
Real-Time Monitoring and Prediction of Modes of Coherent

Synoptic to Intraseasonal Tropical Variability

Matthew Wheeler�

National Center for Atmospheric Research,yBoulder, Colorado

Klaus M. Weickmann

NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado

Submitted March 2000

Revised September 2000

2nd Revision January 2001

Monthly Weather Review

�Corresponding author address: Dr. Matthew Wheeler, Bureau of Meteorology Research Centre, P.O. Box 1289K,
Melbourne, 3001, Australia. E-mail: m.wheeler@bom.gov.au

yThe National Center for Atmospheric Research is sponsored by the National Science Foundation.



ABSTRACT

A technique of near real-time monitoring and prediction of various modes of coher-

ent synoptic to intraseasonal zonally-propagating tropical variability is developed. It in-

volves Fourier �ltering of a daily-updated global dataset for the speci�c zonal wavenum-

bers and frequencies of each of the phenomena of interest. The �ltered �elds obtained

for times before the end of the dataset may be used for monitoring, while the �ltered

�elds obtained for times after the end-point may be used as a forecast. Tests of the

technique, using satellite-observed outgoing longwave radiation (OLR) data, reveal its

skill for monitoring. For prediction, it demonstrates good skill for the Madden-Julian

oscillation (MJO), and detectable skill for other convectively coupled equatorial modes,

although the decaying amplitude of the predictions with time is a characteristic that

users need to be aware of. The skill for the MJO OLR �eld appears to be equally

as good as that obtained by the recent empirical MJO forecast methods developed

by Waliser et al., and Lo and Hendon, with a useful forecast out to about 15 to 20

days. Unlike the previously-developed methods, however, the current monitoring and

prediction technique is extended to other de�ned modes of large-scale coherent zonally-

propagating tropical variability. These other modes are those that appear as equatorial

wave-like oscillations in the OLR. For them, the skill shown by this empirical technique,

although considerably less than that obtained for the MJO, is still deemed to be high

enough for the technique to be sometimes useful, especially when compared to that of

a medium-range global numerical weather prediction (NWP) model.



1. Introduction

Since the pioneering work of Lorenz and others of the 1960s (e.g., Lorenz 1969), it is often

generally accepted that the theoretical limit of predictability of synoptic-scale weather systems is

on the order of a week or so, given the theoretical growth of baroclinic weather disturbances (see

also Smagorinsky 1969; Lorenz 1982). In practice, however, useful skill in forecasts from current

numerical weather prediction (NWP) models is often shorter due to the in
uence of inadequacies in

the parameterization of various physical processes. This is especially the case in the tropics, due to

the overwhelming in
uence of the diabatic heating of cumulus convection there (Tiedtke et al. 1988).

Beyond this limit of useful skill provided by current NWP models, extended-range prediction of

the weather is thought to rely, besides improvement and extension of the parameterizations and

NWP-like models themselves, on the empirical exploitation of any lower-frequency periodicities, or

quasi-periodicities, that exist in the atmosphere or land-ocean-atmosphere system (Palmer 1993;

van den Dool 1994).

The idea behind such extended-range prediction is the intuitive notion that the predictability

time of a phenomenon should be proportional to its own period or lifetime (e.g., van den Dool and

Saha 1990). This notion has been the basis, for example, of the e�orts made on the prediction

of the interannual El Ni~no-Southern Oscillation (ENSO) phenomenon (e.g., Barnett et al. 1988).

Yet there exist other low-frequency1 quasi-periodic phenomena that have so far been much less,

or not at all, utilized for prediction. Among them are the various synoptic to intraseasonal waves

and oscillations that exist in the tropics (e.g., Madden and Julian 1994; Wheeler et al. 2000).

Such waves and oscillations organize the individual mesoscale convective elements in the tropics on

spatial scales that are larger (� 1000 km) than the size of the elements themselves, with periods

from a few days to a number of weeks. As such, they appear prominently in zonal wavenumber-

frequency spectra of various proxies of the convection, cloud, and precipitation �elds in the tropics

(Salby and Hendon 1994; Wheeler and Kiladis 1999, hereafter WK99; see also Fig. 1), a fact that

implies some potential for predictability. Yet the waves are not well simulated by NWP models

(Waliser et al. 1999; Hendon et al. 2000; and references therein). We focus on these modes of

variability in this study. In particular, we present a technique of (near) real-time monitoring and

empirical prediction of such modes.

As labeled in Fig. 1, the modes of variability we are concerned with are the Madden-Julian

1We use the term low-frequency to refer to phenomena that have time scales that are longer than a few days,

which is about the limit of useful skill of tropical precipitation forecasts from modern NWP models (this study;

Krishnamurti et al. 1994).
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oscillation (MJO), an eastward zonally-propagating signal discovered by Madden and Julian (1971),

and various equatorial wave-like modes that also appear as zonally-propagating signals in tropical

convection (e.g., Takayabu 1994; WK99). Of the latter, we examine the modes known as the

convectively coupled Kelvin, n = 1 equatorial Rossby (ER), and mixed Rossby-gravity (MRG)

waves. We do not concern ourselves with the convectively coupled inertio-gravity waves that exist

at higher frequencies, nor do we consider other modes of tropical variability that may exist as

non-zonally-propagating signals.

A review of the observations of the MJO is provided by Madden and Julian (1994). For the less

well-known convectively coupled equatorial waves, a presentation of the observed three-dimensional

structure is provided by Wheeler et al. (2000). From these observational studies, it is known that

these modes of variability exist as large-scale coherent convective anomalies, propagating either to

the east or west, coupled with the large-scale tropospheric circulation. They thus form an important

part of the \weather" of the tropics, yet they also may drive teleconnections to the extratropics,

impacting extratropical weather as well (e.g., Ferranti et al. 1990; Meehl et al. 1996).

Previous work on the empirical monitoring and prediction of such modes of tropical variabil-

ity, to our knowledge, has been limited to the MJO. von Storch and Baumhefner (1991) devel-

oped a MJO forecast scheme based on principal oscillation pattern analysis of equatorial upper-

tropospheric velocity potential. Waliser et al. (1999) developed a scheme based on singular value

decomposition of lagged maps of intraseasonally �ltered outgoing longwave radiation (OLR), an

indicator of convection, and upper-level zonal wind. Most recently, Lo and Hendon (2000) devel-

oped a forecast scheme that predicts the evolution of the empirical orthogonal functions of OLR

and upper-level streamfunction that describe the MJO. Basically, what all of these schemes have in

common is their ability to identify the large-scale, low-frequency, circulation or convection anoma-

lies associated with the MJO, and to propagate these large-scale anomalies slowly to the east as

a forecast. The main hurdle for the use of these methods in real-time was considered to be the

extraction of the low-frequency signals without the use of a low- or band-pass �lter requiring in-

formation into the future. Useful forecast skill was thought to be achieved out to about 15 to 20

days, especially during times when the MJO was particularly active, and this skill surpassed that

of various dynamical models, even for the large-scale circulation. Thus signi�cant advantage was

considered to be a�orded by the use of such empirical forecast schemes, especially for the tropical

regions that are directly a�ected by the MJO.

Here, we present another technique of monitoring and prediction of large-scale variations in

the tropics. What sets the technique apart from those of the aforementioned studies, however, is
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that we are able to apply it to all of the modes of variability that appear as spectral peaks in the

wavenumber-frequency domain. This new technique involves Fourier �ltering of a daily-updated

global dataset for the speci�c zonal wavenumbers and frequencies of each of the phenomena of

interest. The technique, and the data we use, are described in detail in Sections 2 and 3, followed

by some examples in Section 4. Obviously, such one-sided �ltering that includes the most recent

day of data may involve spurious edge e�ects at the end of the dataset. Validation of the technique,

and analysis of its forecast skill, are thus an important component of this study, and are presented

in Section 5. Comparison of this skill is made to that of some of the previous studies, and in

Section 6, comparison is made with forecasts derived from the National Center for Environmental

Prediction (NCEP) Medium Range Forecast (MRF) model. A discussion and conclusions are

presented in Section 7. Components of this research may also be viewed in (near) real-time on

the World Wide Web as part of the NOAA-CIRES Climate Diagnostics Center \Map Room" at

http://www.cdc.noaa.gov/map/clim/olr modes/.

