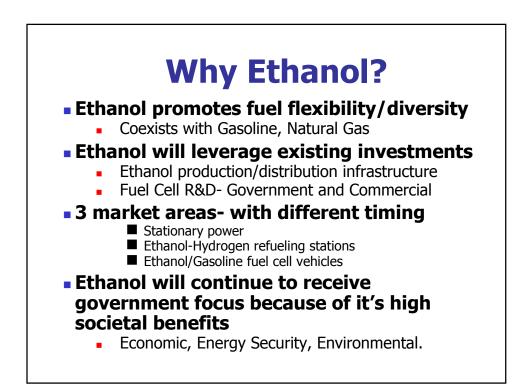
CYCLE NUTS & BOLTS HARLEY- DAVIDSON

DYNORUN.014 50%A 110 GAS RO 11/7/02 8:42:54 PM 110 MAIN 40 INTER WENT FROM 76 TO 80 AIR BLEED ON MAIN

Ethanol and Fuel Cells The Future is Now!

November 14, 2002 - Honolulu, HI


What is a Fuel Cell?


Fuel cells work by combining hydrogen and oxygen in a chemical reaction to create electricity, without the noise and pollution of conventional engines.

In principle, a fuel cell works like a battery.

Unlike a battery, however, a fuel cell does not run down or require recharging.

It will produce energy in the form of electricity as long as fuel is supplied.

Societal Benefits are High

- Improved air quality,
- Increased energy security,
- Economic opportunities for farmers and fuel distributors.
- Production from cellulosic biomass feedstocks, such as corn stover, rice straw, and forestry residues.
- Spills or leaks will not pollute groundwater

The Societal Benefits of Ethanol are High

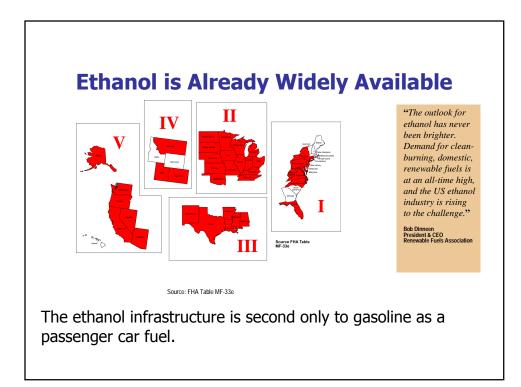
Ethanol and fuel cells together create significant synergy, reaching markets and bringing benefits that are *not* achievable with any other fuel or with any other power technology.

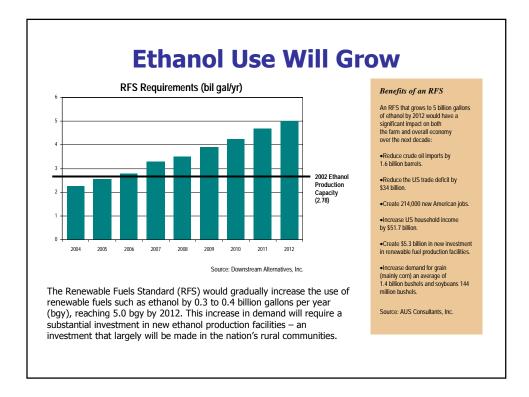
Ethanol is a renewable resource that is playing an increasingly important role in assuring the nation's air quality, improving the economic security of America's farming communities, and addressing the challenges of homeland energy security.

Ethanol & Fuel Cells – The Power of 2.

•Ethanol blends seamlessly with gasoline fuels to create an improved, fuel cell fuel that is easily stored and dispensed. These blends can be varied over time, providing fuel source flexibility.

•Ethanol, a renewable fuel, used in fuel cell vehicles or for stationary power plants generates far fewer greenhouse gases than conventional fuels such as gasoline or natural gas.


•Fuel cells are extremely efficient powerplants, reducing the importance of fuel cost and leveling the playing field vs. fossil fuels.


•Ethanol's distribution infrastructure is complete to the terminal level, meaning that only very limited investment in local distribution could enable ethanol to power fuel cells for remote residences and cell towers far from the electric grid.

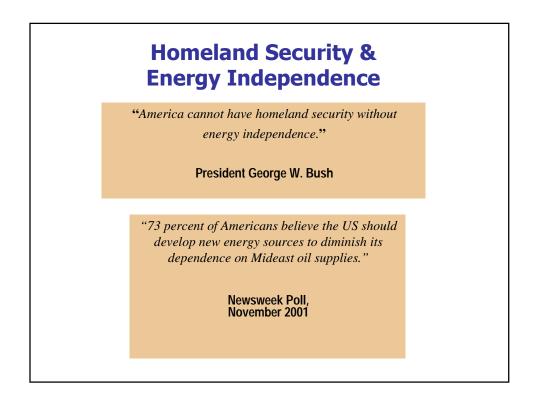
•Unlike other fuel cell alternative fuels like hydrogen or methanol, ethanol has a very positive environmental, health, and safety footprint with no major uncertainties or hazards.

•The technology to use ethanol in fuel cells already exists and has been demonstrated. Only minor changes are required to existing systems to introduce ethanol as a fuel cell fuel.

Driving On Ethanol An ethanol fuel cell vehicle (FCV) will emit about 13% of the tailpipe pollutants compared with a gasoline vehicle and less than half the pollutants of even a gasoline hybrid vehicle. Greenhouse gas emissions from an ethanol FCV would be substantially less than even an advanced vehicle using a gasoline internal combustion engine. The ethanol FCV contributions to greenhouse gases could be close to zero if cellulosic biomass is used for the ethanol feedstock. Unlike hydrogen and methanol, ethanol poses no unique or • potentially "show-stopping"health and safety hazards. Unlike other fuel cell alternative fuels like hydrogen or methanol, ethanol has a very positive environmental, health, and safety footprint with no major uncertainties or hazards. Source: Based on 2001 California Fuel Cell Partnership Study

California Fuel Cell Partnership Conclusions about Ethanol

The fuels assessment study released by the Partnership in October 2001 presented the following conclusions about ethanol as a fuel for fuel cell vehicles:


• A "*major advantage*" of ethanol is its compatibility with gasoline reformer technology and its flexibility to be used neat (i.e., only ethanol) or in a range of gasoline/ethanol blends.

