

PHENIX Beam Use Proposal

W.A. Zajc for the PHENIX Collaboration

(this talk available at http://www.phenix.bnl.gov/phenix/WWW/publish/zajc/sp/presentations/RBUP04/)

28-5

Brazil	University of São Paulo, São Paulo DLI	IV
China	Academia Sinica, Taipei, Taiwan	IA
	China Institute of Atomic Energy, Beijing	
	Peking University, Beijing	
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
	Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
	SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest	
	Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	
	Kyoto University, Kyoto	12
	Nagasaki Institute of Applied Science, Nagasaki	
	RIKEN, Institute for Physical and Chemical Research, wako	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	RIKEN-BNL Research Center, Upton, NY	USA
	Tokyo Institute of Technology, Tokyo	
	University of Teukuba, Teukuba	
	Waseda University Tokyo	
S Korea	Cyclotron Application Laboratory KAERL Seoul	
U. Norca	Kangnung National University Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat, University, Seou	ıl
	Yonsei University, Seoul	
Russia	Institute of High Energy Physics, Protovino	
	Joint Institute for Nuclear Research, Dubna	
	Kurchatov Institute, Moscow	
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersbu	urg
	St. Petersburg State Technical University, St. Petersburg	-
Sweden	Lund University, Lund	

12 Countries; 57 Institutions; 460 Participants*

Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN - C I.- L . 0000

PH^{*}ENIX

Run-1 to Run-4 Capsule History

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au	200	24 µb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
04	2003/2004	Au+Au	200	241 µ	PHENIX	Successes (to	o date)
Run-1	PHENIX Detector - First Year	Physics Run Installed Physics Run Active Physics RUCH Physic	PHENI Pose Pose Vest	X Detector - Second P ^{PC2} Gettal TEG BB MVD PC1 Beam View Central Magnet MTD FC2 Central Magnet FC2 Central Magnet FC2 CENTRA CENT	phys phys arn : N illibarn: I emperate icrobarn icrobarn: anobarn: cobarn:	ics at ~all sca lultiplicity (Entro Flavor yields ure) : Charm (transp Jets (density) J/Psi (deconfine	ement ?)

Run-1 Publications

- "Centrality dependence of charged particle multiplicity in Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 86 (2001) 3500</u>
- "Measurement of the midrapidity transverse energy distribution from $\sqrt{s_{NN}}$ = 130 GeV Au-Au collisions at RHIC", PRL 87 (2001) 052301
- "Suppression of hadrons with large transverse momentum in central Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 88, 022301 (2002)</u>.
- "Centrality dependence of $\pi^{+/-}$, K^{+/-}, p and pbar production at RHIC," <u>PRL 88, 242301 (2002).</u>
- "Transverse mass dependence of the two-pion correlation for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", PRL 88, 192302 (2002)
- "Measurement of single electrons and implications for charm production in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 88, 192303 (2002)</u>
- "Net Charge Fluctuations in Au+Au Interactions at √s_{NN} = 130 GeV," PRL. 89, 082301 (2002)
- "Event-by event fluctuations in Mean p_T and mean e_T in sqrt(s_NN) = 130GeV Au+Au Collisions" <u>Phys. Rev. C66, 024901 (2002)</u>
- "Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 89, 212301 (2002)</u>
- "Measurement of the lambda and lambda^bar particles in Au+Au Collisions at $\sqrt{s_{NN}}$ =130 GeV", <u>PRL 89, 092302 (2002)</u>
- "Centrality Dependence of the High pT Charged Hadron Suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>Phys. Lett. B561, 82 (2003)</u>
- "Single Identified Hadron Spectra from $\sqrt{s_{NN}}$ = 130 GeV Au+Au Collisions", to appear in Physical Review C, <u>nucl-ex/0307010</u>

Run-3 Publications

- "Absence of Suppression in Particle Production at Large Transverse Momentum in $\sqrt{s_{NN}} = 200 \text{ GeV d+Au}$ Collisions", PRL 91, 072303 (2003)
- PID-ed particles (π⁰'s) out to the highest p_T's PHENIX's unique contribution to the June "press event"