2. Data

In this study, we have chosen to concentrate on data that are representative of the moist

convection and precipitation of the tropics. The reason is three-fold. First, precipitation has direct

importance for the users of weather forecasts. Second, tropical precipitation has been notoriously

di�cult to represent and predict in NWP-like models. For example, Janowiak (1992) showed that

certain NWP models do not correctly represent the temporal variations of rainfall in the tropics,

even if the mean state appears adequate. And third, through satellite measurements, there are a

good number of observations of proxies for precipitation that can be adequately used for our daily

monitoring and prediction of the entire tropics. With this in mind, most of the results presented

in this paper use the 2.5� gridded dataset of satellite-observed OLR as described by Liebmann and

Smith (1996). Such data have often been used to distinguish areas of deep tropical convection

and as a proxy for precipitation (e.g., Arkin and Ardanuy 1989). The OLR dataset now extends

continuously for about two decades, and was the primary data used byWK99 to identify the spectral

peaks of the modes of tropical variability (see Fig. 1). It is this dataset, in its daily-averaged form,

and available in near real time, that forms the basis of our empirical monitoring and prediction

scheme.

Other data to be used include precipitation output from some of the dynamic extended range

forecasts (DERF) computed by the NCEP MRF model as described in Schemm et al. (1996).

These are the same numerical model forecast experiments that were used by Waliser et al. (1999),
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Lo and Hendon (2000), and Jones et al. (2000), although here we concentrate on the precipitation

�eld,2 as opposed to upper level winds. The forecast model is the T62L28 reanalysis version of

the NCEP MRF model (Kalnay et al. 1996), for which 50-day forecasts were made each day from

the 0Z reanalysis initial conditions. Sea surface temperatures in the model were prescribed at the

lower boundary, and were damped to climatology from the observed initial condition with a 90-day

e-folding time. For the purpose of comparison in this study, we use portions of these forecasts made

for days within 1985 to 1988.

Also for the purpose of comparison, we additionally use the precipitation product from the

satellite-borne Microwave Sounding Unit in this study (MSU; see Spencer 1993). The MSU precip-

itation dataset is available only over ocean, but is on the same 2.5� grid and daily-averaged like the

OLR. The MRF model precipitation, on the other hand, required linear interpolation to be on the

same 2.5� grid as the OLR and MSU, and its daily values are taken at 0Z, causing some ambiguity

in the timing. Through these three datasets, we are able to capture an important component of

the day-to-day weather variability of the real world and of a typical NWP model.

3. Formulation of technique

For the formulation of our technique of monitoring and prediction, we start with a recognition

of the existence of various spectral peaks in the wavenumber-frequency domain that occur in the

tropical convection or precipitation �eld. A representation of these spectral peaks, from WK99, is

shown in Fig. 1. This �gure, which was calculated using the OLR dataset (see WK99 for details),

shows the spectral peaks that exist relative to a de�ned background spectrum. The left panel is

for the antisymmetric (w.r.t. the equator) component, and the right panel is for the symmetric

component, where the power was calculated independently at each latitude and then summed

between 15�S and 15�N. The ratio of the raw power to the power of the de�ned smooth red

background spectrum was then computed, as displayed. Contours of the ratio less than a value

of 1.1 or greater than 1.4 are omitted. Thus each of the contoured spectral peaks have power

that extends more than 10% above the background (i.e. a ratio of at least 1.1). Their statistical

signi�cance, considering the use of all data between 1979 and 1996, is also very high (95%, as

estimated by WK99). Not surprisingly, very similar spectral peaks occur for a long time-series of

the daily MSU precipitation data as well (not shown).

Based on the existence of these spectral peaks, the procedure of this study is to �lter the

constantly updated OLR for the various modes that produce the peaks, and to extend these �ltered

2OLR was not available for the model forecasts.
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�elds into the future as a forecast. This �ltering is performed for the speci�c zonal wavenumbers

and frequencies enclosed by the boxed regions of Fig. 1. These regions are designed to enclose

the spectral peaks of the disturbances. The boxes are drawn such that the outlines are inclusive,

meaning that the wavenumber or frequency where the edge of the box is drawn is included in

the �ltered data. For the so-called convectively coupled equatorial waves (i.e., Kelvin, n = 1

equatorial Rossby, mixed Rossby-gravity) the boxed regions are also designed to lie along the

theoretical dispersion curves (in an adiabatic, motionless basic sate), separately for the symmetric

or antisymmetric components (see Matsuno 1966). For the MJO, on the other hand, the regions of

�ltering are for the box enclosing eastward moving wavenumbers 1{5 in both the antisymmetric and

symmetric components, and for the frequency range from 1/96 cpd to 1/30 cpd. The two regions

with notable spectral peaks at higher frequencies that are not enclosed by a boxed region are for

the n = 0 eastward and n = 1 westward inertio-gravity waves, in the antisymmetric and symmetric

components, respectively. We do not consider the inertio-gravity waves in this study.

For the �ltering procedure, it should be noted that the regions of Fig. 1 are like those employed

for �ltering by WK99 (their Fig. 6). Here, as in the previous study, �ltering is performed using

forward and inverse complex FFTs, independently at each latitude, retaining only those Fourier

coe�cients within each of the de�ned regions of �ltering before the inverse FFTs. All coe�cients

outside the regions are assigned to be zero.

The �ltering is performed on the OLR anomalies created by the removal of the long-term mean

and �rst three harmonics of the seasonal cycle. Such �ltering, when performed in conjunction with

the separation of the OLR dataset into antisymmetric and symmetric components, successfully

isolated the modes of concern in WK99. The geographical distribution of the variance of the

�ltered data, for example, matched the distribution expected from theory for the equatorial wave

modes (see also Figs. 6, 11, 15, and 19 in this study), and some individual examples of the �ltered

anomalies successfully captured large-scale convective events evident in the total �eld. However,

since the �ltering in WK99 was designed as a diagnostic tool to be used well away from the temporal

end-points of the dataset, and not for up-to-the-present monitoring or prediction, the dataset was

tapered towards zero at each end to prevent spectral leakage. To adapt this technique for monitoring

and prediction, we instead apply a taper only to the beginning of the OLR anomalies to be �ltered,

and pad the end of the dataset with over one year of zeroes. This allows the maximum amount of

information to be retained at the end of the dataset, and as shown below, appears to work quite

well. The zero-padding, on the other hand, is an important step to prevent information at the

beginning of the dataset from distorting the signals produced by the �ltering at the end. While we
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have found that the results are generally insensitive to the length of the zero-padding employed, it

is thought that at least several months is required to prevent this problem arising from the dataset

periodicity that is assumed by the FFT. The padding also helps to increase the computational speed

of the FFT, as it can be adjusted to allow the length of the dataset to be an integral power of 2.

For example, using 1 year of the most recent actual data, plus 659 days of zero-padding, gives 1024

points in time3. Additionally, the 1 year of OLR anomalies has a linear least squares �t subtracted

to remove any trend due to interannual variability before the �ltering, and each day of gridded data

is smoothed spatially by converting to spherical harmonics and applying a Rhomboidal truncation

at wavenumber 21 (R21) to emphasize the larger-scale anomalies. This step of truncating to R21

e�ectively increases some measures of the apparent skill of the technique, yet it is not necessary for

the success of the technique. Importantly, all of these steps for preparing the data for �ltering can

be performed in real time.

Fig. 2 presents a schematic of this procedure, as applied to the monitoring and prediction

of a MJO-like signal. In this schematic, which shows the OLR data to be �ltered at a single

latitude/longitude location only, notice how the presence of a strong MJO-like signal near the end

of the actual data continues as a signal in the �ltered time series beyond the end-point of the dataset

(i.e., into the zone that was padded with zeroes). Of course, this �ltered signal is in
uenced by

the presence or absence of an MJO-like signal at other longitudes as well. It is the part of the

real-time �ltered anomalies leading up to the end-point (i.e. \day 0") that we refer to as the real-

time monitoring, while it is the part of the �ltered data beyond day 0 that we use as a prediction.

These predicted OLR anomalies are with respect to the seasonal cycle and any variability acting

on longer time scales. In this schematic, they can be seen to decay towards zero rather rapidly

beyond day 0. Such decay is a general property of all such forecasts, and will be discussed next.

Further, although the schematic shows the forecast for a single mode of variability only, the real-

time �ltering procedure may e�ciently produce a signal for each of the modes of variability labeled

in Fig. 1. Such forecasts for each of the modes may be summed together, or used individually.