• Flexibility, combined with ethanol's compatibility with the gasoline infrastructure, means that ethanol can be optimized regionally and according to ethanol economics and availability vs. gasoline. This is the only proposed fuel cell vehicle fueling strategy that does not require the commitment of major infrastructure investments to a single fuel.

•An ethanol reformer could be simpler, more reliable, and less costly than a gasoline/multifuel reformer, increasing ethanol's attractiveness as a neat fuel for fuel cell vehicles

Near Term Actions Awareness and Engagement Raise stakeholder awareness Economic analyses to define competitive markets Ethanol supply, and infrastructure development status Conference presentations 2. Identify Fuel Cell companies willing to include ethanol in market development. 3. Evaluate technical and economic feasibility of building an ethanol-hydrogen fueling station. 4. Engage the automotive industry to gain further acceptance of ethanol 5. Work with the DOE to tailor existing technology programs to the use of ethanol. 6. Work with state and local governments to define ethanol role in renewable power programs.

Mission The Renewable Fuels Association's Fuel Cell Task Force, seeks to promote the advantages of renewable ethanol as a fuel source for fuel cells, which offer significant promise in reducing fossil fuel use and increasing energy efficiency. In doing so, we also seek to advance ethanol fuel cells in all practical applications including mobile and stationary power.					
The RFA is an active mem	ber of the U.S. Fuel Cell Council.				
Fuel Cell Task Force Members					
•Jeff Oestmann, Cargill Inc.	 David Loos, Illinois Department of Commerce and Community Affairs 				
Randall Doyal, Al-Corn Clean Fuel Charles Corn Arabes Deviate Midland	Neil Koehler, Kinergy, LLC				
•Charles Corr, Archer Daniels Midland •Jacki Fee, Cargill Inc.	 Duane Adams, Minnesota Corn Growers Association 				
• Robert Reynolds, Downstream Alternatives Inc.	Jon Doggett, National Corn Growers Association				
•Glenn Kenreck, GE Betz	•Todd Allsop, New Energy Corp.				
Jeff Roskam, ICM, Inc. Gary Welch, Williams Bio-Energy					
•Philip Shane, Illinois Corn Growers Association	Mary Giglio, Renewable Fuels Association				

"E-Diesel and Biodiesel: A Status Report to the Industry"

U.S. Department of Energy Fuel Ethanol Workshop

Presented by

Douglas Vind Western Ethanol Company LLC Regent International

Honolulu, Hawaii

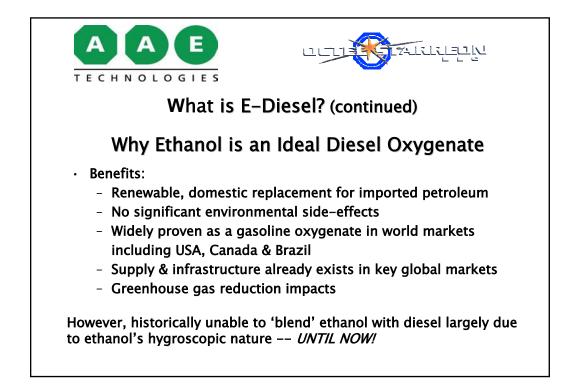
November 14, 2002

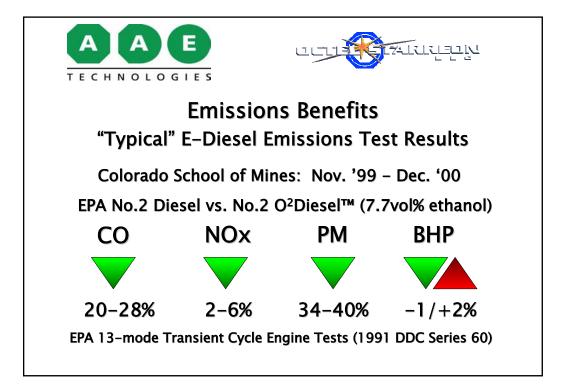
Copyright 2002 -- AAE Technologies, inc.

Introduction (continued)

Western Ethanol Company LLC Regent International

- 20 years as an ethanol producer and distributor, both domestic and international.
- Detailed experience in shipping, storing, and delivering fuel ethanol throughout Europe and North America.
- Committed to identifying and developing new uses and markets for ethanol fuels.

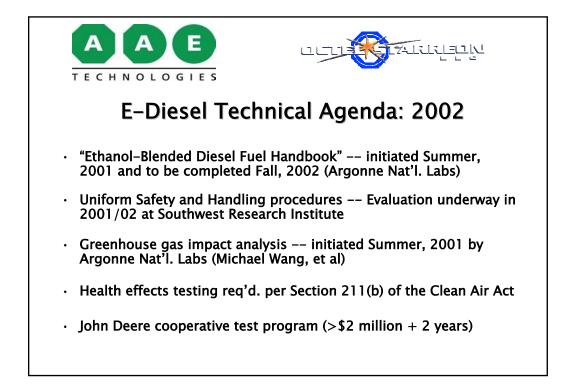

What is E-Diesel?