PH ENIX Accomplishments and Discoveries

- First measurement of the dependence of the <u>charged particle pseudo-rapidity density</u> and <u>the transverse energy</u> on the number of participants in Au+Au collisions at √s_{NN} =130 GeV.
- **Discovery** of high p_T suppression in π^0 and charged particle production in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV and a systematic study of the scaling properties of the suppression; extension of these results to much higher transverse momenta in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- (Co)-Discovery of <u>absence of high p_T suppression in d+Au collisions</u> at s_{NN} =200~GeV.
- Discovery of the <u>anomalously large proton and anti-proton yields at high transverse</u> <u>momentum</u> in Au+Au collisions at √s_{NN} =130 GeV through the systematic study of π[±], K[±], p[±] spectra; <u>measurement of ∧ and anti-∧</u> in Au+Au collisions at √s_{NN} =130 GeV; study of the <u>scaling properties of the proton and anti-proton yields</u> in Au+Au collisions at √s_{NN} =200 GeV.
- Measurement of HBT correlations in π⁺ π⁺ and π⁻ π⁻ pairs in Au+Au collisions at √s_{NN} =130 GeV , establishing the ``HBT puzzle" of R_{OUT} ~ R_{SIDE} extends to high pair momentum; extension of these results to √s_{NN} = 200 GeV
- First measurement of single electron spectra in Au+Au collisions at $\sqrt{s_{NN}}$ =130~GeV, suggesting that charm production scales with the number of binary collisions.
- Sensitive measures of <u>charge fluctuations</u> and <u>fluctuations in mean p_T and transverse</u> <u>energy</u> per particle in Au+Au collisions at at $\sqrt{s_{NN}} = 130 \sim GeV$.
- Measurements of <u>elliptic flow for charged particles</u> from Au+Au collisions at $\sqrt{s_{NN}}$ =130~GeV and <u>identified charged hadrons</u> from Au+Au collisions at $\sqrt{s_{NN}}$ =200~GeV.
- Extensive study of <u>hydrodynamic flow, particle yields, ratios and spectra</u> from Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV and <u>200 GeV</u>.
- First observation of <u>J/ Ψ production in Au+Au collisions</u> at $\sqrt{s_{NN}}$ =200~GeV.
- Measurement of crucial baseline data on π^0 spectra and J/Ψ production in p+p collisions at $\sqrt{s_{NN}}$ =200~GeV.

Beam Use Proposal

Requested input:

Desired "beam run segments"
 Physics from same
 Investigate "27" and "31" week scenarios
 Collaboration/experiment status

A note on nomenclature:

 "Run-1" ≡ Summer-2000 Au+Au run at 130 GeV
 "Run-2" ≡ 2001/2002 Au+Au/p+p at 200 GeV
 "Run-3" ≡ 2003 run d+Au/p+p at 200 GeV
 "Run-4" ≡ 2004 run Au+Au/p+p at 200 GeV

Run-1 Configuration

- Two central arms
 - Mechanically
 ~complete
 - Roughly half of aperture instrumented
- Global detectors
 - Zero-degree Calorimeters (ZDCs)
 - □ Beam-Beam Counters (BBCs)
 - Multiplicity and Vertex Detector (MVD, engineering run)

PHENIX Detector - First Year Physics Run Installed Central Magnet TEC Active PbSc PbSc PbSc PbSc RICH RICH BBO PbGl PbSc MVD PC1 PC1 PbSc PbG1 TOF West Beam View East North Muon Mas Central Magnet BB ZDC North ZDC South MuID MVD SideView South North

Run-1 Publications

- "Centrality dependence of charged particle multiplicity in Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 86 (2001) 3500</u>
- "Measurement of the midrapidity transverse energy distribution from $\sqrt{s_{NN}}$ = 130 GeV Au-Au collisions at RHIC", PRL 87 (2001) 052301
- "Suppression of hadrons with large transverse momentum in central Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 88, 022301 (2002)</u>.
- "Centrality dependence of $\pi^{+/-}$, K^{+/-}, p and pbar production at RHIC," <u>PRL 88, 242301 (2002).</u>
- "Transverse mass dependence of the two-pion correlation for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", PRL 88, 192302 (2002)
- "Measurement of single electrons and implications for charm production in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 88, 192303 (2002)</u>

