

# ○N Hawaii School Decision Maker Forum:

# TECHNIQUES AND TOOLS TO ENHANCE

LEARNING ENVIRONMENTS

# A Report To The

State of Hawaii

Department of Business, Economic Devel opment & Tourism

Energy, Resources, and Technol ogy Division

November 2002



# Table of Contents

| Agenda            | 3    |
|-------------------|------|
| Notes             | 4    |
| Presentations     | 15   |
| Charles Eley      | . 16 |
| Patricia Plympton | . 62 |
| Stephen Meder     | 76   |
| Participants      | 89   |
|                   |      |

#### Hawaii School Decision Maker Forum

#### TECHNIQUES AND TOOLS TO ENHANCE LEARNING ENVIRONMENTS

October 30, 2002 Oahu Country Club

| 7:30 a.m.  | Registration and Buffet Breakfast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8:00 a.m.  | <ul> <li>Executive Session</li> <li><u>Opening Remarks</u>:</li> <li>Carilyn O. Shon (Moderator), Energy Conservation Program Manager,<br/>Energy, Resources, and Technology Division, DBEDT</li> <li>Patricia Hamamoto, Superintendent of Education</li> <li>Jackie Erickson, Vice-President Customer Relations, Hawaiian Electric Co., Inc.</li> <li><u>Speakers</u>:</li> <li>Patricia Plympton, CEM, Sr. Project Leader, U. S. Department of Energy,<br/>National Renewable Energy Laboratory</li> <li>Charles Eley, FAIA, PE, President, Eley Associates</li> <li>Steve Meder, PhD, Associate Professor, University of Hawaii at Manoa,<br/>School of Architecture</li> <li><u>Closing Remarks</u>:</li> <li>Maurice Kaya, PE, Program Administrator, Energy, Resources, and<br/>Technology Division, DBEDT</li> </ul> |
| 9:00 a.m.  | Break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9:15 a.m.  | Energy Design Guidelines for High Performance Schools—Patricia Plympton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9:45 a.m.  | National Best Practices for High Performance Schools—Charles Eley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10:15 a.m. | Break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10:30 a.m. | Guidelines for Cooling Portable Classrooms in HawaiiStatus Report-Steve Meder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11:15 a.m. | Case Study on Results of Enhanced Environments—Charles Eley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11:45 a.m. | Energy Smart Schools Opportunities—Patricia Plympton, Sam Nichols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Noon       | Lunch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1:00 p.m.  | WORKING GROUP SESSION—Leaders: Charles Eley and Patricia Plympton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Objective: Apply Best Practices Guidelines and Develop a Framework for Hawaii Schools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | <ol> <li>Feedback on Kapolei High School</li> <li>Pre-engineered Solutions for Daylighting, Lighting, and Insulation; HVAC         <ul> <li>New Construction</li> <li>Temporary Classrooms</li> </ul> </li> <li>Retrofits, Repair and Maintenance</li> <li>Effective Educational Specifications</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### **Co-Sponsors**

Department of Education, Hawaiian Electric Co., Inc., National Association of State Energy Officials, National Renewable Energy Laboratory, Department of Business, Economic Development & Tourism/ERTD, U.S. Department of Energy, Rebuild America and EnergySmart Schools Programs

# INTRODUCTORY STATEMENTS

Moderator: Carolyn Shon, Energy Resources, and Technology Division (ERTD), State of Hawaii Department of Business, Economic Development, and Tourism (DBEDT)

Special Thanks to co-sponsors: US Department of Energy / Rebuild America-Eileen Yoshinaka; Energy Smart Schools/National Renewable Energy Laboratory-Patricia Plympton; National Association of State Energy Officials-Kate Burke; Hawaiian Electric Company-Jim Maskrey; DBEDT-Rebuild Hawaii State-Liz Raman.



#### Pat Hamamoto, Superintendent of Education

Achieving High Performance Schools (HPS) in Hawaii, must include forming Partnerships between the State of Hawaii Departments of Education (HDOE), Accounting and General Services (DAGS) and Business, Economic Development and Tourism (DBEDT). This issue is timely and shows the commitment of HDOE to the school environment.

# Jackie Erickson, Hawaiian Electric Company (HECO)

Energy efficiency should form the background to improved learning. Utility rebates are an important motivator as shown by HDOE saving 1.1 megawatts of power to realize rebates of \$399,193 over six (6) years.





#### Patricia Plympton, National Renewable Energy Laboratory (NREL)

Schools, nationwide, average between 40-50 years old, making it important to:

- 1. Model designs to test performance
- Design in flexibility especially in Hawaii where the "community facility" role dominates and schools are heavily used for non-academic purposes
- 3. Design for easy maintenance and longevity

Since renovation of existing stock dominates the planning horizon for HDOE, assistance is available to evaluate the best practices most appropriate to Hawaii schools:

- 1. Rebuild America design charettes
- 2. National Design Guidelines for High Performance Schools (HPS)
- 3. National Best Practices Manual

#### Charles Eley, Eley Associates

HPS are:

- 1. Healthy designed to promote health
- 2. Comfortable (thermally, visually, acoustically)
- 3. Efficient (energy, water, materials)
- 4. Educational (alternative technology and environmental lessons)



# Steve Meder, University of Hawaii, School of Architecture





#### <u> Maurice Kaya, DBEDT - ERTD</u>

The partnership between DAGS, HDOE, HECO, UH and DBEDT has included federal partners such as the US Department of Energy (USDOE) and national partners such as the National Association of State Energy Officials (NASEO). It is not a new partnership and has resulted in valuable products including the Hawaii Model Energy Code and other Hawaii specific guidelines.