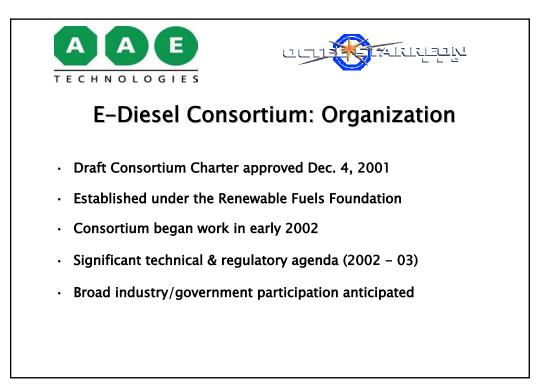

A diesel fuel containing conventional diesel blendstock(s) with:

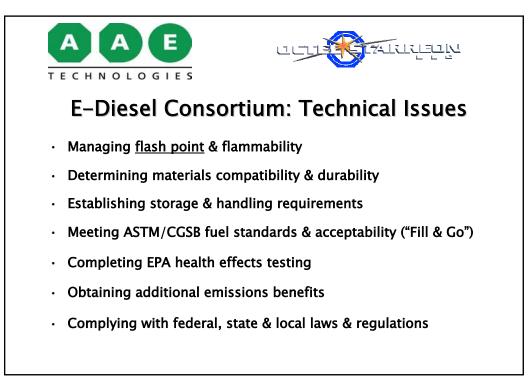
- Up to 15 vol% Anhydrous Ethanol
- Stabilized with ~1.0 5.0 vol% proprietary additive(s), and
- Cetane enhancement where required

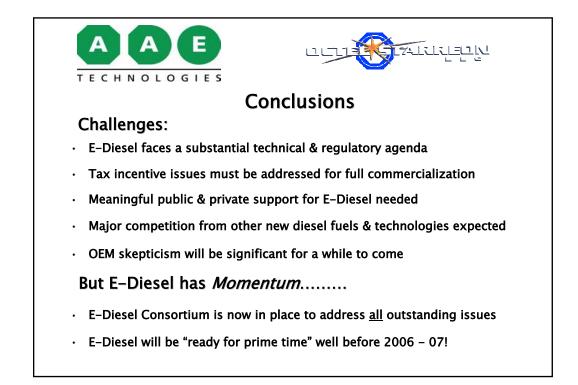
The AAE-Octel Starreon *Octimax™ 4931* (includes cetane improver) makes commercially viable O²Diesel™ at <1.0 vol% additive treat rate

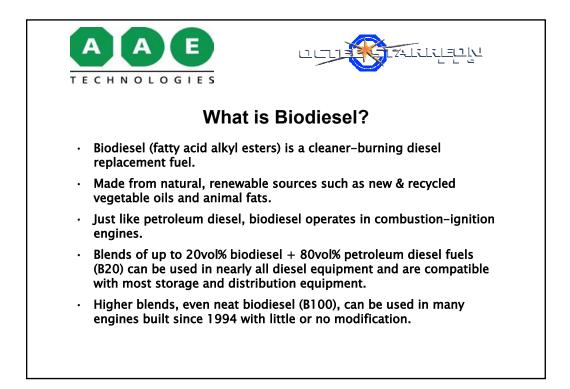
- Premium Diesel performance lubricity, stability, conductivity
- Little or no infrastructure or engine changes required
- Can be used in heavy-duty on- & off-road CI engines now!