"Net Charge Fluctuations in Au+Au Interactions at $\sqrt{s_{NN}}$ = 130 GeV," PRL. 89, 082301 (2002)

- "Event-by event fluctuations in Mean p_T and mean e_T in sqrt(s_NN) = 130GeV Au+Au Collisions" <u>Phys. Rev. C66, 024901 (2002)</u>
- "Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at $\sqrt{s_{NN}}$ = 130 GeV", PRL 89, 212301 (2002)
- "Measurement of the lambda and lambda^bar particles in Au+Au Collisions at $\sqrt{s_{NN}}$ =130 GeV", PRL 89, 092302 (2002)
- "Centrality Dependence of the High pT Charged Hadron Suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>Phys. Lett. B561, 82 (2003)</u>
- "Single Identified Hadron Spectra from $\sqrt{s_{NN}}$ = 130 GeV Au+Au Collisions", to appear in Physical Review C, <u>nucl-ex/0307010</u>

From Run-1 to Run-2

PH^{*}ENIX

08-Sep-04

Run-2 Publications

- "Suppressed π^0 Production at Large Transverse Momentum in Central Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", <u>Phys. Rev. Lett. 91, 072301 (2003)</u>
- "Scaling Properties of Proton and Anti-proton Production in $\sqrt{s_{NN}}$ = 200 GeV Au+Au Collisions", <u>Phys. Rev. Lett 91, 172301 (2003)</u>.
- "J/ Ψ Production in Au-Au Collisions at $\sqrt{s_{NN}}$ =200 GeV at the Relativistic Heavy Ion Collider", <u>Phys. Rev. C 69, 014901 (2004)</u>.
- "Elliptic Flow of Identified Hadrons in Au+Au Collisions at √s_{NN} = 200 GeV", <u>Phys.Rev.Lett. 91 (2003) 182301</u>
- "Midrapidity Neutral Pion Production in Proton-Proton Collisions at \sqrt{s} = 200 GeV", <u>Phys. Rev. Lett. 91, 241803 (2003)</u>
- "Identified Charged Particle Spectra and Yields in Au-Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", <u>Phys. Rev. C 69, 034909 (2004)</u>
- "J/ Ψ production from proton-proton collisions at $\sqrt{s} = 200$ GeV", <u>Phys. Rev. Lett. 92, 051802 (2004)</u>
- "High-pt Charged Hadron Suppression in Au+Au Collisions at √s_{NN} = 200 Gev", Phys. Rev. C 69, 034910 (2004)
- "Measurement of Non-Random Event-by-Event Average Transverse Momentum Fluctuations in √s_{NN} =200 GeV Au+Au Collisions", S.S. Adler et al., <u>Phys. Rev. Lett. 93, 092301 (2004)</u>,
- "Bose-Einstein Correlations of Charged Pion Pairs in Au+Au Collisions at $\sqrt{s_{NN}}$ =200 GeV" to appear in PRL, <u>nucl-ex/0401003</u>
- "Deuteron and anti-deuteron production in Au+Au collisions at \sqrt{s} = 200 GeV", submitted to PRL June 1, 2004, Preprint: <u>nucl-ex/0406004</u>
 - "Identified Leading Particle Correlations in Au+Au and d+Au collisions at √s_{NN} =200 GeV" , submitted to PRL Aug. 7, 2004, <u>nucl-ex/0408007</u>

Also contains Run-3 d+Au data

Run-3 Publications

- "Absence of Suppression in Particle Production at Large Transverse Momentum in √s_{NN} = 200 GeV d+Au Collisions", PRL 91, 072303 (2003)
- PID-ed particles (π⁰'s) out to the highest p_T's PHENIX's unique contribution to June '03 "press event"

First (Run-3) Results on A_{LL}

- First results on $A_{LL}(\pi^0)$:
- "Double Helicity Asymmetry in Inclusive Mid-Rapidity neutral pion Production for Polarized p+p Collisions at sqrt(s)=200 GeV" Preprint: <u>hep-ex/0404027</u>
 - (Submitted to Physical Review Letters)
 - Compared to calculations by
 - B.Jäger *et al.*,
 PRD67, 054005 (2003)
 - M. Glück *et al.*, PRD63, 094005 (2001)
 - Consistent with GRSV-std (C.L. ~ 16-20%)

FIG. 3: The measured double spin asymmetry $A_{LL}^{\pi^0}$ versus mean p_T of π^0 's in each bin. A scale uncertainty of $\pm 65\%$ is not included. Two theoretical calculations based on NLO pQCD are also shown for comparison with the data (see text for details).