FORMAL PRESENTATIONS (Q = Question, A = Answer, C = Comment)

**Patricia Plympton, NREL**. "The EnergySmart Schools Program" The EnergySmart Schools Program provides K-12 assistance to Rebuild America programs throughout the country. Their National Best Practices manual is available in hardcopy (attendees to receive a copy) and by calling 800-DOE-EREC or www.energysmartschools.gov. See attached presentation.

- Q. Are checklists available?
- C. Daylighting implies air conditioning (AC), but AC is a huge up front cost (10%-40% of the cost of the school).
- C. Policy of DAGS is to look at specific schools for AC and not provide all schools with AC, but this process is defective. For instance, Mililani has AC (and shouldn't because it could capture trade winds) and Nanikuli does not (but should because of hot and humid conditions).
- C. The need to AC schools in Hawaii is SITE SPECIFIC. There is also a need to balance the need for energy efficiency (EE) with quality of life. Lastly, quality of life improvements must be factored into the lifecycle costs to justify up front costs.

<u>Charles Eley, Eley Associates</u>. "The Collaborative for HPS" Background on the CHPS program. See attached presentation.

- C. Recommend the use of pendant luminaires with "super" T-8 lamps (~0.9 watts/square foot) no parabolic luminaires.
- C. Every watt supplied to a space has to be removed to avoid heat gain (therefore, plan to add as little as possible).
- C. Recommend investigating the use of displacement ventilation.
- Q. What is the recommended number of foot-candles for class rooms?

- A. 40-50 FC
- Q. Must the supply air in displacement ventilation be dehumidified?
- A. Yes.

<u>Steve Meder, UHSoA.</u> "Guidelines for Cooling Portable Classrooms in Hawaii" See attached presentation.

# Charles Eley, Eley Associates. "Case Study on Results of Enhanced

Environments"

See attached presentation.

#### Sam Nichols, HECO. "Hawaii Smart Schools Program"

This is the second year of the program and it is now in Phase 2.

1. Physical science students are taught about EE and how to conduct an energy audit;

2. Students create PowerPoint presentations of their results (of energy audit of their school) to inform school administrators of potential(s) for savings;

3. They market their lighting audit skills to local businesses, conducted audits and provided reports to participating businesses on how much could be saved by implementing audit recommendations.

4. Maui Community College students audited 32 Maui schools for a benchmarking study.

# WORKING GROUP SESSION ONE: FEEDBACK ON KAPOLEI HIGH SCHOOL

(Q = Question, A = Answer, C = Comment, R = Recommendation)

Charles Eley comments:

General comments about Kapolei High School:

- C. Centralized AC plant with chillers rotated for efficiency.
- C. Only the multipurpose room (MPR) appeared to be un-AC'd.
- C. All chiller plant equipment located indoors.
- C. EE lighting, but little or no daylighting.
- C. MPR ceiling fans mounted high in room; louvered vents located at top of walls.

#### Comments about MPR ventilation:

- R. To improve natural ventilation, use stack height (chimney) phenomenon to ventilate the building by installing a monitor or clerestory device at ridgeline of roof.
- C. Drop the ceiling fans further down, closer to the occupants.

- A. HDOE responded that their policy has been to avoid roof penetrations for security and maintenance reasons. Problems have been encountered with roof leaks, too.
- Q. What would be the reaction (of HDOE or DAGS) to (school architectural) plans with lots of skylights?
- A. Uproar from DAGS Central Services Division (responsible for maintenance).
- Q. What if security and leakage questions could be addressed?
- A. Maintenance history remains a problem; there are also orientation problems

   for instance, with a monitor or clerestory windows, north facing
   orientations may allow trade winds to drive in rain.
- C. Solid glass panes could be installed on such north faces and louvers on the south side.
- A. Another problem is that most of the buildings have flat roofs with slopes of less than 1/2".