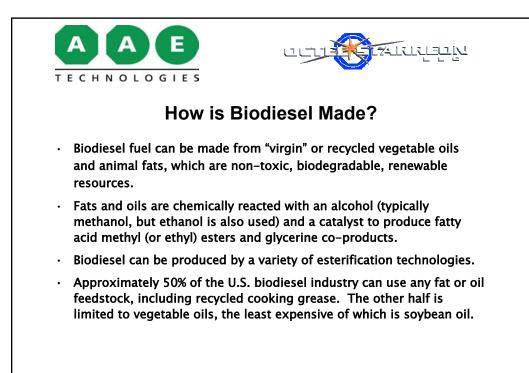


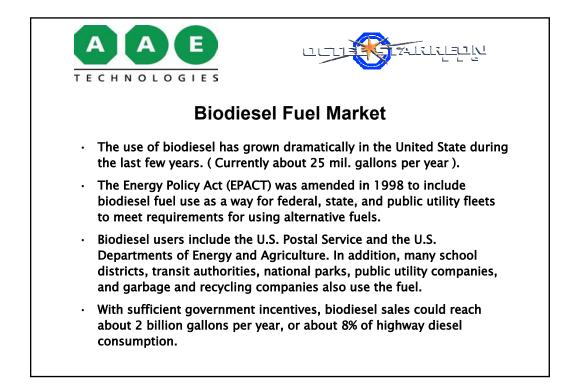


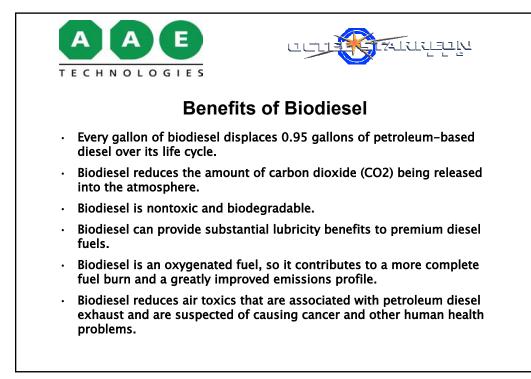

Summary: O²Diesel[™] Fleet Testing

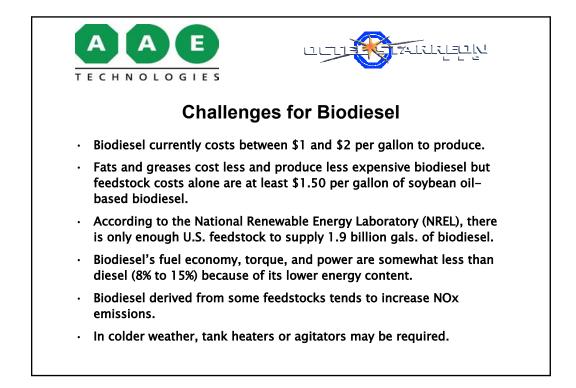

- Nevada Ready Mix (Las Vegas, NV): Feb. 2000 July 2001 (quarry trucks)
- Lincoln StarTran (Lincoln, NE): August, 2000 current (urban buses)
- Pepsi-Cola (The Bronx, NY): Nov. 2000 current (>200 delivery trucks)
- · Zachry Const. (San Antonio, TX): Mar. 2001 current (const. equipment)
- Pearl City Co-op (Pearl City, IL): June 2000 current (fuel delivery trucks)
- Winnipeg Transit (Winnipeg, Manitoba): Oct. 2001 Aug. 2002 (20 buses)
- Citizen Area Transit (Las Vegas, NV): Started Nov. 2002 (17 urban buses) *Also:*
- OCTranspo (Ottawa, Ontario): Starts 1st Qtr. 2003 (20 urban buses)
- 5 Municipalities (So. Calif.): Starts 1st Qtr. 2003 (120 diesel engines)

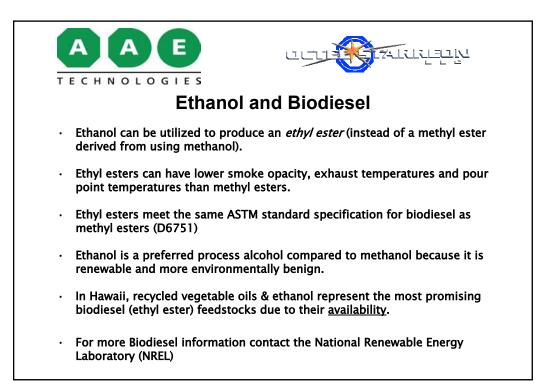







Biodiesel Overview


- What is Biodiesel?
- How is Biodiesel made?
- Biodiesel market
- Benefits of Biodiesel
- Biodiesel Challenges
- Ethanol and Biodiesel



U.S. ETHANOL PRODUCTION CAPACITY

Source: BBI International

COMPANY	LOCATION		FEEDSTOCK	CAPACITY (mmgy)**		
A.E. Staley	Loudon	TN	Corn	60		
ACE Ethanol*		WI	Corn	15		
Adkins Energy*	Stanley		Corn	40		
Ag Processing, Inc.*	Lena Hastings	IL NE	Corn	40 52		
Agri-Energy, LLC*	Luverne	MN	Corn	20		
Alchem LLP	Grafton	ND	Corn	10.5		
Al-Corn Clean Fuel*	Claremont	MN	Corn	30		
Archer Daniels Midland	Decatur	IL	Corn	1,118		
				1,110		
Archer Daniels Midland	Peoria	IL	Corn	"		
Archer Daniels Midland	Cedar Rapids	IA	Corn	"		
Archer Daniels Midland	Clinton	IA	Corn			
Archer Daniels Midland	Walhalla	ND	Corn			
Archer Daniels Midland	Columbus	NE	Corn	"		
Archer Daniels Midland	Marshall	MN	Corn	"		
Badger State Ethanol*	Monroe	WI	Corn	40		
Broin Enterprises	Scotland	SD	Corn	8		
Cargill, Inc.	Blair	NE	Corn	75		
Cargill, Inc.	Eddyville	IA	Corn	35		
Central Minnesota Ethanol Co-op*	Little Falls	MN	Corn	19		
Chief Ethanol	Hastings	NE	Corn	62		
Chippewa Valley Ethanol*	Benson	MN	Corn	21		
Corn Plus*	Winnebago	MN	Corn	44		
Dakota Ethanol LLC*	Wentworth	SD	Corn	45		
DENCO, LLC.*	Morris	MN	Corn	20		
ESE Alcohol	Leoti	KS	Seed Corn	1.5		
Ethanol2000*	Bingham Lake	MN	Corn	28		
EXOL, Inc.*	Albert Lea	MN	Corn	38		
Glacial Lakes Energy LLC*	Watertown	SD	Corn	40		
Golden Cheese Co of California	Corona	CA	Cheese Whey	5		
Golden Triangle*	Craig	MO	Corn	20		
Gopher State Ethanol	St. Paul	MN	Corn	15		
Grain Processing Corp.	Muscatine	IA	Corn	10		
Heartland Corn Products*	Winthrop	MN	Corn	35		
Heartland Grain Fuels LP*	Aberdeen	SD	Corn	8		
Heartland Grain Fuels LP*	Huron	SD	Corn	14		
High Plains Corporation	York	NE	Corn	50		
High Plains Corporation	Colwich	KS	Milo / Corn	20		
High Plains Corporation	Portales	NM	Milo	15		
J.R. Simplot Company	Caldwell	ID	Potato Waste	3		
J.R. Simplot Company	Burley	ID	Potato Waste	3		
Land O' Lakes*	Melrose	MN	Cheese Whey	2.5		
Manildra Ethanol Corporation	Hamburg	IA	Corn / Wheat Starch	8		
Merrick/Coors	Golden	CO	Waste Beer	1.5		
MGP Ingredients, Inc.	Pekin	IL	Corn / Wheat Starch	65		
MGP Ingredients, Inc.	Atchison	KS	Corn / Wheat Starch	25		
Michigan Ethanol LLC*	Caro	MI	Corn	40		
Miller Brewing	Olympia	WA	Brewery Waste	0.7		
Minnesota Energy*	Buffalo Lake	MN	Corn	18		
New Energy Corp.	South Bend	IN	Corn	85		
new Energy corp.			COM	00		