PH*ENIX Forthcoming d+Au Results

- Range of papers in preparation:
 - Identified hadron yields

Jet properties

 \Box J/ Ψ yields

SOUTH ARM

NORTH ARM

□ Centrality dependence of "jet" yields

RCP at forward and backward rapidities (next slides)

R_{CP} summary plot

Publication Summary

- Run-1
 - □ 12 publications
 - 8 are "TopCites"
 - ♦ 3 of these are "famous"
 - One "archival" summary
- Run-2
 - □ 12 publications to date
 - □ 4 are "TopCites"
 - ♦ 1 of these is "famous"
 - One "archival" summary
 - Several more nearing completion
 - Direct photons, open charm, energy survey...
- Run-3
 - □ 2 publications
 - d+Au suppression (a TopCite/famous)
 - First result on $A_{LL}(\pi^0)$
 - Several in progress
- Run-4: > x 10 *data-size compared to Run-2 Au+Au*

Aerogel Array

160 Cells

Aluminum Box Aerogel in here

PMT's

Run-4 Additions

 Ident. charged particles in a range inaccessible with other technologies.

08 - Sek - 04

Light Mixer

Aerogel Performance

Clear proton line up to higher momentum 6

PH^{*}ENIX

Previous Run Request

- Au+Au at 200 GeV, with goal of developing highest possible integrated luminosity
- ✓ An aggressive program of luminosity and polarization development for p+p, with the goal of the earliest practicable measurement of ∆G
- Light-ion running, to investigate dependence on system size
- A reduced energy run, again with emphasis on obtaining highest possible integrated luminosity
- High integrated luminosities achieved via minimal variations in species and energies, as per CAD guidance

RUN	SPECIES	$\sqrt{s_{NN}}$	PHYSICS	∫ £dt	$\mathbf{p} + \mathbf{p}$
		(GeV)	WEEKS	(delivered)	Equivalent
4	Au+Au	200	14	316 µb ⁻¹	12.3 pb ⁻¹
	p+p	200	(5 development)	-	
5	Si+Si	200	9	5.5 nb ⁻¹	4.3 pb ⁻¹
	p+p	200	5	3.0 pb ⁻¹	3.0 pb ⁻¹
6	Au+Au	62.4	19	117 μb ⁻¹	4.3 pb ⁻¹
7	p+p	200	19	158 pb ⁻¹	158 pb ⁻¹
8	Au+Au	200	19	2157µb ⁻¹	84 pb ⁻¹
9	p+p	500	19	540 pb ⁻¹	540 pb ⁻¹
10	d+Au	62.4	19	3.3 nb ⁻¹	1.3 pb ⁻¹

Table 2: The PHENIX Beam Use Proposal for 27 cryo weeks per year

Current Run Request

- An extensive program of luminosity and polarization development for p+p,
 with the goal of the earliest practicable measurement of \(\Delta G\)
- Light-ion running, to investigate dependence on system size
- A reduced energy run, again with emphasis on obtaining highest possible integrated luminosity
 Table 2: The PHENIX Beam Use Proposal for 31 cryo weeks in Ru
- High integrated luminosities achieved via minimal variations in species and energies, as per CAD guidance

Table 2: The PHENIX Beam Use Proposal for 31 cryo weeks in Run-5, and 27 cryo weeks in latter years.