# Comments about lighting:

- C. No occupancy sensors in existing HDOE facilities.
- C. One sensor plus wiring adds \$500-1,000.00 per classroom; if they shut off lights for 15-30 minutes/day, payback occurs in approximately 3 years. If they shut off the lights for 1hr/day, payback is about 9 months.
- C. Occupancy sensors are an easy retrofit option.
- A. Vandalism is an issue.
- R. Use only ceiling mounted sensors (this also eliminates the possibility of the sensor being blocked by something in the room e.g., an easel).
- Q. How much adjustment is needed and how is it done?
- A. Sensors have two adjustments, (1) sensitivity designed to detect body heat radiation (passive infrared), so set to detect body temperature; and (2) time delay – usually 15-20 minutes for classrooms, this is the time between when the sensor no longer detects body heat and it shuts off the lights. The adjustments are made with a screwdriver.
- Q. What is the lifecycle of these sensors?
- A. Not sure, but 10-15 years.
- C. There is an issue about turning on/off lights, it may decrease lamp life. Therefore, in new construction, "soft start ballasts" should be installed. The rated lamp life using these ballasts is approximately 30,000 hours and should offset or eliminate the problem.
- C. Annual energy budget for all Hawaii schools, \$22M/year.
- Q. Are there HECO rebates for sensors?
- A. Yes.
- Q. Is there a specification in the ED SPEC for sensors, if not, is that why they aren't a standard feature?
- C. Charles Eley has a spec that he can provide to HDOE. There are a number of manufacturers including Watts Stopper, Lutron and others. His is an open spec that allows for multiple competitors and keeps down costs.

- Q. How to avoid conflict with ballasts and power line carrier communication systems such as alarms and LANS?
- A. Hard wire the systems the ballast has a capacitor that captures the signal.
- R. Fluorescent lights are definitely the way to go. T-5's now 5/8" diameter and new luminaires have spectral above and clear lens below allowing optics that are good for high bay installations (to replace metal halides). They are very EE at 90-95 lumens/watt (metal halides run about 80 lumens/watt).
- C. T-5 should be used in new fixtures; T-8's in retrofits.
- C. T-5 can be turned on/off quickly, this is not true for metal halides.
- C. "Super" T-8 (the new T-8) provide 90-100 lumens/watt and a low ballast factor ballast should be used to avoid driving the lamp at its full potential.

# Comments regarding HVAC considerations:

C. Displacement ventilation (DV) has been used in Europe for approximately 30 years and more recently in offices in the USA. In the US, often installed as part of a raised floor (versus dropped ceiling) and office wiring is run through the pressurized floor plenum. This makes wiring retrofits very simple. H.L. Turner has pioneered the use of these systems in schools in Maine and New Hampshire over the last five years. However, it is not necessary to use a raised floor. Ducting can be applied to the exterior sheath of the building and plenum boxes installed low on exterior walls (at or near floor level) – under a window, for instance. Usually, two opposing corners will be used, however, four corners would provide better coverage.

The face velocity is very low (100 feet/min) and a very large grill is used on the supply register (six square feet or larger).

The DV system is extremely EE for a number of reasons:

- 1. Fans deliver ~1/2 air volume of normal HVAC system
- 2. Air is only conditioned to 65°F (versus 55°F)
- 3. Air can be dehumidified using EE heat exchanger/reheat system (commercially available) this also acts to "pre-cool" fresh air intake. Dechamps sells an enthalpy wheel system, but it is very large.
- C. It would be too expensive to use gas to dehumidify conditioned air, making desiccants impractical.
- C. The DV is a "once through" system and flow-through should be controlled at the classroom.
- Q. Is there a problem with people perceiving that the air is "stagnant"?
- Q. Are there "immediacy" problems because the system takes longer to cool the space?
- A. The DV system has a number of advantages:
  - 1. It is extremely quiet.

# HAWAII SCHOOLS DECISION MAKER FORUM

#### Oahu Country Club

# 30 October 2002

2. The DV system is more effective at removing heat from the space

- because it does not rely on mixing of the air column to condition the space.
- Q. Do you have to replace the filters more often (because it is one pass)?
- A. No, the 400 CFM of make-up air is the same (so actually, you eliminate the need for return air filters).
- Q. Are there limitations on furniture layout?
- A. Other than things like bookcases or panels blocking the supply registers, no, things like desks shouldn't be a problem.
- Q. What about kids either sitting or laying on the floor?
- Q. How is the difference between latent and sensible heat load determined?
- A. The Heat Load calculation is different for the DV scheme. Normally, a factor of 15% is used for lights, 30% for occupants and 30% for equipment (e.g., computers). But with DV, there is no mixing of the air column, so heat loads are determined using computational fluid dynamics. There is an ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standard, done for clean rooms, that models this.
- Q. Does the activity level of occupants affect DV cooling?
- A. Yes, that is why each room should be equipped with a variable air volume control feature.

# Insulation comments.

- R. Radiant barriers should be used to keep the heat out.
- C. Old schools have flat, built-up roofs.
- R. Use single ply membranes that are highly reflective to decrease solar gain through the roof.
- C. Since flat roofs also have a higher potential for moisture intrusion and mold growth (due to pooling of rain water), it is a good idea to design in a small pitch (at least).
- C. Radiant barriers are cost effective and now manufacturers of oriented stand board (OSB) are producing OSB with the radiant barrier already attached to one side (the "down" side) it only adds \$0.10-0.15/square foot.