U.S. ETHANOL PRODUCTION CAPACITY

Source: BBI International

	Noven	ber 8, 2002		
COMPANY	LOCATION		FEEDSTOCK	CAPACITY (mmgy)**
Northeast Missouri Grain, LLC*	Macon	МО	Corn	21
Northern Lights Ethanol, LLC*	Big Stone City	SD	Corn	40
Permeate Refining, Inc.	Hopkinton	IA	Sugars & Starches	1.5
Plover Ethanol	Plover	WI	Seed Corn / Whey / Potato Waste	3
Pro-Corn LLC*	Preston	MN	Corn	40
Quad-County Corn Processors*	Galva	IA	Corn	18
Reeve Agri-Energy	Garden City	KS	Corn / Milo	12
Siouxland Energy & Livestock Coop*	Sioux Center	IA	Corn	14
Sunrise Energy*	Blairstown	IA	Corn	7
Sutherland Associates, LLC	Sutherland	NE	Corn	15
Tall Corn Ethanol LLC*	Coon Rapids	IA	Corn	40
Tri-State Ethanol Company*	Rosholt	SD	Corn	15
U.S. Energy Partners LLC	Russell	KS	Milo / Wheat Starch	40
U.S. Liquids	Louisville	KY	Beverage Waste	4
U.S. Liquids	Bartow	FL	Beverage Waste	4
U.S. Liquids	R. Cucamonga	CA	Beverage Waste	4
Williams Bio-Energy	Pekin	IL	Corn	100
Nebraska Energy (Williams Energy)	Aurora	NE	Corn	35
Wyoming Ethanol	Torrington	WY	Corn	5
Total Capacity				2,684
Total Plants				68

* farmer-owned cooperative

** million gallons per year

U.S. ETHANOL PLANTS UNDER CONSTRUCTION

Source: BBI International November 8, 2002

COMPANY	LOCATION		FEEDSTOCK	CAPACITY (mmgy)**
Algoma Ethanol, LLC	Utica	WI	Corn	20
Great Plains Ethanol LLC	Chancellor	SD	Corn	40
Husker Ag Processing LLC*	Plainview	NE	Corn	20
James Valley Ethanol, LLC	Groton	SD	Corn	45
KAAPA Ethanol, LLC*	Axtell	NE	Corn	40
Little Sioux Corn Processors*	Marcus	IA	Corn	40
Midwest Grain Processors*	Lakota	IA	Corn	45
Northeast Iowa Grain Processors*	Earlville	IA	Corn	15
Pine Lake Ethanol*	Steamboat Rocks	IA	Corn	20
Verasun Energy	Aurora	SD	Corn	100
Total Capacity				385
Total Plants				10

* farmer-owned cooperative

** million gallons per year

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
Richard Akana	Akana Petroleum	50 Kukila Street Hilo, HI 96720	808-882-1002	808-882-7082	dbird1@interpac.net
Mike Allen	Allen Oil Company	PO Box 5990 Helena, MT 59604	406-442-7703	406-442-8265	allenoil@mt.net
Patil Anant	Praj Industries Limited	Praj House, Opp HEMRL	+91-20-295-151 1	+91-20-295-171	anantpatil@praj.net
		Pune, Maharashtra 411 021 INDIA	I		
Stanley Arakaki	State of Hawaii DOT Highways Div	727 Kakoi Street Honolulu, HI 96819	808-831-6791	808-831-6725	stanley_arakaki@exec.state.hi.us
Jeff Au	PacifiCorp	947-B Koko Head Avenue Honolulu, HI 96816			
Tante Azares	Kauai Community College	3-1901 Kaumualii Highway Lihue, HI 96766	808-245-8263	808-245-8239	tazares@mail.kauaicc.hawaii.edu
Herb Barboza	OTS, Inc	1200 Waimanu Home Road Pearl City, HI 96782	808-484-7731	808-484-7770	hbarboza@thebus.org
Robert Becker	Cycle Sports/Montgomery Motors	818 Iwilei Road Honolulu, HI 96817	808-536-7023	808-533-2483	rabhi@aol.com
Christopher J. Benjamin	Alexander & Baldwin Inc	822 Bishop Street Honolulu, HI 96818	808-525-8405	808-525-6651	cbenjamin@abinc.com
Russell M. Blythe	Sustainable Energy Development, Inc	242 Grand Boulevard, Suite 1 San Mateo, CA 94401	415-407-8277		sustainablenrg@aol.com
Warren Bollmeier	Hawaii Renewable Energy Alliance	46-040 Konane Place, #3816 Kaneohe, HI 96744	808-247-7753	808-247-7753	wsb@lava.net
Ken Burns	Worldwide Energy Group	2000 Paulele Place Kihei, HI 96753	808-276-5183	808-891-2540	ken@systemmetrics.com
Richard Burns	Worldwide Energy Group	PO Box 837 Kihei, HI 96753	808-874-4876	808-874-4876	dickb@dickb.com
Kim Suman Bushman	ConocoPhillips	411 Pacific Street Honolulu, HI 96817	808-543-2337	808-543-2354	kbushman@ppco.com
Raymond Carr	County of Hawaii	25 Aupuni Street, Room 219 Hilo, HI 96720	808-961-8497	808-935-1205	energy@co.hawaii.hi.us
Albert D.K. Chee, Jr.	ChevronTexaco Corporation	91-480 Malakole Street Kapolei, HI 96707	808-682-2333	808-682-3116	rbae@chevrontexaco.com
Barry Ching	Hawaii Department of Health, Clean Air Branch	919 Ala Moana Boulevard, Room 203 Honolulu, HI 96814	808-586-4200	808-586-4359	bching@emd.health.state.hi.us
Christina Chun		2637 Rooke Avenue	808-372-3914	808-529-4750	khrysecross@flex.com