Evidently, the prediction component of this technique is rather unconventional, as it relies on

how well (or rather, not well) the retained wavenumbers and frequencies approximate zero in the

zero-padding region. The amplitude of the predicted signal is not only in
uenced by the presence

of a strong wave-like signal at the end of the observed dataset, but is also in
uenced by the number

of retained wavenumbers and frequencies for the mode of interest. At one extreme, if all the

3The technique was also tested using 5 years of the most recent actual data, plus 223 days of zero-padding, giving

2048 points in time. The results were virtually identical with those using 1 year of actual data.
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wavenumbers and frequencies were retained (i.e. if the boxed region of �ltering, as displayed in

Fig. 1, enclosed the whole region), then the predicted signal would exactly reproduce the zero-

padding. At the other extreme, if only a single frequency was retained, then the predicted signal

would be perfectly sinusoidal, and would maintain its (rather low) amplitude into the future. The

technique of �ltering we have described above lies between these two extremes, where we have set the

width of each of the boxed regions of �ltering in the wavenumber-frequency domain by the width of

the observed spectral peaks in the OLR dataset. Thus the predicted signal by this technique decays

with time, and this decay can be related to the statistical properties of the observed disturbances.

For example, the width of the spectral peak of the MJO (as seen in detail in Salby and Hendon

(1994)) is determined partly by the fact that MJO events often come in groups of only one, two, or

three events at a time4. This localization of the MJO signal in time causes its spectral peak to be

rather broad in frequency. Thus the decay of the predicted signal by this technique, which is related

to the width of the MJO spectral peak in frequency, has, in part, a physical origin. Nevertheless,

the utility of the technique requires extensive testing, including the decay of the amplitude of the

predicted anomalies.

In subsequent sections, we will look at the predicted anomalies of the individual modes and

compare them to both the total OLR �eld, and also to anomalies of the modes derived from the

�ltering when calculated using the dataset without nearby end-points (i.e. including a knowledge

of the future, as in the �ltering of WK99). We will refer to the latter as the \diagnostically-�ltered"

anomalies, while those of this new technique of monitoring and prediction (i.e. with an end-point)

as the \real-time �ltered" anomalies. Comparisons will also be made with verifying high-pass

�ltered OLR anomalies. Examples of the real-time �ltering are provided next.

4. Examples

For examples, we concentrate on the time of the year around the onset of the southern hemi-

sphere monsoon in southern equatorial latitudes. These examples come from the most recent few

years, and do not necessarily represent either particularly strong or weak events of the various

modes.

4The width of the spectral peak of the MJO is also determined by the range of speeds at which the MJO signal

in OLR propagates to the east.
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a. October-November-December 1996

Fig. 3a presents a time-longitude plot of the total OLR and �ltered OLR for the MJO and

n = 1 ER wave components for late 1996. The �ltered �elds of this �rst panel were calculated

using the �ltering on the whole dataset, that is, what we call the diagnostic �ltering. Each of

the �elds are averaged between the latitudes of 10�S and 5�N to concentrate on the equatorial to

southern equatorial convection. During this period, it can be seen that the convective variability

was strongly in
uenced by disturbances like the \climatological" MJO and n = 1 ER waves, where

the MJO is indicated by the planetary-scale features propagating to the east, and the ER waves

are the slightly smaller-scale features propagating to the west. In particular, it appears that a

combination of such disturbances was intimately involved in the timing and evolution of the most

vigorous convection in the Australian-Indonesian region during early December.

It is now interesting to see how the real-time monitoring and prediction would have performed

for these latitudes at this time. This is presented in Fig. 3b, where we have computed the real-time

�ltering with the end of the dataset on December 5th 1996. In this presentation, we have halved

the contour interval of the plotted anomalies after day 0 due to the known decaying property of the

predictions by the technique. Despite this decaying amplitude, however, we see that the technique

performs quite well in this case at identifying the presence and phase of not only the mature wave-

packet of ER waves, but also the development of the enhanced-convective phase of the MJO over

the Indian Ocean in late November. The continuation of these �ltered anomalies into the zero-

padded region after the 5th also provides some good qualitative indications of the future behaviour

of the convection out to about a forecast of 10 days or more. For example, at around 60�E on the

15th, the suppressed convection associated with the suppressed phase of the MJO is depicted well.

b. October-November-December-January 1997/98

Compared to the evolution of the convection in the latitudinal range of 10�S to 5�N during

late 1996, that of late 1997 provides an interesting contrast. In Fig. 4a, as in Fig. 3a, we show the

total OLR �eld averaged for these latitudes for this new period. As this period was during an

ENSO warm event, the bulk of the convection is shifted into the central Paci�c longitudes (the

longitudes of the plot are also shifted by 40�). In addition, the synoptic to intraseasonal variability

appears quite di�erent, with the variations associated with the MJO (and ER waves) being weaker,

and those of the convectively coupled Kelvin waves being stronger. This Kelvin wave variability is

indicated quite well by the diagnostic �ltering of Fig. 4a. In particular, there are events where the

relatively fast eastward moving Kelvin waves propagate across the entire Paci�c.
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Turning now to the real-time �ltering produced with the last day of data on January 5th

(Fig. 4b), we see that the Kelvin wave �ltering on this day provides some predictive value for

equatorial South America by predicting an enhancement of convection there on about January 8th.

For the real-time �ltering of the MJO, on the other hand, the �ltering predicts the suppressed

convective phase around 120�E on January 10th, also quite consistent with what actually occurred.

c. November-December-January 1998/99

As a further example, the evolution of the convection during the 1998/99 season is displayed

in Fig. 5. As in Figs. 3 and 4, we present a panel showing the total OLR and diagnostic �ltering

on the left, and a panel showing what the real-time �ltering produced assuming a particular end

of the dataset on the right. Only the MJO and convectively-coupled n = 1 ER waves appeared to

signi�cantly a�ect the evolution of the convection during this time, so only their �ltered anomalies

are shown. Of note is the only particularly strong enhanced-convective event of the MJO during

this period, occurring in January, with the ER waves also reasonably strong at this time.

Looking at the real-time �ltering as would have been produced with the end of the dataset on

January 18th (Fig. 5b), we see that again the technique appears to be able to identify the modes

of variability quite well. The continuation of the �ltered anomalies into the future also does quite

well at reproducing the phase of the anomalous component of the total OLR �eld, especially the

envelope of enhanced convection associated with the MJO sweeping eastward toward 160�E by

mid-February. Obviously, however, due to the zero-padding (of anomalies) employed, the predicted

signals decay with time.

5. Validation and skill

Beyond showing such examples of our technique of monitoring and prediction, the technique

may be more fully tested through a statistical analysis of multiple cases. Multiple cases of the

real-time �ltering have been generated by imposing end-points to the OLR dataset every second

day for the 10-year period of 1985 to 1994, giving 1826 cases. We may then validate the technique

by comparing the real-time �ltered OLR with either the verifying diagnostically-�ltered OLR (as

calculated using the mode-speci�c wavenumber-frequency �ltering without nearby end-points), or

against a dataset of verifying high-pass OLR (i.e., like the diagnostically-�ltered OLR, except

including all wavenumbers, and all frequencies higher than the high-pass cut-o�). A Lanczos �lter

of 301 weights was used for the high-pass �ltering.

9



a. Madden-Julian oscillation (MJO)

Before analyzing the skill of the technique for monitoring and predicting the MJO, it is �rst

useful to view maps of the part of the variance that we are attempting to explain by the MJO. Such

maps are presented in Fig. 6, in the form of standard deviations, separately for southern summer

(de�ned here as November to April) and Northern summer (May to October). These standard

deviations were calculated from the diagnostically-�ltered data for the same 10-year period for

which we have made the multiple real-time �ltering forecasts. Of note is the concentration of

the MJO OLR variance in the southern hemisphere during southern summer, and the northern

hemisphere during the opposite season, a well known feature of the observed MJO. It is this portion

of the total variance of OLR that we are attempting to monitor and predict with the technique

when applied to the MJO. This MJO standard deviation in OLR is quite similar, although of a

slightly smaller magnitude, to that de�ned in the study of empirical prediction of Waliser et al.

(1999) (their Fig. 13).

