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INTRODUCTION

One key constraint for large scale, high-throughput DNA sequencing is cost. 
While there are many promising emerging sequencing technologies, Sanger 
sequencing and capillary electrophoresis remain the work horses of major 
sequencing centers. The sequencing process involves many steps with 
different templates, reagents, instruments, and operators and it is not stable. 
To minimize the cost and increase throughput, it is necessary to quickly find 
failures and their causes when they occur. Given the complexity of this 
process, it is not uncommon that human operators spend hours even days to 
find and diagnose failures. 

This poster presents a statistical monitoring and diagnosis system for high-
throughput DNA sequencing. Statistical techniques are used to model the 
sequencing process. Various information is integrated to make a thorough 
decision. Visualization is used to help user better understand the process. This 
system is currently being used in the DOE Joint Genome Institute, and it 
reduces the time required for detecting and diagnosing problems from hours to 
minutes.

METHODS
In our process, DNA sequencing is performed in a plastic plate which has 384 
wells, where each well contains a unique clone.  All clones in a plate 
nominally experience identical processing. A primary quality metric of 
sequencing is the high quality read length (Q20 read length) for each plate or 
clone, which measures the total number of bases having error probabilities 
less than 1 in 100. There are two main tasks in monitoring and diagnosis. The 
first is to classify whether a sequenced plate is a failure or not, and the second 
is to classify whether a capillary is broken. Then, failed plates or wells can be 
aggregated to find the source of the failures using other information.

For simplicity, it is assumed that for clones coming from the same library, 
each plate’s Q20 read length follows a Gaussian distribution if there are no 
sequencing failures. Therefore, plates with low Q20 read length are most 
likely caused by sequencing process errors, e.g. machine malfunction. If the 
parameters (mean and standard deviation) of the Gaussian distribution are 
known, a plate can be classified as a failure or not with specified confidence. 
The sample mean and standard deviation are usually used as the estimators for 
the mean and standard deviation. However, the distribution of Q20 read length 
for a plate is typically shaped like figure 1, a small tail near 0 and a dominant 
bell in the middle. It is reasonable to assume that the lower performing plates 
(near tail) are caused by production failure and the dominant bell shape is the 
inherent property of the library. Thus it is more accurate to estimate mean and 
standard deviation using only good plates. This can be achieved by 
recursively using a Gaussian distribution. First, the sample mean and variance 
are calculated; then any samples with Q20 read length one standard deviation 
lower than the mean are removed, and the remaining samples are used to 
calculate sample mean and variance, which are the final estimators for mean 
and variance. 

The Q20 read length of a clone is also assumed to follow a Gaussian 
distribution. Any well is classified as bad if this well has a Q20 read length 3 
standard deviation less than the sample mean. The probability that a sample 
has a Q20 read length 3 standard deviation less than the mean is 0.0014, and 
the probability that at least one well has a Q20 3 standard deviation less than 
the mean for a 384 plate is 0.40. Thus, any well with a Q20 read length 3 
standard deviation less than the mean is very likely caused by sequencing 
failure such as clogged tips and broken capillaries. Another clue is that there 
are four wells for each capillary on the ABI sequencing machines we use. 
Thus, when the 3 or 4 wells corresponding to a capillary are under 
performing, it is almost certain that the capillary is broken (ABI216 Well 
Difference Map).

Figure 1. Density plot of Q20 of a typical library. The red line (“First 
cut”) is one standard deviation lower from the sample mean using all
the samples; the green line (“Second cut”) is two standard deviation 
lower from the sample mean using only samples with Q20 bigger 
than the first cut 

WEB REPORT

The system generates a sequencing report everyday for operators and the tool can also be used for query. The report 
consists of the three parts. First, it summarizes the sequencing information of large libraries, and reports organism, 
vector, number of runs, average Q20 read length, average fail rate, and average signal intensity. Next it presents the 
information on low performance sequencers, such as number of runs, number of bad runs, average Q20 read length, 
average fail rate, number of broken capillaries, number of runs for the current array, and average signal intensity. 
The overall array pattern is also presented to aid in quickly finding array patterns, if there any. The relevant detail 
information is linked to summaries, making it easy to drill down if desired.  Sequencing data is also available for 
download to perform user specific analysis. 
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