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
		Honolulu, HI 96817			
Joe Collette	Bob's Auto Repair	3671 North Patton Boise, ID 83704	208-322-8487	208-333-0040-c	motionper@rmci.net
Sue Conroe	BBI International	PO Box 159 Cotopaxi, CO 81223	719-942-4353	719-942-4358	sue@bbiethanol.com
John Coyle	US Navy	1005 Uluwale Street Wahiawa, HI 96786	808-474-5387	808-474-5974	jcoyle@efdpac.navpac.navy.mil
Eric Darmstaedter	WEG-Kauai	PO Box 506 Aiea, HI 96701	808-484-7846		eric@technosynergies.com
Barry Duffin	ConocoPhillips	9645 Santa Fe Springs Road Santa Fe Springs, CA 90670	562-906-7571	562-906-7581	bduffin@ppco.com
Douglas Durante	Clean Fuels Development Coalition	4641 Montgomery Avenue, Suite 350 Bethesda, MD 20814-3473	301-718-0077	301-718-0606	durantes@aol.com
Richard Elander	National Renewable Energy Laboratory	1617 Cole Boulevard Golden, CO 80401			
Tony Fernandez	Garlow Petroleum Inc.	707 Kaloi Street Honolulu, HI 96819	808-836-1957	808-833-5825	garlow@aloha.net
Jim Gill	BBI International	4918 Lockwood Lane Omaha, NE 68152	402-451-2240	402-455-1649	jim@bbiethanol.com
Chris Gnehm	Exploring Technologies, Jivanica Inc	18250 SE 68th Street Kent, WA 98032	425-251-8310	425-251-8313	chris@starlightpath.com
Jayant Godbole	Praj	Calle 70A, # 7-36, Apto. 502, Edificio Lubi Bogota, Colombia SOUTH AMERICA	+57-1-2122162		prajamer@elsitio.net.co
Kelly Greenwell	Energy Resources	PO Box 1779 Kailua-Kona, HI 96745	808-329-2774	808-329-2082	
Regina Gregory	Hawaii Energy Forum	1704 Anapuni Street, #4D Honolulu, HI 96822	808-941-4188		hoonanea@aol.com
Timothy Gunter	Maui Earth Compost, Inc.	PO Box 1282 Wailuku, HI 96793	808-877-0403		
Tyrone Gunter	Maui Earth Compost, Inc.	PO Box 1282 Wailuku, HI 96793	808-877-0403		
Thomas Hadwin	Garden Island RC&D	3083 Akahi Street, Suite 204 Lihue, HI 96766	808-246-0091	808-246-1719	tz.hadwin@verizon.net
Cynthia C.S. Hall	Navy Public Works Center	Transportation Dept Code 700M Bldg 35	808-471-3134x2	808-474-0153	hallcc@pwcpearl.navy.mil
		Pearl Harbor, HI 96860-3139	28		

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
Warren Hall	EA Engineering, Science & Technology, Inc	47-650 Halemanu Street Kaneohe, HI 96744	808-239-0045		whall@eaest.com
Kenneth Harper	Hawaii Beef Packers	PO Box 388 Paauilo, HI 96776	808-960-3308	808-776-1908	
Mark Hepburn	ChevronTexaco Corporation	91-480 Malakole Street Kapolei, HI 96707	808-682-2303	808-682-2214	mahe@chevrontexaco.com
Everett Chipman Higgins		1716 Nalulu Pl Honolulu, HI 96821-1338	808-373-4525	808-373-5313	higginsc@gte.net
Chris Hirota	City & County of Honolulu	1000 Uluohia Kapolei, HI 96707	808-692-5421	808-692-5409	jhirota@co.honolulu.hi.us
Juan Loranzo Holmann	ANDIVA	Edificio Malaga, Plaza Espana Managua NICARAGUA	505-274-4040	505-274-4041	epenalba@clnsa.com.ni
Darren Ishimura	Hawaiian Electric Company, Inc.	PO Box 2750 Honolulu, HI 96840-0001	808-543-7814	808-543-7519	dishimur@hei.com
Larry Johnson	Delta-T Corporation	323 Alexander Lee Parkway Williamsburg, VA 23185	952-466-3363	952-466-2091	ljethanol@aol.com
Robert J. Joy	USDA/NRCS	PO Box 236 Hoolehua, HI 96729	808-567-6885	808-567-6537	rjoy@hi.nrsc.usda.gov
Peter Kam	First Commercial Kitchen LLC	94-1163 Manino Place Waipahu, HI 96797	808-676-0899	808-521-1390	pkam1998@aol.com
Dennis Bumpy Kanahele	Aloha First	41-1300 Waikupanaha Street Waimanato, HI 96795	808-259-9018	808-259-9909	pu.uhonua@verizon.net
Brian S.B. Kang	USAF, HQ PACAF/CEI	25 E Street, Suite D-306 Hickam AFB, HI 96853	808-449-5563	808-449-5577	brian.kang@hickam.af.mil
Jim Kappel	Tesoro Hawaii Corporation	91-325 Komohana Street Kapolei, HI 96707-1713	808-547-3111	808-547-3068	jkappel@tesoropetroleum.com
Maurice Kaya	State of HI Energy, Resources & Technology Div	PO Box 2359 Honolulu, HI 96804	808-587-3812	808-586-2536	mkaya@dbedt.hawaii.gov
Vheissu Keffer	Hawaii Natural Energy Institute	3524 Pakui Street Honolulu, HI_96816	808-732-2062		vheissu1@yahoo.com
David Keith	Aloha Petroleum, Ltd.	1132 Bishop Street, 17th Floor	808-522-9700x7 57	808-522-9707	dkeith@alohagas.com
		Honolulu, HI 96813			
E. Alan Kennett	Gay and Robinson Inc	PO Box 156 Kaumakani, HI 96747	808-335-5337	808-335-6424	presgnr@aloha.net
Daniel Kerknight	Oahu Ethanol Corporation	34 Haku Hale	808-276-9259		