We now turn to Fig. 7 which shows maps of the correlations between the MJO real-time �ltered

OLR and the verifying diagnostically-�ltered MJO OLR, for a number of lead times, where the lead

time is with respect to the end-point of the data used for the real-time �ltering. For example, the

map for day -7 presents the correlation at each point between the real-time �ltered OLR output 7

days before the imposed end-point, and the actual (diagnostically-�ltered) OLR of the MJO that

occurred on that day. This map at negative lag thus re
ects the skill of the technique for real-time

monitoring of the MJO. The maps at positive lag, on the other hand, re
ect the performance of

the real-time �ltering as a prediction of the MJO, i.e., after the end-point. Note that although the

diagnostically-�ltered OLR that has been used for veri�cation in this plot is a dataset that can

only be produced after-the-fact, the predicted �elds used in these correlations are a true indication

of what could have been produced by this technique in an operational setting.5 Also of note

is that we are able to apply the technique to any season, thus we display the correlations here

separately for southern summer (upper panels) and Northern summer (lower panels).6 Given that

906 and 920 samples (spaced 2 days apart) went into these separate calculations of the correlations

respectively, and that the autocorrelation of the MJO suggests that a more conservative estimate

5In this way, this technique has a practical advantage over that of Waliser et al. (1999), as, among other di�erences,

Waliser et al. used bandpass �ltered OLR as an input to their prediction scheme, which cannot be obtained in a true

operational setting.

6In this way, this technique has at least one advantage over that presented in Lo and Hendon (2000), as, among

other di�erences, they developed and applied their technique for southern summer only.
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of the number of independent samples for these correlations is around 60 each (over the 10-year

period), a correlation of 0.35 is signi�cant at the 99% level. Thus almost all parts of the maps

show correlations that are statistically signi�cant.

Inspecting the maps of Fig. 7 further then, we see that the predictions of the MJO, by this

measure of skill, perform best in the regions of the eastern Indian to western Paci�c Oceans and

South America south of the equator, in southern summer, and in the regions of the Indian Ocean

and eastern Paci�c, to the north of the equator, in Northern summer. Obviously, the skill reduces

as one goes to longer lead forecasts, yet the 15-day forecasts show correlations greater than 0.6

over a broad region for Souther summer, and greater than 0.5 over a broad region for Northern

summer. These correlations for the forecasts compare quite favorably with those calculated for the

similar empirical prediction schemes of Waliser et al. (1999) (their Fig. 11) and Lo and Hendon

(2000) (their Fig. 6). For a similar lead forecast of the MJO OLR, Waliser et al. (1999) obtained

correlations of around 0.6 to 0.7, yet their forecasts could not be performed in real-time due to the

band-pass �ltering of predictors employed. Lo and Hendon (2000), on the other hand, obtained

correlations of around 0.5 for 15-day forecasts of the leading principal components of OLR.

Fig. 7 further shows the correlations at negative lag. These correlations show that the real-time

�ltering �eld before the end-point is quite well-correlated (values generally greater than 0.8) with

the diagnostically-�ltered MJO �eld, especially in the regions where the MJO is strong (c.f. Fig. 6).

Thus we feel that the technique is also quite adequate for real-time monitoring.

Given that the MJO is quite sporadic in nature, being identi�able in the observational record

perhaps less than half of the time, it is also of interest to see how such correlations should change

if calculated only for times when the MJO is determined to be active. We present such information

in Fig. 8, in the form of the correlations as a function of lead time at a single point in the Timor

Sea, together with the correlations at the same point for all seasons and southern summer for

reference. Our de�nition of \active" is determined completely from the real-time �ltered �eld, and

is thus a decision that can be made in a true operational setting. It is simply based on whether

the real-time �ltered MJO �eld has a value of greater magnitude than 1.3 standard deviations at

the point at any time from day -14 to day +14. This criterion retained 401 of the total 1826 values

for the correlations. The predictions made at these times can be seen to be signi�cantly improved,

consistent with the results of the previous studies of von Storch and Baumhefner (1991) and Lo

and Hendon (2000) that empirical forecasts of the MJO are much better at times when there is a

large initial projection onto the MJO. The forecasts can also be seen to beat a persistence forecast

of the diagnostically-�ltered OLR after about 5 days (dotted line). The quick reduction of the
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correlations for the persistence forecast to zero around day 12 to 13 re
ects the MJO's time scale of

around 50 days. Note that such a persistence forecast can not actually be performed in real time,

as the diagnostically-�ltered �eld uses information from the future.

Another way to look at the performance of the technique for real-time monitoring and prediction

of the MJO is as shown in Fig. 9, in the form of the normalized root-mean-square (rms) errors

relative to the diagnostically-�ltered �eld. The rms errors are shown for the same point and

seasons/periods as that used for presentation in Fig. 8, and are normalized by the standard deviation

of the �eld that is being predicted (e.g. Fig. 6). As both the predicted and verifying �elds are quite

spatially coherent, such rms errors at a point are in fact representative of those over a fairly wide

area. Knowing that the forecasts by the technique decay toward zero, their rms errors asymptote

toward a value of 1, yet are at a value of only between 0.7 and 0.8 for a 10-day forecast. The rms

errors of the persistence forecast, on the other hand, asymptote to
p
2, and they greatly exceed

this value for 15- to 30-day forecasts due to the opposite phase of the MJO that tends to occur

around that time. In comparison to the studies of Waliser et al. (1999) and Lo and Hendon (2000),

these rms errors, like the correlations, are also quite favorable. For example, if the rms errors of the

prediction technique of Waliser et al. are normalized (i.e. their Fig. 12 divided by their Fig. 13),

one obtains values of around 0.7 to 0.8 for their 5- to 10-day forecasts.

A further, and more conservative, way to view the skill of the technique is via comparison with a

verifying OLR �eld that includes all the synoptic to intraseasonal tropical variability. Fig. 10 shows

such a comparison in the form of correlations of the MJO real-time �ltered OLR with a 96-day

high-pass OLR dataset. Obviously, the correlations are much lower than those presented in Fig. 7,

as they are now an indication of the portion of the variance of the total synoptic to intraseasonal

variability that is linearly accounted for by the real-time �ltering. Such correlations, however, are

no less statistically signi�cant, and these correlations may also be compared to similar calculations

presented by Waliser et al. (1999) and Lo and Hendon (2000) for their empirical prediction schemes

(their Figs. 14 and 9 respectively). The regions where the forecasts perform best, and worst, are

notably the same, and when one takes into account the 5-day means used for the comparison

dataset by Waliser et al., and the greater spatial smoothing of the comparison dataset employed

by Lo and Hendon (they spectrally truncated their OLR dataset to T12), the magnitude of the

correlations indicate that the current technique is equally as skillful. Consistently, the location and

time of year for which 15-day forecasts by this technique are able to account for the largest portion

of variance of OLR is in southern summer around the Timor Sea, and also in the region to the east

of the Solomon Islands around 10�S, 170�E. There, the correlation coe�cient of greater than 0.3
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indicates that somewhat more than 9% of the variance of the daily-varying, 96-day high-pass, R21

spatially-truncated OLR dataset is accounted for by the 15-day forecasts in southern summer.

Also of note is that the correlations as presented in Figs. 7, 8, and 10 are appreciably higher

than what are obtained if the same procedure of real-time �ltering is performed for an equivalent

region of the wavenumber-frequency domain that is characterized more by red-noise, that is, a

region of the wavenumber-frequency domain of Fig. 1 that does not contain a spectral peak (not

shown). Hence the success of the technique for the MJO is not just a statistical artifact, but relies

on the existence of the MJO as a quasi-periodic phenomenon in the �rst place.

b. n = 1 equatorial Rossby (ER) wave

Turning now to the n = 1 ER waves, Fig. 11 displays the geographical distribution of their

standard deviation. Compared to the standard deviation of the MJO (Fig. 6), the n = 1 ER waves

can be seen to have less variance, with the local maxima being o� the equator around 10�N and

10�S. By design of the �ltering (e.g. Fig. 1), this standard deviation is also symmetric about the

equator. It can also be seen that the n = 1 ER waves tend to be stronger in southern summer.

Concentrating on southern summer, the performance of the real-time �ltering technique for

monitoring and prediction of the n = 1 ER wave can be ascertained from Fig. 12. For a 6-day

forecast, these correlations against the diagnostically-�ltered n = 1 ER wave OLR are greater than

0.6 over four o�-equatorial regions. These regions are around 10�N and S in the far western Paci�c,

and also over the far western Indian Ocean to eastern Africa. Based on a conservative estimate of

90 degrees of freedom (dof), a correlation of 0.27 is statistically signi�cant at the 99% level, thus

this apparent skill is quite signi�cant. Compared to the correlations of the MJO in Fig. 7, however,

these correlations show that the technique for the n = 1 ER wave for a 6-day forecast is only about

as skillful as the technique is for a 15-day forecast of the MJO. Obviously, as the n = 1 ER waves

have a shorter time scale than the MJO, they cannot be predicted as far in advance, consistent

with the study of midlatitude variability of van den Dool and Saha (1990).

