The BioEnergy Science Center – an integrated strategy to understand and overcome biomass recalcitrance

Martin Keller, Ph.D. **BESC Director**

http://www.bioenergycenter.org/

The fundamental science of biomass recalcitrance is poorly understood

Overcoming recalcitrance is the single coherent overarching theme for the BESC

Recalcitrance: Resistance to breakdown into sugars

Fuel(s)

Sugars

- A large-scale, integrated, interdisciplinary approach is needed to overcome this problem
 - Current research efforts are limited in scope
 - BESC will launch a broad and comprehensive attack on a scale well beyond any efforts to date
- Without advances, a cellulosic biofuels industry is unlikely to emerge
- Knowledge gained will benefit other biofuels and biofeedstocks

The BESC Team

Alternative Fuels User Facility

- Oak Ridge National Laboratory
- University of Georgia
- University of Tennessee
- National Renewable Energy Laboratory
- Georgia Tech
- Samuel Roberts Noble Foundation
- Dartmouth
- ArborGen
- Verenium
- Mascoma
- Individuals from U California-Riverside, Cornell, Washington State, U Minnesota, NCSU, Brookhaven National Laboratory, Virginia Tech

Complex Carbohydrate Research Center

A functional management structure integrates BESC activities and objectives with clear lines of authority

Comparative impacts of R&D on biomass processing cost

Without overcoming biomass recalcitrance (A), cellulosic biofuels will be more expensive than corn biofuels. Improved sugar conversion (B) is not enough.

BESC will revolutionize how biomass is processed within five years

BESC has well-defined objectives

Revolutionize the processing of biomass within 5 years

- Improve overall yields
- Simplify operations through consolidated bioprocessing (CBP)
- Decrease (or eliminate) the need for costly chemical pretreatment

Apply a systems biology approach and new higher-throughput pipelines

- Reduce recalcitrance by targeted modification of plant cell wall composition and structures
- Develop and understand single microbes or microbial consortia and their enzymes to enable CBP for low-cost cellulose hydrolysis and fermentation
- Provide a synergistic combination of modified plants and CBP for even more cost-effective biofuel production

Three linked scientific focus areas will enable BESC to understand and overcome biomass recalcitrance

Modifying cell wall composition and structure can reduce recalcitrance

- More sugar is solubilized by cellulase when the lignin content of alfalfa cell walls is reduced
- Strategy is feasible for *Populus* and switchgrass

The challenge: Lignocellulosic biomass is complex and heterogeneous

Most plant cell wall genes are unknown in function

Fig. II.2. Biosynthesis of primary and secondary walls: from genes to polymers. A. Primary wall polysaccharides are synthesized at the plasmamembrane (cellulose) and in the Golgi (pectin and hemicellulose) by the action of glycosyltransferases that use nucleotide-sugar substrates. B. Some cells (e.g. xylem) form secondary walls internal to the primary wall. C. Secondary wall synthesis includes cellulose, hemicellulose and lignin deposition.

- Gene discovery for biomass recalcitrance
 - Random
 - Study natural variation
 - Study randomly modified populations
 - Activation tagged Populus
 - Targeted
 - Identify candidate genes
 - Modify gene expression

Mining adaptive allelic natural variation

Activation tagging to identify *Populus* genes

High throughput phenotyping/screening

Targeted gene discovery: we are looking for cryptic wood phenotypes

Cambial zone

Young **Xylem**

Mature **Xylem**

- Identify key-genes involved in xylem differentiation
- Focus on tension wood and G-fiber

Normal wood

G-fiber

Tension wood

poplar stem (safraninastra-blue coloration)

Tension wood is produced in response to mechanical and gravitational stimuli

Tension wood is a convenient biological model

Tension wood is a major defect for wood quality in poplar

Current estimates of plant transformation pipeline throughput

Populus

Transformation: ~200 genes/constructs per year (over & under expression)

Activation Tagging: ~1000 genes/constructs per year

Switchgrass

Transformation: ~20 year 1, 40-60 year 2+ genes/constructs per year (under & over expression)

Screen w/ VIGS (viral induced gene silencing): 200 genes/constructs per year (under development), RNAi

Strategy part 2: Biomass recalcitrance. Measure, understand and model

A shared sample and characterization pipeline will speed discovery and integration

Analytical pyrolysis of low lignin alfalfa

36 minutes of analysis for 6 (x3) samples

Switchgrass – Fluorescence microscopy

Ding, et al, unpublished results

Switchgrass – fluorescence microscopy

Ding, et al, unpublished results

Fluorescence signals primarily come from chlorophyll, lignin, carotenes, and xanthophylls in plants, each with a different wavelength (color), lignin fluorescence is blue-greenish. Determine cell liginfication by using different filter sets

Switchgrass – Transmission electron microscopy (TEM)

Ding, et al, unpublished results

Switchgrass – Atomic force microscopy (AFM)

Ding, et al, unpublished results

Analysis of cellulose

- Cellulose crystalinity analysis by NMR
 - Critical for accessibility

Chains are parallel due to shifts in orientation of

sheets

Assignments	Chemical shift (ppm)	FWHH* (Hz)	Relative Intensity, %
Cellulose $I(\alpha)$	89.5	24	0.3
Cellulose $I(\alpha+\beta)$	88.8	198	37.1
Para-crystalline cellulose	88.3	234	20.9
Cellulose I (β)	87.8	26	0.2
Accessible fibril surface	84.3	64	0.4
Inaccessible fibril surfaces and hemicellulose	83.7	467	41.2
Accessible fibril surface	83.3	0.8	-
	101 : 1		

^{*:} FWHH is the full width at half-height.

