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2. Assume any liabilities with respect to the use of, or damages resulting from the use of, any information,
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PUBLIC ABSTRACT

ALSTOM Power Inc.’s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB
Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL),
and the Ohio Coa Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility
and economics of alternate CO, capture and sequestration technol ogies applied to an existing US coal -fired electric
generation power plant.

The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions
reduction. If the US decidesto reduce CO, emissions, action would need to be taken to address existing power plants.
Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure
and some form of CO, capture for use or disposal may aso be required. The output of this CO, capture study will
enhance the public’s understanding of control options and influence decisions and actions by government, regul ators,
and power plant ownersin considering the costs of reducing greenhouse gas CO, emissions.

The total work breakdown structure is encompassed within three mgjor reports, namely: (1) Literature Survey, (2)
AEP s Conesville Unit #5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the
literature survey results wasissued earlier by Bozzuto, et a. (2000). Reports entitled “ AEP s Conesville Unit #5
Retrofit Study” and “Bench-Scale Testing and CFD Evaluation” are provided as companion volumes, denoted
Volumes| and I, respectively, of the final report. Thework performed, results obtained, and conclusions and
recommendations derived therefrom are summarized bel ow.

Volumel

The Volume | report discusses three retrofit technology concepts, which were evaluated in conjunction with AEP's
Conesville Unit #5, namely:

Concept A: Coa combustion in air, followed by CO, separation with Kerr-McGee/ABB Lummus Globa’'s
commercial MEA-based absorption/stripping process

Concept B: Coa combustion with O, firing and flue gas recycle (oxy-fuel firing)

Concept C: Coa Combustion in air with oxygen remova and CO, separation by amixture of primary and
tertiary amines, i.e., monoethanolamine (MEA)/methyldiethanolamine (MDEA).

Each of these technol ogies was eva uated against a basgline case, the existing design without CO, capture, from the
standpoints of performance, impacts on power generating cost, and CO, emissions. AEP’'s450 MW Conesville Unit
No. 5, located in Conesville, Ohio, was used for the power plant case study. All technical performance and cost
results associated with the available options were evaluated in a comparative manner.

Major conclusions:

No major technical barriers exist for retrofitting AEP' s Conesville Unit #5 to capture CO, for any of the three
concepts considered under this study.

Concept B (oxygen firing with flue gas recycle) appears clearly to be the best alternative of the three concepts
studied from both an efficiency and incremental COE viewpoint for systems designed for very high CO, capture
(i.e.>90%). If lower CO, capture fractions are considered, it appears that Concept A would likely be the best
aternative for capture fractions below some as yet undetermined value. Concept C would also improve
considerably with lower capture fractions.

This study has confirmed two important issues related to firing coa in a CO,-rich flue gas/ O, mixture:

» Maodificationsto the existing steam generator unit pressure arts are not required, and as such will
also allow the unit to continue to operate in the conventional air- fired mode.

» CO,-rich flue gas can be cleaned and compressed with arelatively simple system to provide high
purity CO, for usage or sequestration.

ALSTOM Power Inc. | | | June 30, 2001
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Energy requirements and power consumption are high for al three concepts, resulting in significant decreasesin
overall power plant efficiencies (HHV basis), ranging from efficiencies of 20.5 to 22.5%, as compared to 35.0%
for the Base case (air firing without CO, capture), which is equivalent to an energy penalty ranging from 36% to
41%. Thatis, the net power plant output was reduced to 77% - 59%.

The MEA/MDEA mixture of Concept C requires about 28% less energy per pound of CO, captured to regenerate
the solvent as compared to the MEA used in Concept A.

Specific investment costs are high, ranging from about 800 t01800 $/kW and from 1000 to 2200 $/kW,
corresponding to scenarios with and without replacement power, respectively.

All cases studied indicate significant increases to the COE asaresult of CO, capture. Theincremental COE as
compared to the Base case (air firing without CO, capture) ranges from 3.4 to 8.4 ¢/kwh. Similarly CO,
mitigation costs range from about 42-98 $/ton of CO, avoided for the range of cases studied.

Specific carbon dioxide emissions were reduced from about 2 Ibm/kWh for the Base case to 0.13 — 0.27 lbm/kWh
for the study cases. Recovery or capture of CO, ranged from 91 to 96%.

Nominally, 5-8 acres of new equipment space is needed for Unit #5 a one on the existing 200-acre power plant
site, which accommodates atotal of 6 unitswith atotal power generating capacity of 2,080 MW.

Major recommendations:

A senditivity study, for Concepts A and C, showing the impact of reducing CO, capture percentage on plant
efficiency, investment cost, emissions, and cost of electricity. The current work utilized 90% CO, capture
(nominal). The sensitivity study would investigate nominal CO, capture percentages of 70% and 50%.

Detailed analysis of the existing steam turbine for Concept A: In Concept A about 79% of the steam leaving the
intermediate-pressure (1P) turbineis extracted from the IP/LP crossover pipe for solvent regeneration. The
capability of the existing low-pressure (L P) turbine to operate under these conditions of very low steam flow 0
ver the load range should be investigated in detail, preferably by the origina equipment manufacturer (OEM).

Optimization of the amine system reboiler steam pressure for Concepts A and C.

Concept B detailed boiler system analysis: A startup/shutdown procedure and system design, particularly the
transition from air to oxygen firing (including transient conditions) should be developed. Detailed metal
temperature analysis for all heat exchanger sections, including operation at part loads should be analyzed. This
should aso include furnace wall metal temperatures and analysis of the circulation system. The existing fans
should be checked (preferably by the OEM’ s) for operation under the new conditions. The feasibility of
operating the boiler under a dight positive pressure to eliminate air infiltration should a so be investigated.