The other measure of skill that we use in this study, that is, the normalized rms error, is

displayed for the real-time �ltering of the n = 1 ER wave in Fig. 13. These rms errors are displayed

for the point at 10�N, 140�E, and show the errors separately for all seasons, southern summer only,

and for certain de�ned active periods of the n = 1 ER waves. These active periods were selected

based on the magnitude of the real-time �ltered �eld between day -8 and day +8, and retained 668

of the total 1826 forecasts made. For the predictions made with the technique during these active

periods, a normalized rms error of 0.8 is not reached until about the 7-day forecast. Such an error is
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far less than that obtained for a similar-lead forecast using persistence of the diagnostically-�ltered

n = 1 ER wave as a prediction (shown as the dotted line).

We also show a more conservative estimate of the skill of the technique for the n = 1 ER wave

in Fig. 14. As in Fig. 10 for the MJO, this �gure shows the correlations for the real-time �ltering

of the n = 1 ER wave when compared to an OLR �eld that contains a more complete spectrum

of variance. The OLR �eld we compare to is the 40-day high-pass OLR, which contains all the

variability of the total OLR �eld on time scales from daily up to a period around the maximum of

that of the n = 1 ER wave. Unlike the maps of Fig. 12, these maps are not purely symmetric about

the equator since the 40-day high-pass �eld is not symmetric. Correlations of the real-time �ltered

�eld against this �eld are on the order of 0.1 to 0.3 for the 6-day forecast across the western Paci�c

and central Indian Ocean regions. Also of note, however, are a few regions of negative correlation,

indicating that the real-time �ltered n = 1 ER wave component was a particularly bad forecast of

the synoptic to intraseasonal variability in these regions.

c. Kelvin wave

Maps of the standard deviation of the diagnostically-�ltered Kelvin wave �eld are displayed in

Fig. 15. As can be seen, the variance of these waves in OLR is mostly con�ned to within about 10�

latitude of the equator, and is spread more evenly with longitude than that for the MJO or n = 1

ER waves. It is this portion of the total synoptic to intraseasonal variance that we are attempting

to monitor and predict when we apply the real-time �ltering technique to the Kelvin wave region

of the wavenumber-frequency spectrum.

Given that the seasonal cycle of the Kelvin wave variance is not very pronounced, we next look

at an indicator of the skill of the technique for the Kelvin wave for all seasons (Fig. 16). As for the

other waves, this �gure shows correlations between the real-time �ltered data and the diagnostically-

�ltered data for the Kelvin wave for a number of lead and lag times. These correlations can be

seen to be maximized on the equator, and show that the technique performs best for the Kelvin

wave in the region of the central to eastern Paci�c for which the correlations are greater than 0.4

for the 4-day forecasts.

Looking at the rms errors for a point in the eastern Paci�c in Fig. 17, we see that the skill of the

technique for the Kelvin wave, like for the other waves, may also be improved by concentration on

active periods of the waves. These active periods were chosen based on times when the real-time

�ltered �eld exceeded a threshold of 1.4 times the standard deviation at the point for any lead or

lag time between �5 days. This retained 491 samples for the calculation of the rms error. For the
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Kelvin wave during active periods at this location, a normalized rms error of 0.8 is exceeded for the

3-day forecast. Thus the performance of the technique of real-time �ltering dwindles much more

quickly for the Kelvin wave than for the MJO or n = 1 ER wave.

A further view of the skill of the technique is presented in Fig. 18, which shows correlations

between the real-time �ltered Kelvin wave forecasts and a 30-day high-pass OLR �eld. These

correlations are thus an indication of how much of the total synoptic to intraseasonal variability,

excluding that of the MJO, the Kelvin wave forecasts account for at each point. Obviously, the

forecasts with the Kelvin wave only produce useful information within about 10� latitude of the

equator. Outside this latitude range the forecasts (i.e. the maps at positive lag) are mostly nega-

tively correlated with the verifying 30-day high-pass OLR �eld. For the 4-day forecasts, relatively

large areas of correlation of greater than 0.1 are seen only over the equatorial eastern Paci�c and

Africa. Given a conservative estimate of 800 dof for this calculation, these correlations are still

statistically signi�cant at the 99% level at 4 or 5 days. The range considered to be `useful' by an

operational forecaster, however, would no doubt be less, but even a useful 1- or 2-day forecast is

still better than that which is often obtained for precipitation by NWP models in these regions

(e.g., Krishnamurti et al. 1994; Janowiak 1992; next section).

d. Mixed Rossby-gravity (MRG) wave

As for the other waves, we display �gures of the MRG wave standard deviation, and those

showing the skill of the technique for monitoring and predicting the MRG wave, in Figs. 19 to 22.

Previous studies have shown that these waves tend to have maximum amplitude during Northern

fall (e.g., Hendon and Liebmann 1991), so we concentrate on this season.

The maximum OLR variance of this wave can be seen to be located near the date line at

7.5�N and 7.5�S (Fig. 19). The skill of predictions of this wave, however, when compared to the

diagnostically-�ltered �eld, are maximized somewhat to the east of this location (Fig. 20). These

correlations are greater than 0.6 for a 4-day forecast, seemingly better than that for the Kelvin

wave for the same lag forecast (Fig. 16).

As with the other modes studied in this paper, the skill of the technique for monitoring and pre-

diction is improved for the MRG wave when concentrating on active periods of this wave (Fig. 21).

These active periods were chosen in a similar way as for the other modes, a choice that can be

made in real time. The normalized rms error calculated for the 438 points retained for the active

periods does not exceed 0.8 until the 4-day forecast at the point displayed in Fig. 21. This measure

of the skill of the technique also appears better than that for the Kelvin wave (Fig. 17).
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Finally, a more conservative estimate of the skill of the technique for the MRG wave is displayed

in Fig. 22 in the form of correlations of the real-time �ltered �eld at various lags against a verifying

7-day high-pass OLR �eld. This �gure shows that the real-time monitoring of the MRG wave

locally accounts for the greatest portion of the 7-day high-pass variance in the regions of the Bay

of Bengal, and the central Paci�c to the north of the equator. Although such correlations can

be determined to be statistically signi�cant, the small amount of variance accounted for suggests

that the technique when applied to the MRG wave would provide only quite minimal operational

usefulness. Nevertheless, such forecasts of the convective activity associated with MRG waves may

still at times be better than that obtained by a modern NWP model, as demonstrated in the next

section.

6. Comparison with NWP model

To further assess the usefulness of the real-time �ltering of the modes of variability for prediction,

we compare the OLR forecasts of the real-time �ltering with forecasts obtained from the NCEP

MRF model. As longwave radiation data was not available from the model, however, we use

precipitation data from the model. This is an extreme test of the model as tropical precipitation

and clouds have been notoriously di�cult to represent and predict in such models. Of course, the

MRF model theoretically provides a prediction of all resolvable time and space scales, which may

include not only the modes of variability we are concerned with in this study, but other tropical

variability as well, including the variety of phenomena that constitute the red-noise background

spectrum (e.g. tropical depressions, cold surges, tropical cyclones). For this reason we concentrate

on two cases in which two of the modes were particularly strong and observable in the total OLR

�eld, and thus theoretically possible to observe in un�ltered data from the MRF model as well.

Note that such cases will shed the best possible light upon the usefulness of the real-time �ltering

because, as already shown, forecasts with this real-time �ltering technique perform best when the

modes are strong. The two cases are for a period of MJO events in late 1987 to early 1988 (Fig. 23),

and for a period of convectively coupled MRG waves in April-May 1985 (Fig. 24).