Polysaccharide analysis will distinguish genetically diverse biomass

2D ¹H-NMR sees altered bonds in polysaccharides and lignin in biomass

Size-exclusion chromatography shows mutants can lose the ability to control the chain length of glucuronoxylan Arabidopsis *irx* and *fra* mutants in

Arabidopsis *irx* and *fra* mutants in secondary walls

¹H NMR spectra shows changes in glycosyl residues

Glucuronoxylans isolated from Arabidopsis *irx* and *fra* mutants are deficient in the unique sequence of glycosyl residues at the reducing end

What genes influence recalcitrance in what way?

Strategy part 3: Identify, understand and manipulate "biological catalysts" to overcome recalcitrance

Microbial hydrolysis and enzymatic hydrolysis: A fundamentally different relationship between microbes and cellulose

- Hydrolysis mediated mainly by CEM complexes
- Enzymes both bound & free
- Cells both bound & free

Search for new biocatalysts

 Hypothesis: will higher temperature microbes be more effective?

The growth of microbes on cellulose increases linearly with temperature. Lynd, et al., *Microb. Molec. Biol. Rev.* 66: 506 (2002).

Yellowstone Sample Collection 2007

BioEnergy Science Center

Thermophilic cellulose degrading bacteria from YNP

Enrichments (6) => gDNA isolation => 16S rRNA cloning => RCA TempliPhi => sequencing

Obsidian Pool

OB1: 66°C, pH5, Water, sediment, grass
Enrichment (3): 60°C, poplar or switch grass
Clones: Caldicellulosiruptor sp., Thermoanaerobacter sp.

OB4: 71°C, pH5, Water, wood Enrichment (1): 80°C, poplar

Clones: Uncultured *Dictyoglomus* sp.

AR4: 54°C, pH7.5, Water, wood, sediment

Artists Paintpots

Enrichment (1): 60°C, switch grass
Clones: Caldicellulosiruptor sp., uncultured Nitrospira
sp., Thermobacteroides acetoethylicus, uncultured
Thermodesulfovibrio sp., Thermoanaerobacter
ethanolicus

- 43 unique OTUs out of 57 clones.
- Same OTUs were found in different enrichments for the same sample.
- No clones from different samples fell into same OTU.

Cellulosome understanding and improvement

Cellulosome understanding and improvement

- *C. thermocellum* cellulosome proteomics analysis: identified more than 20 'new' cellulosomal components.
- Assignment of these components to specific growth substrates is ongoing

C. thermocellum image courtesy of Bayer and Lamed, The Weizmann Institute of Science.

Bioenergy supply chain

Bioenergy is analogous to other existing energy networks

The bioenergy grid will need to successfully address 5 key requirements

Availability

Bioenergy needs to meet customer demand when and where its demanded

Reliability

 The country must be able to count on adequate feedstock production, feedstock conversion and storage and distribution of the bioenergy products... and the quality of those products

Security

 Bioenergy production and product distribution must be safe from deliberate acts to disrupt them

Agility

 Bioenergy industry must be able to absorb periodic natural and technological perturbations to the system (e.g. regional drought or breakdowns in the transport system)

Sustainability

 The bioenergy supply chains must be sustainable – environmentally, economically and socially

Bioenergy supply chain

- To be successful, the physical and socioeconomic components and their interconnections of the supply-chain must be able to sustain the reliable generation and delivery of energy to the nation
- Will need to be integrated with the existing energy grids and transportation networks
- Will have strong interactions with other Critical Infrastructures
 - Agriculture & Forestry
 - Electric grid & oil network
 - Transportation
 - Water
 - Banking and Finance (Commerce)

For a successful bioenergy supply chain we will need to address bioenergy's special issues

- Biomass production
 - Geographically dispersed
 - Many viable production and generation pathways
 - Influenced by Ag/Forest/environmental policy
 - Rapidly changing through (bio)engineering
 - Higher production rates
 - Adaptive to newer production environments
 - Strongly influenced by external forcings
 - Climate change and weather (extremes)
- Bioenergy generation and storage & transportation
 - Many conversion technologies & forms of bioenergy
 - Evolving conversion technologies
 - Nascent supply logistics (including feedstock storage)
 - Progressively improving efficiency
- Environmental impacts
 - Water quality, biodiversity, soil productivity and air quality issues

BioEnergy Science Center

Societal adaptability and implications
 Driven by security and climate change considerations
 Risk of undermining food security

Looking to the future and thinking about bioenergy infrastructure

- The US will need an organization or structured approach of some kind to continuously improve the reliability and security of the bioenergy resource, refinery, delivery, and end-use assets in North America
- Some sort of centralized function (private or government) will eventually be needed to
 - develop and enforce bioenergy reliability standards
 - monitor the performance of the bioenergy supply chain
 - assess future resource adequacy
 - forecast future biofuel supplies
 - audit resource, refinery, delivery, and other asset owners for preparedness
 - and educate and train industry personnel ranging from the growers of energy crops to bulk end-users

It is time to start developing

- A national decision support framework
 - Underpinned by comprehensive data and modeling resources
 - Providing analytical and visualization targeted to multiple stakeholder for efficient planning, developing and managing of the US Bioenergy supply chain
 - Federal Gov't
 - State & local Gov't
 - The private components of the supply chain
 - Farmers
 - Transporters
 - Equipment manufacturers
 - Builders of thermo and bio conversion facilities
 - End use manufacturers (e.g. engine manufacturers)
 - Integrating key findings from research supported by multiple agencies

Thank you

BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science