# SESSION TWO: PRE-ENGINEERED SOLUTIONS

HDOE's "wish list":

- Daylighting in two projects, daylighting didn't make it out of the first phase of design because the consultant said it was too costly. Local architects don't seem to be comfortable with or able to come up with cost effective daylighting designs. HDOE would like to be able to have daylighting as an option.
- 2. Air Conditioning is it being done efficiently? HDOE has been relying on consultants and is looking for better AC models or other options to AC.

#### Comments on other AC solutions.

- Q. Should AC be required or should there be a blanket ventilation strategy for most locations?
- C. The use of radiant barriers in conjunction with natural ventilation and wall insulation worked for DBEDT in a project with the Department of Hawaiian Homelands to construct and EE house. The house was so cool that visitors were fooled into thinking that it was AC'd.
- C. Historically, no schools in Hawaii were AC'd. Now, AC and operable windows are in demand.
- C. HDOE policy is that certain rooms (music/band, libraries, year around multitrack schools, and those with high external noise levels) be AC'd.

Under Policy 6700, schools can request that additional rooms be AC'd – for instance, computer rooms.

Noise and or heat abatement program has been implemented to address problem schools.

There is considerable political pressure to AC certain schools.

HDOE has been requesting the installation of dehumidifiers in libraries, but currently, there are insufficient units in place.

- Q. What are HDOE's options to avoid AC? Of 230 schools, 180 are eligible for AC.
- Q. How does HDOE get designers to accept daylighting? Is there some way to quantitatively validate the educational improvement claims of daylighting?
- A. Yes, the educational benefits were documented by Lisa Heschong of Heschong-Mahone Group in a study commissioned by Pacific Gas and Electric.
- C. Act 77 mandates a 20% reduction in energy consumption by state facilities. It requires a lifecycle analysis to determine cost-benefit.
- C. The USDOE and DBEDT are conducting two, two-day workshops in February, 2003, on lifecycle costing. Both workshops are already full, but more will be scheduled.
- Q. If "we" want HPS, what will it take to get them?
- C. Consultants don't seem to understand what it takes, either.
- C. A core of consultants does understand, but the state is unable to hire them either for financial or other reasons. The expertise exists in the state. The contracting process is defective.
- Q. Won't changing the bid specifications take care of that problem?

C. DAGS is not a client of choice. DAGS needs to be able to ask for cost effective solutions to design requests, like daylighting, desired by HDOE.

# RETROFITTING PORTABLE CLASSROOMS

- C. It is the perception of architecture and design professionals that HDOE and DAGS don't want EE buildings.
- C. Lifecycle cost is the only way to look at it it isn't just up front costs or maintenance costs.
- C. There are time and money constraints on the process. Kapolei High School was different because there was an agreement with the developer there was more leeway to get different ideas incorporated.
- C. If HDOE mandated it, DAGS would have to do it but up front costs always win in the end (unless evaluation techniques were modified to utilize Life Cycle Costing).
- Q. Is there a model available to cost out HPS options versus conventional school designs?
- A. Individual items (e.g., high performance windows, occupancy sensors, daylighting, etc.) – yes. Lifecycle analysis doesn't need to be a complicated process. In CHPS, it was determined that saving 1 kilowatt hour per year amounted to a \$2.00 savings. Thus, if you saved 1,000 KW per hr, you could spend the \$2,000.00 savings on something else.
- C. It becomes difficult with items that have differing maintenance costs.
- C. It would be better if budgeting process at DAGS was changed so that all money for schools was administered through one office (that is, money for renovations and maintenance).
- C. DAGS Central Services has a six-year plan with HDOE.
- Q. Where could funding come from for additional portable classroom studies?
- A. The federal government (USDOE) through state and utility.
- Q. How did CHPS fund PG&E study?
- A. USDOE and PG&E.
- C. HECO has money to fund energy analysis (lifecycle) studies for new construction alternatives and for retrofits (retrofits at 1/2 cost of study up to \$10,000/meter). It takes filling out a form, submitting it to HECO and engaging in a planning meeting. The school is modeled on computer and a report is generated.
- C. It seems that there is a problem in having DAGS functions separated into operations/maintenance and renovations.
- C. There is a conflict in DAGS but can the money be leveraged somehow like using the savings to pay off bond? That would require DAGS operations money to go back to the construction side... could this be worked out?
- C. There has to be a financial instrument to pay off the marginal cost difference.
- A. Act 77 states that utility cost savings will not be used to decrease the utility budget appropriation— this funding remains at the level pre-savings (plus

inflation). The difference can be kept and used to pay for the up front costs of EE alternatives.