The �rst panel of Fig. 23 (panel (a)) shows the total OLR �eld along with contours of the

diagnostically-�ltered MJO OLR for a 5-month period. The presence of MJO events is easily

discerned in the un�ltered �eld at this time. Panel (b) shows a sequence of 5-day forecasts made

with the real-time �ltering technique that verify at the time as speci�ed. Comparing the contours

of the forecasted anomalies with the position of the contours of the verifying �elds in panel (a),

one can see that the 5-day forecasts from the real-time �ltering perform quite well at predicting
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the phase of the MJO events, although the amplitude of the predicted anomalies is about half

that of the verifying anomalies. As discussed in Section 3, the reduced amplitude of the predicted

anomalies is a known characteristic of this technique, and is also a trait of the previous empirical

MJO prediction techniques of Waliser et al. (1999) and Lo and Hendon (2000). This reduced

amplitude of predicted anomalies is further evident in panel (c) showing a sequence of the 15-

day forecasts with the technique. The predicted phase of the anomalies, however, is still quite

good, although there are some times during which the forecasts are slightly leading or lagging the

veri�cation �eld.

Panel (d) of Fig. 23 shows the MSU-derived precipitation for this same 5 month period. Noting

that this observed precipitation �eld shows very similar variability to the observed OLR (panel (a)),

we may then compare the real-time �ltering forecasts to those of precipitation of the MRF model

(panels (e) and (f)). The 5-day forecasts (panel (e)) shows some evidence of the intraseasonal MJO

variability, presumably due to the existence of such variability in the initial conditions, but the

15-day forecasts (panel(f)) show no evidence of the MJO variability at all. Instead, the signi�cant

precipitation in the model shows a tendency to accumulate near the island of Papua New Guinea.

This result is consistent with that of Hendon et al. (2000) that the MRF model is not able to

sustain the slowly-varying anomalies associated with the MJO beyond about a 7-day forecast, even

if the MJO is strongly present in the initial conditions. Knowledge of the future MJO progression

provided by the real-time �ltering is obviously of greater bene�t during this period.

Turning now to a case of strong MRG waves appearing in the OLR and precipitation �elds

of the Paci�c ITCZ (panels a and c of Fig. 24 respectively), we see that the MRG wave real-

time �ltering 2-day forecasts (panel (b)) provide a good qualitative prediction of this westward

propagating synoptic-scale variability, especially during the later stages of the wave packet. The

2-day precipitation forecasts of the MRF model (panel (d) of Fig. 24), on the other hand, did not

capture this variability with a near 5-day period. Thus again we are able to present a case, even for

relatively short range forecasts (2 days), in which the predictions provided by the real-time �ltering

of a known mode of variability are able to out-perform a modern NWP model.

7. Summary and discussion

In this study, we have presented a technique of monitoring and prediction of various modes

of coherent synoptic to intraseasonal zonally-propagating tropical variability which we apply to

observed OLR data. The modes of variability considered are the MJO, and the convectively coupled

n = 1 ER, Kelvin, and MRG waves. The technique demonstrates good predictive skill for the

17



MJO, and notable skill for the other convectively coupled equatorial modes. Compared to the

previously-developed methods of empirical prediction of such modes of variability (i.e., von Storch

and Baumhefner 1991; Waliser et al. 1999; Lo and Hendon 2000), the technique's strength is that

it is possible to apply to any mode that appears as a signi�cant spectral peak in the wavenumber-

frequency spectrum, and not just the MJO. The technique can also be applied in near real time,

and the same procedure may be used in any season. It is also conceptually simple, exploiting the

method of Fourier �ltering of the particular wavenumbers and frequencies of the modes. Further,

the technique's skill for the MJO appears to be as equally as good as that of the previously developed

methods. As with these previous methods, however, the decay of the amplitude of the forecasts is

a characteristic of the technique that a user needs to be aware of.

With a mind toward the application of the technique for operational monitoring and prediction,

the maps of correlations presented in this paper, especially those against a high-pass �ltered �eld

(Figs. 10, 14, 18, and 22), may be used as an indication of where and when the technique typically

works, and does not work. At locations where the technique shows positive correlations at positive

lags, the technique typically beats a persistence forecast (see rms errors in Figs. 9, 13, 17, and 21).

More importantly, however, is that the technique (on OLR) is also able to, at least occasionally,

beat (in terms of phase) forecasts produced by the NCEP MRF model (of precipitation). This

is particularly the case during times when the modes of variability are quite active (e.g. Figs. 23

and 24). Part of the reason for this relatively poor performance of the MRF model is its inability

to adequately simulate the modes of variability, as has been demonstrated for the MJO by Jones

et al. (2000), and as will be demonstrated for the convectively coupled equatorial waves in a future

paper. Early results show that its simulated convectively coupled equatorial waves are too high in

frequency. Another part of the reason is likely related to inadequate initial conditions, especially in

the equatorial regions that are not covered by the conventional observations (winds, temperatures,

and humidities) that are ingested into the model.

Future improvement of the empirical technique may come with an alteration of the regions

of �ltering, as presented in their current form in Fig. 1. For example, it may be found that the

long-range predictions of the MJO may be able to account for more variance by the inclusion of

wavenumber-0 in its region of �ltering. So far we have done little experimentation with the regions

of �ltering, except to discover that the technique does not provide a useful prediction (relative to

persistence) if applied to a region of the wavenumber-frequency domain that does not contain a

spectral peak (not shown). Experimentation has been performed, however, with the length of the

zero-padding and the length of the actual data input to the FFTs. Relatively little di�erence was
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found between using 5 years of actual data and 7 months of zero-padding compared to the 1 year

of actual data and 659 days of zero-padding that we eventually employed for the multiple forecasts

(see also Section 3).

Finally, while this and other empirical techniques show some promise for use by forecasters in

the tropics, eventually it is hoped that predictions by NWP models should be able to surpass them.

The current empirical schemes, for example, while generally good for predictions of the phase of

the wave modes, su�er from problems in predicting the amplitude. As a consequence, predictions

of extratropical teleconnections are even more problematic. NWP models may be able to improve

this aspect of the predictions. After-all, an empirical scheme cannot match the ability of NWP

models to take into account the e�ects of the full three-dimensional basic state (see also Meehl

et al. 2000). Improvement of the NWP models ability to simulate the various modes of tropical

variability is paramount for this future goal.

Acknowledgements

We thank Katherine Harris, George Kiladis, Roland Madden and Jerry Meehl for reading and

providing bene�cial comments on various versions of this manuscript. The revised manuscript also

bene�ted from stimulating conversations with Harry Hendon, the comments of several anonymous

reviewers, and some words of wisdom from the editor, Dave Raymond. Thanks also to Joan Hart

of NOAA CDC for her assistance on the automation of the code for the daily monitoring, to John

Janowiak of NCEP for providing the OLR data daily-updates, and to Jae Schemm for allowing our

use of the NCEP DERF precipitation forecasts. All other data used in this study were obtained from

NOAA CDC through their data archives (http://www.cdc.noaa.gov), and we thank the Climate

and Global Dynamics Division of NCAR for the use of their computers.

19



REFERENCES

Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review.

J. Climate, 2, 1229{1238.

Barnett, T., N. Graham, M. Cane, S. Zebiak, S. Dolan, J. O'Brien, and D. Legler, 1988: On the

prediction of the El Ni~no of 1986{1987. Science, 241, 192{196.

Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction as-

sociated with the 30{60 day oscillation and its impact on medium and extended range prediction.

J. Atmos. Sci., 47, 2177{2199.

Hendon, H. H., and B. Liebmann, 1991: The structure and annual variation of antisymmetric


uctuations of tropical convection and their association with Rossby-gravity waves. J. Atmos.

Sci., 48, 2127{2140.

|||, |||, M. Newman, and J. D. Glick, 2000: Medium Range forecast errors associated with

active episodes of the Madden-Julian oscillation. Mon. Wea. Rev., 128, 69{86.

Janowiak, J. E., 1992: Tropical rainfall: A comparison of satellite-derived rainfall estimates with

model precipitation forecasts, climatologies, and observations. Mon. Wea. Rev., 120, 448{462.

Jones, C., D. E. Waliser, J.-K. E. Schemm, and K.-M. Lau, 2000: Prediction skill of the Madden

and Julian oscillation in dynamical extended range forecasts. Climate Dyn., 16, 273{289.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha,

G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C.

Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, 1996: The

NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437{471.

Krishnamurti, T. N., G. D. Rohaly, and H. S. Bedi, 1994: On the improvement of precipitation

forecast skill from physical initialization. Tellus, 46A, 598{614.

Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave

radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275{1277.

Lo, F., and H. H. Hendon, 2000: Empirical extended-range prediction of the Madden-Julian oscil-

lation. Mon. Wea. Rev., 128, 2528{2543.