Investigation of Improved oxygen production systems for Concept B, in line with the membrane-based air
separation research being conducted by various research groups (e.g., Praxair, Air Products, Norsk Hydro). Also
optimization of an integrated boiler and oxygen production system.

Measurement of furnace heat transfer in CO,/O, environmentsin aproof of concept boiler simulation facility.

Improved solvents, which require lower regeneration energy requirements and/or can be regenerated at alower
temperature level, similar to MHI’ s KS1 system, but for coal-firing application.

Hybrid process using oxygen-enriched combustion and amine based CO, absorption, to accrue, smultaneoudly,
both CO, capture and drastic NOx emissions reduction.

Investigation of anew novel high risk CO, capture process that would reduce efficiency penalty and retrofit
investment cost. Thiswould likely not utilize the existing boiler.

ALSTOM Power Inc. | Vv June 30, 2001
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Volumell

The bench-scale testing consisted primarily of drop-tube (DTFS-1) and thermo-gravimetric analyses (TGA). Three
caseswereinvestigated: (1) an air-fired case (Base case); (2) acasein which the N, was replaced by an equal mass of
CO, (Constant Mass case); and (3) a case in which the N, volume was replaced by an equal volume of CO, (Congtant
Volume case). The Constant Mass case represents the appropriate retrofit scenario in acommercia pulverized coa
firing application, albeit without flue gas recycling.

Major conclusions:

(a) Based on TGA results
Both the Conesville Unit #5 and Pittsburgh Seam #8 coals have, for air (Base case) and O,/CO, environments
(Constant Mass/V olume cases), similar burning characteristics, as they both go to completion within the same
temperature range (550-575 oC). Burning either of the coalsin air or any of the O,/CO, mixture ratios used here
would produce virtualy identical results; and (2) both coals have similar reactivity characteristics.

(b) Based on DTFS-1 results
Residence time, as expected, has a significant impact on the overall coal combustion efficiency, and hence, on the
unburned carbon emission in the fly ash for both coals under consideration. That is, while the combustion
efficiency for both coasis only about 80% (dry-ash-free coa basis) at 0.2 sec., it is more than 98% at greater
than 0.5 sec. Correspondingly, unburned carbon emissions range from about 65% to about 2% (dry fly ash basis).

Theimpact of reaction medium isalso significant. While the overall combustion efficiencies do not seem to
exhibit significant differences between the baseline and Constant Mass firing, the more sensitive parameter,
unburned carbon (UBC) in the fly ash, on the other hand, clearly shows better performance for the Constant Mass
case. Thatis, the UBC at the furnace outlet was about afactor of 4.5 lower for the Constant Mass case (~2% vs.
9%). Thisisbelieved to be dueto higher reactant gas temperature, and yet longer residence (0.77 sec. vs. 0.57
sec.). It appears, from the shape of the UBC profiles, that, if given enough residence time, these differences
would narrow down considerably, implying that the ultimate performance in both mediums would be similar.

The coal sample from Conesville Unit #5 appearsto perform better than the sample from Pittsburgh seam #8 coa
(eg., 9% vs. 12.5% UBC for theair firing case). However, based on the shape of the UBC profiles, it can be seen
that if given additional residence time, they would both be expected to perform similarly.

NOx emission from oxy-fue firing is about afactor of 3 (0.73 vs. 2.25 Ib/MMBtu) lower than that of the Base
Case. Correspondingly, sulfur dioxideislower by about 19% (3.6 vs. 4.3 Ib/MMBtu), and CO issignificantly
lower (0.09 Ib/MMBtu vs. a negligible amount).

(c) Based on CFD results
The baseline case exhibits higher carbon-in-ash (by 1.6 percentage points), higher outlet NOx emissions (by a
factor of 2), and higher outlet CO (by afactor of 2) than the Concept-B case. These same computational trends
are dso qualitatively exhibited by the bench-scale testing.

The baseline case exhibits adlightly higher peak gas temperature (maximum difference of about 200 °F), and a
correspondingly higher average (cross-sectional) gas temperature (difference of 90 °F at the HFOT), than that of
the Concept-B case.

The net wall absorption in the furnace region for the baseline caseislarger (by less than 1%) than that of the
Concept-B case. However, A significant variation in both calculated and experimental irradiation to the wall
between baseline and oxy-firing scenarios was aso found in the literature (e.g., +6 to —18%). Differences may be
partially attributed to the sensitivity of theirradiation and local emissivitiesto the aerodynamic and flame
patterns, which are, in turn, afunction of the furnace and firing system. It is suggested that radiatively absorbing
gas species can either enhance or inhibit the irradiation in the vicinity of thewall, depending upon their loca
temperature and their relative spatial placement.

ALSTOM Power Inc. Vv June 30, 2001
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Major recommendations:

Carry out a systematic coal fundamentals study concerning this field of endeavor. This study should be geared
toward the creation of a database of information depicting the impact of coal nature (using coals of various rank
coming from both domestic and international sources) when fired in an oxy-fuel environment on:

» Coal devolatilization and char oxidation kinetics, and unburned carbon emissionsin the fly ash

» Acidrain-related gaseous (NOx, SO,, and CO) emissions

» Airtoxics, particularly, mercury (Hg), volatile organic compounds (VOC's), and particulate emissions.

Derive furnace heat transfer data from natural gas and coal firing in an oxy-fired pilot-scale furnace, which
simulates the temperature/time history of aboiler. Usefirst the datafrom natural gasfiring to validate the CFD
code, without the complication of burning particlestransiting the boiler. Apply the experiencelearned from
modeling a natural gasfired boiler to model the coal-fired boiler.

ALSTOM Power Inc. V| June 30, 2001
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