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
		Н			
Al Kimmel	Corey Delta Constructors	610 Industrial Way Benicia, CA 94565	707-747-7500	707-745-5619	
Rodney I. Kimura	State of Hawaii	425 Queen Street Honolulu, HI 96813	808-586-1180	808-586-1205	rodney_I_kimura@exec.state.hi.us
Kalvin Kobayashi	County of Maui	Energy Office, 200 South High Street Wailuku, HI 96793	808-270-7832	808-270-7141	kal.kobayashi@co.maui.hi.us
Wendell Koga	Hawaii Farm Bureau Federation	2343 Rose Street Honolulu, HI 96819	808-848-2094	808-848-1921	wendell@hfbf.org
Gordon Ledingham	Hawaii Lending Specialists	841 Bishop Street, Suite 1516 Honolulu, HI 96813	808-585-7337	808-585-7447	gordon@rlending.com
Stephen W. Luckett	HELO	PO Box 2750 Honolulu, HI 96813	808-543-4646	808-543-4747	sluckett@hel.com
Edward Lui		99-1007 Kahua Place Aiea, HI 96701	808-488-7678	808-488-7678	edwardjlui@yahoo.com
Darin Lum	Dept of Health, Clean Air Branch	919 Ala Moana Boulevard Honolulu, HI 96814	808-586-4215	808-586-4359	dlum@emd.health.state.hi.us
Charles MacNiven	Navy Public Works Center	Transportation Dept Code 700M Bldg 35	808-474-3134x2 28	808-474-0153	macnivenca@pwcpearl.navy.mil
		Pearl Harbor, HI 96860-3139	20		
Mark Macovita	US Postal Service	3600 Aolele Street Honolulu, HI 96820	808-423-3718	808-423-6056	mmacovit@email.usps.gov
William Maloney	ED & F Man Alcohol Inc.	326 Argonne Circle Santa Barbara, CA 93105	805-682-6976	805-682-9663	Wmaloney@aol.com
Joseph Masin		1863 Allen Lane Saint Charles, IL 60174	630-584-7544		masins@lightfirst.com
George Mattimoe	State of Hawaii	953 Inainiha Street Honolulu, HI 96825	808-395-1492	808-395-1492	gmattimoe@hawaii.rr.com
Lonnie Maxfield	Jivan Institute	2006 130th Avenue SE Bellevue, WA 98005	425-747-9377	425-747-9377	lmaxfield@qwest.net
Mike Miyashiro	Diamond Head Petroleum Inc.	2827 Kaihikapu Street Honolulu, HI 96819	808-833-0081	808-834-5800	mikedhpetroleum@aol.com
Al Montgomery	Montgomery Motors	818 Iwilei Road Honolulu, HI 96817	808-536-7023	808-533-2483	suzukihi@aol.com
Mina Morita	State Legislature	State Capitol, Room 315 Honolulu, HI 96813	808-586-8435	808-586-8437	repmorita@hotmail.com

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
Sheri Morrison	Maui County Council	200 South High Street Wailuku, HI 96793	808-270-7939	808-270-7127	sheri.morrison@co.maui.hi.us
Wilfred K. Nagamine	Hawaii Department of Health	919 Ala Moana Blvd, Room 203 Honolulu, HI 96814	808-586-4200	808-586-4359	wnagamine@emd.health.state.hi.us
Ronald M. Nakai	M. Nakai Repair Service, Ltd	288 Mokauea Street Honolulu, HI 96819	808-841-7581	808-842-7012	ron@mnakai.com
Mae Nakaneta	Hawaiian Commercial & Sugar Co	PO Box 266 Puunene, Maui, HI 96784	808-877-6967	808-877-2901	agri@maui.net
Wade Nakashima	Tesoro Hawaii Corporation	PO Box 3379 Honolulu, HI 95842	808-547-3192	808-547-3041	wnakashima@tesoropetroleum.com
Rachel Neville		1778 Ala Moana Boulevard, #1913 Honolulu, HI 96815	808-947-9271		rachel_neville@yahoo.com
Dr. Robert Osgood	Hawaii Agriculture Research Center	99-193 Aiea Heights Drive, Suite 300 Aiea, HI 96701-3911	808-486-5310	808-486-5020	swhalen@harc-hspa.com
Paul Park	Exploring Technologies, Jivanica Inc	18250 SE 68th Street South Kent, WA 98032	425-251-8310	425-251-8313	pdpmgmt@yahoo.com
Elianne Penalba	Compania Licorera de Nicaragua S.A.	Km 4 1/2 Carretera a Masaya, Centro BAC, Managua NICARAGUA	505-274-4040	505-274-4041	epenalba@clnsa.com.ni
William Pierpont	Hawaii Department of Agriculture	1851 Auiki Street Honolulu, HI 96819-3100	808-832-0694	808-832-0683	William_E_Pierpont@exec.state.hi.u
David Po	Nation of Hawaii	PO Box 507 Kula, HI 96790	808-269-2007		davidpo.hawaii@verizon.net
Bill Reynolds	Aloha Petroleum	1132 Bishop Street, 17th Floor Honolulu, HI 96813	808-522-9752	808-512-9707	breynolds@alohagas.com
George Saint John	WEG-K	94-544 Acarhi Street Honolulu, HI 96789	808-272-3830		stjohnhawaii@cs.com
Genevieve Salmonson	Hawaii Office of Environmental Quality Control	235 South Beretania Street, Suite 702 Honolulu, HI 96813	808-586-4185	808-586-4186	gksalmon@mail.health.state.hi.us
Glenn H. Sato	County of Kauai	4444 Rice Street, Suite 200 Lihue, HI 96766	808-241-6390	808-241-6399	glenn@kauaioed.org
Larry Schafer	Renewable Fuels Association	One Massachusetts Ave NW, #820 Washington, DC 20001	202-289-3835	202-289-7519	lschafer@ethanolrfa.org
Kekoa Seward		PO Box 651 Hahapepe, HI 96716	808-222-3146		mayhemmotorsports@yahoo.com
Dr. Robert Shleser	The 'Aina Institute	PO Box 560 Waimanalo, HI 96795	808-259-5042	808-259-8049	shleser@aloha.net