- A. Yes, but because it is two different departments, the savings don't go back to the correct department.
- Q. If HDOE is to obtain HPS, what has to be in the ED SPEC to achieve this?
- A. Just tell DAGS, they will amend "Design Consultants Criteria Manual" that is currently in production.
- A. In Volume 3 of the CHPS manuals is "Criteria". This manual identifies 81 "points" of which a building/facility must accrue 28 "points" to qualify as a HPS. There are also basic criteria that all HPS must meet, too. For instance, all sites must be subjected to a Phase I site assessment to ensure that there are no toxic materials contaminating the site.
- C. Perhaps HDOE could use the LEEDS model of using sustainability consultants.
- Q. Will there be a performance standard for retrofits that is included in the bid package? Should it parallel the LEED criteria? Should it be prescriptive?
- Q How does HDOE currently end up with the building it wants? Criteria are out there, but how can the obstacles (already mentioned, like value engineering and funding difficulties) be gotten around?
- C. The time constraint of plan/design/construct within two years is a big problem.
- C. Retrofits can include anything so guidelines would have to be keyed to each project some would require additional guidelines, some would only use a single guideline. For instance, if a retrofit is for AC, guidelines consulted would have to deal with insulation, windows, radiant barriers, etc.
- C. Right now, the Scope is written directly, as number of classrooms of each given type but NOT QUALITY (e.g., HPS quality).
- R. Ask DAGS to accompany HDOE in making a needs assessment for elements of future retrofits co-inspect campus to evaluate needs.
- C. There is currently a \$600M backlog of retrofit work.
- C. The LEED certification process requires a "commissioning authority" to be appointed to act as a watchdog and peer-reviews to occur during the certification to ensure that RFP criteria are met perhaps HDOE could adopt a LEED-like process of overview or project management?
- C. We don't have to guess about good retrofit design, it can be a rational process.
- C. DAGS oversees 25-30 new portable installations a year. These have been slab-on-grade because of ADA (Americans with Disabilities Act) and hurricane safety requirements. DAGS is looking at going back to truly modular portables that can actually be moved, but they are finding it expensive.
- C. Simply installing Astrofoil® or insulation, if it isn't finished correctly, isn't enough. Product needs to be finished, complete with architectural finishes.
- Q. How much does a portable cost?

- A. \$120,000 for an 810 square foot portable which is the functional cost, that is, it is ready to use plumbed with a sink, lights, electricity, and ceiling fans.
- C. The (lifecycle) cost difference between renovation and replacement needs to be taken into account.
- C. Open bids have not beaten the "stick-built" price that DAGS has now.
- C. HDOE has evaluated five types of modulars built using foam core. They are a vast improvement over current stock.
- C. HDOE needs a truly portable "portable."

Presentations




















































































































































































#### **EnergySmart Schools Overview**





- Improve teaching and learning environments
- Reduce energy consumption and costs
- Increase use of clean energy
- Help schools reinvest energy savings
- Increase student, teacher, parent, and community awareness



#### **Technical Assistance in Action**



- Use of ENERGY STAR evaluations to determine energy- savings potential with each district
- Use of DOE-2 energy simulation software to illustrate benefits of energy-efficient design.
- Participate in design charettes
- Conduct preliminary energy audit walk-throughs
- Help identify utility incentives for design support and equipment upgrades.
- Assist in performance contracting document review



## **Services**



- State-based forums for school decision makers, architects and engineers
- Designing High Performance Schools Workshops for Architects and Engineers
- High Performance School Buildings Workshops for School Decision-makers



## **Educational Resources**

- Get Smart About Energy CD-rom for Teachers
- Student activities on energy on EnergySmart Schools Web site

# **Contact EnergySmart Schools**



✓ www.energysmartschools.gov

✓ www.rebuild.org

✓ (800) DOE-EREC

✓ patricia\_plympton@nrel.gov



# Energy Consumption in U.S. Schools

118,000 public and private K-12 schools nationwide:

- ✓ Spend \$6 billion annually on utility bills the largest budget item after teacher salaries
- ✓ Pay more for energy than they do for computers and textbooks combined
- ✓ Can reduce energy costs by 25-30% with energy-saving design tools
- ✓ Can redirect those savings back into the school





# **Benefits of High Performance Schools**

6

- ✓ Enhanced learning environments
- ✓ "Healthier" buildings
- ✓ Reduced operating costs
- ✓ Buildings that "teach"





#### **Goals of EnergySmart Schools**





- ✓ Improve teaching and learning environments
- ✓ Reduce energy consumption and costs
- ✓ Increase use of renewable energy
- ✓ Help schools reinvest savings
- ✓ Educate students, teachers, parents, and the community about energy efficiency and renewable energy

#### High Performance Schools Design Products



- National Best Practices Manual for Building High Performance Schools
- Energy Design Guidelines for High Performance Schools for seven climate zones
- FY'03: 2 new Guidelines:
  - Tropical Island
  - Arctic Climates



#### **A Collaborative Success**

- Participation from representatives from over 40 states
- State Energy Officials
- Rebuild America Business Partners
- Rebuild America Products and Services Team
- School Architects and Engineers
- School Board Officials
- School Facility Planners and Managers
- U.S. DOE Regional Offices
- U.S. DOE National Laboratories
- U.S. Department of Education
- U.S. EPA
- School, Energy, and Education Non-profits

#### Organization of School Design Manuals



- Site Design
- Daylighting and Windows
- Energy-Efficient Building Shell
- Lighting and Electrical Systems
- Mechanical and Ventilation Systems
- Renewable Energy Systems
- Water Conservation
- Recycling and Waste Management
- Transportation
- Resource-Efficient Building Products
- High Performance Checklist
- Case Studies