20



Lorenz, E. N., 1969: The predictability of a 
ow which possesses many scales of motion. Tellus,

21, 289{307.

|||, 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505{

513.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in

the tropical Paci�c. J. Atmos. Sci., 28, 702{708.

|||, and |||, 1994: Observations of the 40-50-day tropical oscillation - A review. Mon. Wea.

Rev., 122, 814{837.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan, 44, 25{43.

Meehl, G. A., G. N. Kiladis, K. M. Weickmann, M. Wheeler, D. S. Gutzler, and G. P. Compo, 1996:

Modulation of equatorial subseasonal convective episodes by tropical-extratropical interaction in

the Indian and Paci�c Ocean regions. J. Geophys. Res., 101, 15,033{15,049.

|||, R. Lukas, G. N. Kiladis, K. M. Weickmann, A. J. Matthews, and M. Wheeler, 2000: Time

and space scale interactions in the climate system: Implications for climate variability and pre-

dictability. Climate Dyn., accepted.

Palmer, T. N., 1993: Extended range atmospheric prediction and the Lorenz model. Bull. Amer.

Meteor. Soc., 74, 49{66.

Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behaviour of clouds, temperature and motion

in the Tropics. J. Atmos. Sci., 51, 2207{2224.

Schemm, J. E., H. M. van den Dool, and S. Saha, 1996: A multi year DERF experiment at NCEP.

Preprints, 11th Conference on Numerical Weather Prediction, Norfolk, VA. Amer. Meteor. Soc..

47{49.

Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull.

Amer. Meteor. Soc., 50, 286{311.

Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979{1991 and compar-

isons to other climatologies. J. Climate, 6, 1301{1326.

Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I:

Spectral features of the cloud disturbances. J. Met. Soc. Japan, 72, 433{448.

21



Tiedtke, M., W. A. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The in
uence

of physical parameterization on the mean structure of forecasts and analyses. Quart. J. Roy.

Meteor. Soc., 114, 639{664.

van den Dool, H. M., 1994: Long-range weather forecasts through numerical and empirical methods.

Dyn. Atmos. Ocean, 20, 247{270.

|||, and S. Saha, 1990: Frequency dependence in forecast skill. Mon. Wea. Rev., 118, 128{137.

von Storch, H., and D. P. Baumhefner, 1991: Principal Oscillation Pattern analysis of the tropical

30{60 day oscillation. Part II: The prediction of equatorial velocity potential and its skill. Climate

Dyn., 6, 1{12.

Waliser, D. E., C. Jones, J.-K. E. Schemm, and N. E. Graham, 1999: A statistical extended-range

tropical forecast model based on the slow evolution of the Madden-Julian oscillation. J. Climate,

12, 1918{1939.

Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds

and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374{399.

|||, |||, and P. J. Webster, 2000: Large-scale dynamical �elds associated with convectively

coupled equatorial waves. J. Atmos. Sci., 57, 613{640.

22



List of Figures

1 Regions of wavenumber-frequency �ltering (thick boxes) used to obtain the time-

longitude information of the modes of coherent tropical variability for the (a) anti-

symmetric component and (b) symmetric component of the �eld with respect to the

equator. These regions overlie the spectral peaks (the contours and shading) of the

convectively coupled waves as identi�ed in the analysis of many years (1979-1996) of

outgoing longwave radiation (OLR) data in WK99. The thin lines are the various

equatorial wave dispersion curves for the equivalent depths of h = 8; 12; 25; 50 and

90 m. For more details, see Section 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Schematic of the procedure of real-time �ltering for monitoring and prediction, as

applied to a time series with an MJO-like signal. . . . . . . . . . . . . . . . . . . . . 26

3 (a) Time-longitude plot of the total OLR (with R21 spatial truncation, and a 1-2-1

�lter applied in time) and �ltered OLR anomalies averaged between 10�S and 5�N

during late 1996 to early 1997. Shading is for the total OLR, and contours are for

the diagnostically-�ltered anomalies of the MJO and n = 1 equatorial Rossby (ER)

wave. Solid contours represent negative OLR anomalies, while dashed contours are

for positive anomalies, with the contour interval for both wave �ltered bands being 10

W m�2, and the zero contour omitted. (b) Same as (a), except that the �ltering was

performed with the last day of data being on December 5th, 1996. After December

5th, when the real-time �ltered anomalies are continued into the future as a forecast,

the contour interval is halved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 (a) Same as Fig. 3a, except for the 1997/1998 period, and the MJO and Kelvin

wave �ltering are displayed. The range of longitudes has also been shifted by 40�.

Contour interval for the MJO �ltered anomalies is 10 W m�2, and for the Kelvin

wave anomalies is 15 W m�2. Positive contours of the Kelvin wave anomalies are

omitted. (b) Same as Fig. 3b, except for the real-time �ltering of the 5th January,

1998, and only the MJO and Kelvin wave anomalies are displayed. . . . . . . . . . . 28

5 (a) Same as Fig. 3a, except for the 1998/1999 period. (b) Same as Fig. 3b, except

for the real-time �ltering of the 18th January, 1999. . . . . . . . . . . . . . . . . . . 29

6 Standard deviation of the diagnostically-�ltered MJO OLR for the 10-year period of

1985 to 1994, separately for southern summer (above) and Northern summer (below). 30

23



7 Correlations of the MJO real-time �ltered OLR with the validating diagnostically-

�ltered MJO OLR for southern summer (upper panels) and Northern summer (lower

panels), for a number of lead times in days. Lead time is with respect to the end-

point of the data input into the real-time �ltering procedure as indicated in the lower

left of each panel. All 10 years of the sample forecasts were used. . . . . . . . . . . 31

8 Correlations of the MJO real-time �ltered OLR with the validating diagnostically-

�ltered MJO OLR at the point 10�S, 130�E as a function of lead time. The correla-

tions were calculated using all seasons, southern summer only, and \active" periods

only of the 10 years of sample forecasts, as labeled. Additionally shown are corre-

lations for a persistence forecast with the diagnostically-�ltered MJO OLR at this

point, equivalent to its autocorrelation function at this point. Note that this \per-

sistence forecast" can not be performed in real time. . . . . . . . . . . . . . . . . . . 32

9 As in Fig. 8, except for the normalized rms error between the real-time �ltered MJO

OLR and the diagnostically-�ltered MJO OLR at the point 10�S, 130�E. Also shown

is the normalized rms error for a persistence (of the diagnostically-�ltered �eld)

forecast. Note that this \persistence forecast" can not be performed in real time. . 33

10 As in Fig. 7, except for the correlation between the real-time �ltered MJO OLR and

the corresponding 96-day high-pass OLR anomalies. . . . . . . . . . . . . . . . . . . 34

11 As in Fig. 6, except for the n = 1 ER wave. . . . . . . . . . . . . . . . . . . . . . . . 35

12 As in Fig. 7, except for the correlations of the n = 1 ER wave real-time �ltered OLR

for southern summer only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

13 As in Fig. 9, except for the n = 1 ER wave OLR real-time �ltering at the point 10�N,

140�E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

14 As in Fig. 10, except for the correlations of the n = 1 ER wave real-time �ltered

OLR against the corresponding 40-day high-pass OLR for southern summer only. . 37

15 As in Fig. 6, except for the Kelvin wave. . . . . . . . . . . . . . . . . . . . . . . . . 38

16 As in Fig. 7, except for the correlations of the Kelvin wave real-time �ltered OLR

for all seasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

17 As in Fig. 9, except for the Kelvin wave OLR real-time �ltering at the point 0�N,

95�W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

18 As in Fig. 10, except for the correlations of the Kelvin wave real-time �ltered OLR

against the corresponding 30-day high-pass OLR for all seasons. . . . . . . . . . . . 40

24



19 As in Fig. 6, except for the MRG wave, and for the season of Northern fall (de�ned

as August to January) only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

20 As in Fig. 7, except for the correlations of the MRG wave real-time �ltered OLR

for Northern fall only. The correlation is not shown at the equator as the de�ned

antisymmetric OLR �eld of the MRG waves is zero there. . . . . . . . . . . . . . . . 41

21 As in Fig. 9, except for the MRG wave OLR real-time �ltering at the point 7.5�S,

160�W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

22 As in Fig. 10, except for the correlations of the MRG wave real-time �ltered OLR

against the corresponding 7-day high-pass OLR for Northern fall only. . . . . . . . 43

23 (a) As in Fig. 3a except for the period, latitudes, and longitudes as speci�ed. Contour

interval for the diagnostically-�ltered MJO OLR anomalies is 10 W m�2. (b) Time-

longitude plot of the 5-day real-time �ltering forecasts of the MJO OLR that verify

on the days as speci�ed. (c) As in (b) except for the 15-day forecasts of the MJO

OLR. Contour interval for (b) and (c) is as speci�ed with positive contours dashed. 44

23 (Continued) (d) Time-longitude plot of the verifying MSU precipitation. Missing

data is left blank and land areas hatched. Spatial and temporal smoothing applied

to mimic R21 truncation and temporal smoothing of the OLR in (a). (e) as in (b)

except for the 5-day forecasts of precipitation from the NCEP model in mm day�1.