DOE Ethanol Workshop Series Final Registration Information

Registrant	Company	Address	Telephone	Fax	E-mail
Carilyn Shon	Hawaii State Energy Office	PO Box 2359 Honolulu, HI 96804	808-586-2353	808-586-2536	
Cesar Suazo	Ministerio de Hacienda y Credito Public	Frente a Asamblea Nacional Managua NICARAGUA	505-274-4040	505-274-4041	epenalba@clnsa.com.ni
Stephen Taguchi	M. Nakai Repair Service, Ltd	288 Mokauea Street Honolulu, HI 96819	808-841-7581	808-842-7012	
Robert Tam	Hawaii Department of Health, Clean Air Branch	PO Box 3378 Honolulu, HI 96801	808-586-4200	808-586-4359	rtam@emd.health.state.hi.us
John Tantlinger	Hawaii State Energy Office	PO Box 2359 Honolulu, HI 96804	808-586-2353	808-586-2536	
Ryne Terao	Dept of Education - Kauai Complex	3060 Eiwa Street Lihue, HI 96766	808-274-3509	808-274-3508	rterao@aloha.net
Representative Cynthia Thielen	Hawaii House of Representatives	State Capitol, Room 443 Honolulu, HI 96813	808-586-6480	808-586-6481	repthielen@capitol.hawaii.gov
Priscilla Thompson	Hawaii State Energy Office	PO Box 2359 Honolulu, HI 96804	808-586-2353	808-586-2536	pthompso@dbedt.hawaii.gov
Charles Toguchi	Charles T. Toguchi & Associates LLC	47-640 Hui Ulili Street Kaneohe, HI 96744		808-239-1271	cttoguchi@aol.com
Maria Tome	HI Dept Business, Econ Dvlpmt & Tourism	PO Box 2359 Honolulu, HI 96804	808-587-3809	808-587-3820	mtome@dbedt.hawaii.gov
Mark Tonini	Meadow Gold Dairies Hawaii	925 Cedar Street Honolulu, HI 96805	808-944-5939	808-944-5901	mark@mgdhawaii.com
Carole Ann Torikawa		3320 Paalea Street Honolulu, HI 96816	808-732-8771	808-732-8771	catorikawa@yahoo.com
Scott Turn	Hawaii Natural Energy Institute	1680 East-West Road, Post 109 Honolulu, HI 96822	808-956-2346	808-956-2335	sturn@hawaii.edu
U. Kuong Ung	State of Hawaii DOT Highways Div	727 Kakoi Street Honolulu, HI 96819	808-831-6707	808-831-6725	u_kuong_ung@exec.state.hi.us
Douglas Vind	Regent International	1075 Yorba Place, #101 Placentia, CA 92870	714-854-1333	714-854-1330	dbv@regentinternational.com
Louise H. Walker	Department of Education	5249 Liwai Street Honolulu, HI 96821	808-373-5732		
Doris K. Watanabe	DKM LLC	98-424 Kaonohi Street, Suite 1 Aiea, HI 96701	808-485-1037		dkmllc@hawaii.rr.com
Anne Wester	BBI International	PO Box 159, 5015 County Road 12 Cotopaxi, CO 81223	719-942-4353	719-942-4358	anne@bbiethanol.com

DOE Ethanol Workshop Series Final Registration Information

November 14, 2002 - Honolulu, Hawaii

Registrant	Company	Address	Telephone	Fax	E-mail
Clare Wilson	Energy Resources	PO Box 1779 Kailua-Kona, HI 96745	808-329-2774	808-329-2082	
Rob Woolfenden	Exploring Technologies, Jivanica Inc	14607 26th Drive SE Mill Creek, WA 98012	425-337-5118		robwoolf@execpc.com
Norm Wright	BYU Hawaii	55-220 Kulanui Street Laie, HI 96762	808-293-3595	808-293-3582	wrightn@byuh.edu
Dr. Kuo-Kao Wu	Hawaii Agriculture Research Center	99-193 Aiea Heights Drive, Suite 300 Aiea, HI 96701-3911	808-486-5310	808-486-5020	cpinick@harc-hspa.com
Mark A. Yancey	BBI International	602 Park Point Drive, Suite 250 Golden, CO 80401	303-526-5655	303-526-7776	mark@bbiethanol.com
Alvin Yee		91-1069 Kamalipo Street Kapolei, HI 96707	808-674-1470		
Gordon Yorke	Hawaiian Commercial & Sugar Co	PO Box 266 Puunene, Maui, HI 96784	808-877-6916	808-871-7663	gyorke@hcsugar.com
Eileen Yoshinaka	US Department of Energy	Honolulu, HI		808-541-2562	eileen.yoshinaka@ee.doe.gov
Robert J. Young	Maui Petroleum Inc.	385 Hukilike Street, Suite 200 Kahului, HI 96732	808-870-6169	808-270-2801	robert@mauipetroleum.com
Warren Young	Board of Water Supply	630 South Beretania Street Honolulu, HI 96843	808-453-4857	808-550-9032	wyoung@hbws.org

*** End of Report ***