#### **Energy Design Guidelines**



#### Establish High Performance Goals

| Improve Academic<br>Performance | Protect Our Environment                |
|---------------------------------|----------------------------------------|
| Reduce Operating Costs          | Design for Health, Safety, and Comfort |
| Design Buildings That Teach     | Support Community Values               |
| 3                               |                                        |

### **Site Design**

- Selecting a Site
- **Water-Conserving Strategies**
- &Erosion Control, Off-Site Impacts
- Building Orientation
- Renewable Energy
- $\boldsymbol{\bigstar}$  Maximize the Potential of the Site
- Connecting School to Community







#### **Daylighting and Windows**

- Building Orientation and Solar Access
- Daylighting Strategies
- \*Roof Monitors and Clerestories
- Lightshelves
- Lighting Controls
- Interior Finishes
- \*Appropriate Choice for Windows
- Exterior Window Treatments
- Interior Window Treatments
- Skylights





#### **Energy-Efficient Building Shell**







- Stopping Radiant Heat Gains
- **\***Insulation Strategies

Interior FinishesMoisture and Infiltration Strategies

#### **Lighting and Electrical Systems**



- Lighting Strategies
- High-Efficacy Lamps
- Compact Fluorescent Lamps
- Fluorescent Lamps
- Metal Halide and High-Pressure Sodium Lamps
- LED Exit Lights



- High-Efficiency Reflectors
- **♦**Ballasts
- Lumen Maintenance
- Lighting Controls
- (including occupancy sensors)
- \*Electrical Systems






#### Water Conservation

- Landscape Strategies
- Conserving Water During Construction
- **♦**Water-Conserving Fixtures
- Rainwater Management
- Graywater Systems





# **Recycling Systems and Waste Management**

- \* Paper, Plastics, Glass and Aluminum Recycling
- ✤ Safe Disposal of Hazardous Waste
- Composting
- ✤ Construction Waste Recycling and Waste Management





#### **Resource-Efficient Building Products**

#### The Life-Cycle Approach

- Raw Material Extraction
- Manufacturing
- Construction
- ♦Maintenance/Use
- \*Disposal or Reuse







### How to Get These Guidelines



- DOE's Energy Efficiency and Renewable Energy Clearinghouse (EREC) 800-DOE-EREC
- www.energysmartschools.gov



### EXISTING CONDTIONS in HAWAII'S PORTABLE CLASSROOMS

**Preliminary Investigation** 

Stephen Meder, Arch.D. Olivier Pennitier UH School of Architecture

### **Project Description**

Rebuild America grant through State of Hawaii - Energy, Resources, and Technology Division, DBEDT

#### UH School of Architecture

- Assess existing conditions in portable classrooms
- Develop recommendations for improved portable classroom design

# Purpose of Project

Provide comfortable portable classrooms that are conducive learning environments for Hawaii's students

# **Project Process**

Team from School of Architecture's Environmental Research and Design Lab

- Install data loggers in portable classrooms -Waianae High School
  - Collect data for:
    - Temperature
    - Humidity
    - Air movement
    - Light levels

# Human Comfort

Factors that influence human comfort

- Temperature
- Humidity
- Air movement – MRT



### HAWAII'S CLIMATE

One of the *closest to perfect* climates in the world

#### **Typical Conditions**

| Temperature              | 72-82 <sup>0</sup> F |
|--------------------------|----------------------|
| <b>Relative Humidity</b> | 64-80%               |
| Ave Wind speeds          | 10-12 mph            |

Then why are we so often more comfortable standing next to our buildings than in them?















# **Bioclimatic Comfort**

When the environment is outside the comfort range -

either too hot or too cold-

physical and psychological stress is the result of human's struggle for biological equilibrium

# Fans in the classroom





# **Convergence of Factors**

- P-20 Initiative
- Politics
- Necessity
  - Performance

Numbers don't seem real-

Take the challenge

The real educational experience

### Hot and Humid Climate

#### Passive Design Strategy

- Mitigate heat gain through building envelope
  - Roof, walls, windows
- Ventilate-
  - Evacuate internal and external heat gain from interior
  - Encourage evaporation

### Hot and Humid Climate

Passive Design Strategy- con't

- Orientation
  - Grid disregards climate
- Orient to:
  - Mitigate heat gain
  - Maximize shading and ventilation
  - Create campus / community configuration

# Hot and Humid Climate

#### Mechanically cooled units

- Reduce energy demand
- Maximize energy efficiency
- Maintain high quality indoor air /atmosphere
- Use Energy/Resource efficient materials
- Incorporate appropriate passive design strategies
- Improve quality of life within and around classrooms

### Design

Architects and Engineers have never before had the design and analysis tools that we have available today

It is possible to accurately predict the performance of a building before it is built -consider whole site