RUN	SPECIES	$\sqrt{s_{NN}}$	PHYSICS	$\int \mathcal{L} dt$	p+p
		(GeV)	WEEKS	(delivered)	Equivalent
5	Cu+Cu	200	10	$7.0 \ {\rm nb}^{-1}$	27.6 pb^{-1}
	p+p	200	11	$13.1 \ \mathrm{pb}^{-1}$	$13.1 \ {\rm pb}^{-1}$
6	Au+Au	62.4	9	$111 \ \mu b^{-1}$	4.3 pb^{-1}
	p+p	200	8	$15.0 \ {\rm pb}^{-1}$	$15.0 \ {\rm pb}^{-1}$
7	p+p	200	20	122 pb^{-1}	122 pb^{-1}
8	Au+Au	200	20	$4140 \ \mu b^{-1}$	161 pb^{-1}
9	p+p	500	20	359 pb^{-1}	359 pb^{-1}
10	d+Au	200	20	91.6 nb^{-1}	$36 \ {\rm pb}^{-1}$

After Run-4 (Frontier)

After Run-5 (Nominal)

Energy (GeV)

at 62.4 GeV

After Run-6

Energy (GeV)

- Discussion here regarding
 - Criteria for "new" running conditions at end of a given segment
 - □ Should be explicitly addressed by PAC
 - □ Resist √N arguments
 - □ Have a plan and a threshold in place at outset of run
 - AVOID CREATING "UNFUNDED MANDATES", e.g., now we need a 62 GeV p+p comparison run, perhaps d+Au run- when??

PH^{*}ENIX

The Run Plan At A Glance

- An quantitative, integrated, planning exercise:
 - □ Quantitative:
 - Direct implementation of CAD guidance
 - Yield estimates (whenever possible) based on existing PHENIX measurements and known scaling laws

2 7	J/⊈ p⊤(max)	14 weeks Au+Au 200 GeV 197 197	739 μb ⁻¹ 28.69 pb ⁻¹ 9855 J/Ψ's 22.2 GeV/c	8 Cu+Cu 63	weeks 200 GeV 63	2.1 nb ⁻¹ 8.29 pb ⁻¹ 6484 J/Ψ's 19.1 GeV/c	9 Au+Au 197	weeks 62.4 GeV 197	47 μb ⁻¹ 1.81 pb ⁻¹ 127 J/Ψ's 10.5 GeV/c	0 Au+Au 197	weeks 200 GeV 197	0 μb ⁻¹ 0.00 pb ⁻¹ 0 J/Ψ's 0.0 GeV/c	20 Au+Au 197	weeks 200 GeV 197	1739 μb ⁻¹ 67.47 pb ⁻¹ 23180 J/Ψ's 24.6 GeV/c	0 Au+Au 197	weeks 200 GeV 197	0 μb ⁻¹ 0.00 pb ⁻¹ 0 J/Ψ's 0.0 GeV/c	20 d-Au 2	weeks 200 GeV 197	38.5 nb ⁻¹ 15.16 pb ⁻¹ 14961 J/¥'s 20.5 GeV/c
W e k	J/¥¥ p⊤(max) A _{LL} (π [°]) p⊤(max)	1 weeks p+p 200 GeV	0.2 pb ⁻¹ 30% 338 J/Ψ's 12.3 GeV/c 4.0 GeV/c	9 p+p	weeks 200 GeV	4.1 pb ⁻¹ 45% 6625 J/Ψ's 17.5 GeV/c 6.9 GeV/c	8 w p+p	veeks 200 GeV	6 pb ⁻¹ 65% 9760 J/Ψ's 18.4 GeV/c 8.6 GeV/c	20 p+p	weeks 200 GeV	51 pb ⁻¹ 70% 81790 J/Ψ's 23.7 GeV/c 11.5 GeV/c	0 p+p	weeks 500 GeV	0 pb ⁻¹ 70% 0 J/Ψ's 0.0 GeV/c 0.0 GeV/c	20 p+p	weeks 500 GeV	151 pb ⁻¹ 70% 675435 J/Ψ's 37.6 GeV/c 18.2 GeV/c	0 p+p	weeks 500 GeV	0 pb ⁻¹ 70% 0 J/Ψ's 0.0 GeV/c 0.0 GeV/c
3			28.90 pp			41.33 pb			49.24 pp			100.35 pb			167.83 pD			318.67 pb			333.83 pD
3 1	J/¥ p⊤(max)	19 weeks Au+Au 200 GeV 197 197	1075 µb ⁻¹ 41.73 pb ⁻¹ 14335 J/Ψ's 23.2 GeV/c	10 Cu+Cu 63	weeks 200 GeV 63	2.9 nb ⁻¹ 11.60 pb ⁻¹ 9077 J/Ψ's 19.9 GeV/c	10 Au+Au 197	weeks 62.4 GeV 197	54 μb ⁻¹ 2.11 pb ⁻¹ 148 J/Ψ's 10.7 GeV/c	5 p-p 1	weeks 62.4 GeV 1	2.9 pb ⁻¹ 2.94 pb ⁻¹ 961 J/Ψ's 11.1 GeV/c	16 Au+Au 197	weeks 200 GeV 197	1330 μb ⁻¹ 51.60 pb ⁻¹ 17726 J/Ψ's 23.8 GeV/c	0 d-Au 2	weeks 62.4 GeV 197	0 nb ⁻¹ 0.00 pb ⁻¹ 0 J/Ψ's 0.0 GeV/c	29 d-Au 2	weeks 62.4 GeV 197	5.7 nb ⁻¹ 2.26 pb ⁻¹ 455 J/¥''s 10.7 GeV/c
W e k s	J/Ψ p _T (max) A _{LL(π⁰) p_T(max)}	6 weeks p+p 200 GeV	2.4 pb ⁻¹ 40% 3892 J/Ψ's 16.5 GeV/c 6.1 GeV/c 44.16 pb ⁻¹	11 p+p	weeks 200 GeV	5.5 pb ⁻¹ 45% 8834 J/Ψ's 18.2 GeV/c 7.1 GeV/c 61.28 ob ⁻¹	11 w p+p	veeks 200 GeV	9.8 pb ⁻¹ 65% 15617 J/Ψ's 19.5 GeV/c 9.1 GeV/c 73.15 pb ⁻¹	16 p+p	weeks 200 GeV	39 pb ⁻¹ 70% 62546 J/Ψ's 23.0 GeV/c 11.2 GeV/c 115.19 pb	5 p+p	weeks 500 GeV	24 pb ⁻¹ 70% 105537 J/Ψ's 30.0 GeV/c 14.6 GeV/c 190.35 pb ⁻¹	24 p+p	weeks 500 GeV	186 pb ⁻¹ 70% 834361 J/Ψ's 38.5 GeV/c 18.7 GeV/c 376.69 pb	0 p+p	weeks 500 GeV	0 pb ⁻¹ 70% 0 J/Ψ's 0.0 GeV/c 0.0 GeV/c 378.94 pb ¹