Spatial smoothing applied to match (a). (f) as in (e) except for the 15-day forecasts. 45

24 (a) As in Fig. 23a except for the period, latitudes and longitudes as speci�ed, show-

ing the MRG wave diagnostic �ltering, and without a 1-2-1 �lter applied in time.

Contour interval for the MRG wave �ltering is 7 W m�2. (b) Time-longitude plot

of the 2-day real-time �ltering forecasts of the MRG wave OLR that verify on the

days as speci�ed. Contour interval is as speci�ed. (c) Time-longitude plot of the

verifying MSU precipitation. Missing data is left blank and land areas hatched. Spa-

tial smoothing applied to mimic that of the OLR in (a). (d) as in (b) except for

the 2-day forecasts of precipitation from the NCEP model in mm day�1, and spatial

smoothing applied to match (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

25



Fig. 1: Regions of wavenumber-frequency �ltering (thick boxes) used to obtain the time-longitude information

of the modes of coherent tropical variability for the (a) antisymmetric component and (b) symmetric component of

the �eld with respect to the equator. These regions overlie the spectral peaks (the contours and shading) of the

convectively coupled waves as identi�ed in the analysis of many years (1979-1996) of outgoing longwave radiation

(OLR) data in WK99. The thin lines are the various equatorial wave dispersion curves for the equivalent depths of

h = 8; 12; 25; 50 and 90 m. For more details, see Section 3.

Fig. 2: Schematic of the procedure of real-time �ltering for monitoring and prediction, as applied to a time

series with an MJO-like signal.
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Fig. 3: (a) Time-longitude plot of the total OLR (with R21 spatial truncation, and a 1-2-1 �lter applied in

time) and �ltered OLR anomalies averaged between 10�S and 5�N during late 1996 to early 1997. Shading is for the

total OLR, and contours are for the diagnostically-�ltered anomalies of the MJO and n = 1 equatorial Rossby (ER)

wave. Solid contours represent negative OLR anomalies, while dashed contours are for positive anomalies, with the

contour interval for both wave �ltered bands being 10 W m�2, and the zero contour omitted. (b) Same as (a), except

that the �ltering was performed with the last day of data being on December 5th, 1996. After December 5th, when

the real-time �ltered anomalies are continued into the future as a forecast, the contour interval is halved.
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Fig. 4: (a) Same as Fig. 3a, except for the 1997/1998 period, and the MJO and Kelvin wave �ltering are

displayed. The range of longitudes has also been shifted by 40�. Contour interval for the MJO �ltered anomalies

is 10 W m�2, and for the Kelvin wave anomalies is 15 W m�2. Positive contours of the Kelvin wave anomalies are

omitted. (b) Same as Fig. 3b, except for the real-time �ltering of the 5th January, 1998, and only the MJO and

Kelvin wave anomalies are displayed.
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Fig. 5: (a) Same as Fig. 3a, except for the 1998/1999 period. (b) Same as Fig. 3b, except for the real-time

�ltering of the 18th January, 1999.
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Fig. 6: Standard deviation of the diagnostically-�ltered MJO OLR for the 10-year period of 1985 to 1994,

separately for southern summer (above) and Northern summer (below).
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Fig. 7: Correlations of the MJO real-time �ltered OLR with the validating diagnostically-�ltered MJO OLR

for southern summer (upper panels) and Northern summer (lower panels), for a number of lead times in days. Lead

time is with respect to the end-point of the data input into the real-time �ltering procedure as indicated in the lower

left of each panel. All 10 years of the sample forecasts were used.
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Fig. 8: Correlations of the MJO real-time �ltered OLR with the validating diagnostically-�ltered MJO OLR at

the point 10�S, 130�E as a function of lead time. The correlations were calculated using all seasons, southern summer

only, and \active" periods only of the 10 years of sample forecasts, as labeled. Additionally shown are correlations

for a persistence forecast with the diagnostically-�ltered MJO OLR at this point, equivalent to its autocorrelation

function at this point. Note that this \persistence forecast" can not be performed in real time.
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Fig. 9: As in Fig. 8, except for the normalized rms error between the real-time �ltered MJO OLR and the

diagnostically-�ltered MJO OLR at the point 10�S, 130�E. Also shown is the normalized rms error for a persistence

(of the diagnostically-�ltered �eld) forecast. Note that this \persistence forecast" can not be performed in real time.
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Fig. 10: As in Fig. 7, except for the correlation between the real-time �ltered MJO OLR and the corresponding

96-day high-pass OLR anomalies.
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Fig. 11: As in Fig. 6, except for the n = 1 ER wave.

Fig. 12: As in Fig. 7, except for the correlations of the n = 1 ER wave real-time �ltered OLR for southern

summer only.
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Fig. 13: As in Fig. 9, except for the n = 1 ER wave OLR real-time �ltering at the point 10�N, 140�E.
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Fig. 14: As in Fig. 10, except for the correlations of the n = 1 ER wave real-time �ltered OLR against the

corresponding 40-day high-pass OLR for southern summer only.
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Fig. 15: As in Fig. 6, except for the Kelvin wave.

Fig. 16: As in Fig. 7, except for the correlations of the Kelvin wave real-time �ltered OLR for all seasons.
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Fig. 17: As in Fig. 9, except for the Kelvin wave OLR real-time �ltering at the point 0�N, 95�W.
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Fig. 18: As in Fig. 10, except for the correlations of the Kelvin wave real-time �ltered OLR against the

corresponding 30-day high-pass OLR for all seasons.
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Fig. 19: As in Fig. 6, except for the MRG wave, and for the season of Northern fall (de�ned as August to

January) only.

Fig. 20: As in Fig. 7, except for the correlations of the MRG wave real-time �ltered OLR for Northern fall only.

The correlation is not shown at the equator as the de�ned antisymmetric OLR �eld of the MRG waves is zero there.
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Fig. 21: As in Fig. 9, except for the MRG wave OLR real-time �ltering at the point 7.5�S, 160�W.
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Fig. 22: As in Fig. 10, except for the correlations of the MRG wave real-time �ltered OLR against the corre-

sponding 7-day high-pass OLR for Northern fall only.
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Fig. 23: (a) As in Fig. 3a except for the period, latitudes, and longitudes as speci�ed. Contour interval for the

diagnostically-�ltered MJO OLR anomalies is 10 W m�2. (b) Time-longitude plot of the 5-day real-time �ltering

forecasts of the MJO OLR that verify on the days as speci�ed. (c) As in (b) except for the 15-day forecasts of the

MJO OLR. Contour interval for (b) and (c) is as speci�ed with positive contours dashed.
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Fig. 23: (Continued) (d) Time-longitude plot of the verifying MSU precipitation. Missing data is left blank

and land areas hatched. Spatial and temporal smoothing applied to mimic R21 truncation and temporal smoothing

of the OLR in (a). (e) as in (b) except for the 5-day forecasts of precipitation from the NCEP model in mm day�1.

Spatial smoothing applied to match (a). (f) as in (e) except for the 15-day forecasts.
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Fig. 24: (a) As in Fig. 23a except for the period, latitudes and longitudes as speci�ed, showing the MRG wave

diagnostic �ltering, and without a 1-2-1 �lter applied in time. Contour interval for the MRG wave �ltering is 7 W

m�2. (b) Time-longitude plot of the 2-day real-time �ltering forecasts of the MRG wave OLR that verify on the days

as speci�ed. Contour interval is as speci�ed. (c) Time-longitude plot of the verifying MSU precipitation. Missing

data is left blank and land areas hatched. Spatial smoothing applied to mimic that of the OLR in (a). (d) as in (b)

except for the 2-day forecasts of precipitation from the NCEP model in mm day�1, and spatial smoothing applied

to match (a).
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