Local A& E firms can do this-

- Some in-house, some with hired consultants



| Attended?<br>DoE Administrati | Name                    | Title                                    | Agency                  | Address                      |            |        |            |
|-------------------------------|-------------------------|------------------------------------------|-------------------------|------------------------------|------------|--------|------------|
| Yes                           | Patricia Hamamoto       | Superintendant                           | Department of Education | P.O. Box 2360                | Honolulu   | н      | 96804      |
| No                            | Clayton Fujie           | Asst Superintendant                      | Department of Education | P O Box 2360                 | Honolulu   | н      | 96804      |
| No                            | Al Suga                 | Asst Superintendant                      | Department of Education | P O Box 2360                 | Honolulu   | н      | 96804      |
| No                            | Katharina Kawaguchi     | A set Superintendant                     | Department of Education | P.O. Box 2360                | Honolulu   | н<br>Ц | 06804      |
| No                            | Claudia Chup            | Asst Superintendant                      | Department of Education | P.O. Box 2360                | Honolulu   |        | 90004      |
| No                            | Rodnov Morivomo         | Asst Superintendant                      | Department of Education | P.O. Box 2360                | Honolulu   |        | 90004      |
| Tes                           | Roulley Mollyalla       | Asst Supermentant                        | Department of Education | P.O. BUX 2300                | Honolulu   | п      | 90604      |
| Board of Educatio             | n<br>Maria Maria        |                                          |                         |                              |            |        |            |
| No                            | Herb Watanabe           | Board Member                             | Board of Education      | P.O. Box 2360                | Honolulu   | HI     | 96804      |
| No                            | Keith Sakata            | Board Member                             | Board of Education      | P.O. Box 2360                | Honolulu   | HI     | 96804      |
| Dept. of Education            | n Facilities staff      |                                          |                         |                              |            |        |            |
| Yes                           | Ray Minami              | Director, Facilities & Support Services  | Department of Education | 809 8th Avenue, Bldg. J, Rm. | 1 Honolulu | HI     | 96816      |
| Yes                           | Nick Nichols            | Facilities Planner                       | Department of Education | 809 8th Avenue, Bldg. J, Rm. | 1 Honolulu | HI     | 96816      |
| Yes                           | Carol Ching             |                                          | Department of Education | 809 8th Avenue, Bldg. J, Rm. | 1 Honolulu | HI     | 96816      |
| Yes                           | Sanford Beppu           |                                          | Department of Education | 809 8th Avenue, Bldg. J, Rm. | 1 Honolulu | HI     | 96816      |
| No                            | Gilbert Chun            |                                          | Department of Education | 1037 South Beretania Street  | Honolulu   | HI     | 96814      |
| Yes                           | Gene Fong               |                                          | Department of Education | 1037 South Beretania Street  | Honolulu   | HI     | 96814      |
| Yes                           | Robert Higuchi          |                                          | Department of Education | 1037 South Beretania Street  | Honolulu   | HI     | 96814      |
| Yes                           | Mel Seo                 |                                          | Department of Education | 1037 South Beretania Street  | Honolulu   | HI     | 96814      |
| Yes                           | Roy Tsumoto             |                                          | Department of Education | 1037 South Beretania Street  | Honolulu   | н      | 96814      |
| DAGS / Public We              | orks & Central Services |                                          |                         |                              |            |        |            |
| Yes                           | Mary Alice Evans        | Acting Comptroller                       | Comptroller             | P.O. Box 119                 | Honolulu   | н      | 96810      |
| No                            | Deen Seki               | Deputy Comptroller                       | Deputy Comptroller      | P O Box 119                  | Honolulu   | н      | 96810      |
| Vee                           | Jim Dishardson          | Div Head Control Services                | DACS Control Sorvices   | 720 B Kokoj St               | Honolulu   |        | 06910      |
| Vos                           | Harold Sonomura         | Div. Head, Central Services              | DAGS Central Services   |                              | Honolulu   |        | 90019      |
| Vee                           | Dalmh Marita            | DIV. Head I ublic works                  | DAGS Fublic Works       | P.O. Dox 119                 | Lenelulu   | 111    | 90010      |
| res                           | Raiph Morita            |                                          | DAGS Public Works       | P.O. B0X 119                 | Honolulu   |        | 96810      |
| Yes                           | Duane Kashiwai          |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| res                           | Clarence Kubo           |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Eric Nishimoto          | Branch Chief Project Management          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| No                            | Larry Uyehara           | Branch Chief Quality Control             | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Gina Ichiyama           |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Blaise Caldeira         |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Christine Kinimaka      |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| No                            | Wilfred Chun            |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Walter Kobayashi        |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Mark Yamabe             |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     | 96810      |
| Yes                           | Roy Tanji               |                                          | DAGS Public Works       | P.O. Box 119                 | Honolulu   | HI     |            |
| Yes                           | Don Inouye              |                                          | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| Yes                           | Ray DeSmet              | Mechanical Engineer                      | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| Yes                           | Richard Yasunaga        | Electrical Engineer                      | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| Yes                           | Willie Law              | Electrical Engineer                      | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| Yes                           | Tim Lum                 | Mechanical Engineer                      | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| Yes                           | T. C. Chavanachat       | Electrical Engineer                      | DAGS Central Services   | 729-B Kakoi St               | Honolulu   | HI     | 96819      |
| HECO                          |                         |                                          |                         |                              |            |        |            |
| Yes                           | Jackie Erickson         | VP Customer Operations                   | HECO                    | P.O. Box 2750                | Honolulu   | HI     | 96840-0001 |
| Yes                           | Kai'iulani De Silva     | Director, Education & Consumer Affairs   | HECO                    | P.O. Box 2750                | Honolulu   | Н      | 96840-0001 |
| Yes                           | Jim Maskrey             | Account Manager, Energy Services         | HECO                    | P.O. Box 2750                | Honolulu   | HI     | 96840-0001 |
| Yes                           | Tom Van Liew            | Program Engineer, Customer Efficiency    | HECO                    | P.O. Box 2750                | Honolulu   | HI     | 96840-0001 |
| No                            | Dave Waller             | Manager Energy Services                  | HECO                    | P O Box 2750                 | Honolulu   | HI     | 96840-0001 |
| Yes                           | Sam Nichols             | Program Analyst Customer Efficiency      | HECO                    | P O Box 2750                 | Honolulu   | HI     | 96840-0001 |
| Vee                           | I ynn Bronaugh          | Program Analyst, Customer Efficiency     | HECO                    | P.O. Box 2750                | Honolulu   | н      | 06840-0001 |
| Voc                           | Norris Creveston        | Director, Customer Efficiency            | HECO                    | P.O. Box 2750                | Honolulu   |        | 06940-0001 |
| Voc                           | Frie Kashiwamura        | Machanical Engineer, Customer Technology |                         | $P \cap Roy 2750$            | Honolulu   |        | 06940-0001 |
| 103                           | Life Kasiliwallula      | Meenanical Engineer, Customer recimology | HL00                    | 1.0. DUX 2150                | nonoiuiu   | 111    | 30040-0001 |

| DBEDT           |                      |                     |                                   |                              |               |    |       |
|-----------------|----------------------|---------------------|-----------------------------------|------------------------------|---------------|----|-------|
| Yes             | Maurice Kava         |                     | DBEDT                             | P.O. Box 2359                | Honolulu      | Н  | 96804 |
| Yes             | Carilyn Shon         |                     | DBEDT                             | P.O. Box 2359                | Honolulu      | н  | 96804 |
| Yes             | Dean Masai           |                     | DBEDT                             | P.O. Box 2359                | Honolulu      | HI | 96804 |
| Yes             | Liz Raman            |                     | DBEDT                             | P.O. Box 2359                | Honolulu      | HI | 96804 |
| USDOE           |                      |                     |                                   |                              |               |    |       |
| Yes             | Eileen Yoshinaka     |                     | US DOE                            | P.O. Box 50168               | Honolulu      | н  | 96750 |
| Kev Legislators |                      |                     |                                   |                              |               |    |       |
| No              | Sen, Norman Sakamoto |                     | Hawaii State Senate               | 415 South Beretania St., Rm. | 2 Honolulu    | н  | 96750 |
| Yes             | Sen. Brian Tanaguchi |                     | Hawaii State Senate               | 415 South Beretania St., Rm. | 2 Honolulu    | HI | 96750 |
| No              | Rep. Dwight Takamine |                     | Hawaii House of Representatives   | 415 South Beretania St., Rm3 | Honolulu      | HI | 96750 |
| No              | Rep. Ken Ito         |                     | Hawaii House of Representatives   | 415 South Beretania St., Rm. | 4 Honolulu    | н  | 96750 |
| Speakers        |                      |                     |                                   |                              |               |    |       |
| Yes             | Charles Eley         |                     | Eley & Associates                 | 142 Minna Street             | San Francisco | CA | 94105 |
| Yes             | Patricia Plympton    |                     | National Renewable Energy Labo    | 1617 Cole Blvd.              | Golden        | CO | 80401 |
| Yes             | Steve Meder          |                     | UH School of Architecture         | 1918 University Ave          | Honolulu      | HI | 96822 |
| Yes             | Kate Burke           |                     | National Association of State Ene | 1414 Prince St, Ste 200      | Alexandria    | VA | 22314 |
| Others          |                      |                     |                                   |                              |               |    |       |
| Yes             | Steven Wong          | Principal           | Mitsunaga & Associates, Inc.      | 747 Amana St. #216           | Honolulu      | HI | 96814 |
| Yes             | Paul Fukunaga        | Vice President      | Thermal Engineering Corp.         | 512 Kalihi Street            | Honolulu      | HI | 96819 |
| Yes             | Garrett Masuda       | Electrical Engineer | ECS                               | 615 Piikoi, Ste. 207         | Honolulu      | HI | 96814 |
| No              | Joe Ferraro          | Principal           | Ferraro Choi Associates           | 733 Bishop St, Ste 2620      | Honolulu      | HI | 96813 |
| Yes             | Bill Brooks          | Architect           | Ferraro Choi Associates           | 733 Bishop St, Ste 2620      | Honolulu      | HI | 96813 |