- Integrated: Sequential set of measurements designed to deliver comparable sensitivities in ~ all channels
- Planning: Based on *current, improved* knowledge of machine, detector, physics and future developments

31 weeks
Cu+Cu 200 GeV
10 physics weeks
 Many rare channels
p+p 200 GeV
11 physics weeks
♦ A _{LL} (π ⁰)
27 weeks
Cu+Cu 200 GeV
8 physics weeks
 Many rare channels
□ p+p 200 GeV
9 physics weeks
♦ A _{LL} (π ⁰)

			200)5 (I	Run-5		
2 7	J/Ψ p _⊤ (max)	8 Cu+Cu 63	weeks 200 63	GeV	2.1 8.29 6484 19.1	nb⁻¹ pb⁻¹ J/Ψ's GeV/e	C
W e e k s	J/Ψ p _T (max) A _{LL} (π⁰) p _T (max)	g" p+p	weeks 200	GeV	4.1 6625 17.5 6.9	pb ⁻¹ J/Ψ's GeV/e GeV/e	45% c c
					11.00		
3 1	J/Ψ p _T (max)	10 Cu+Cu 63	weeks 200 63	GeV	2.9 11.60 9077 19.9	nb ⁻¹ pb ⁻¹ J/ψ's GeV/0	с
W			·				
e e k	J/Ψ p _T (max) A _{LL} (π⁰) p _T (max)	11 [.] р+р	weeks 200	GeV	5.5 8834 18.2 7.1	pb ⁻¹ J/ψ's GeV/c GeV/c	45% c c
3					61.28	pb	

PHXENIX Spin Prospects in Run-5

- Run-3 result based on
 - □ <**P**> = 27%
 - □ 0.35 pb⁻¹ recorded
- For future projections:
- Run-5 (31 weeks)
 - □ <**P**> = 44%
 - □ 5.5 pb⁻¹ recorded
 - Factor ~10 improvement in statistical error
- Run-5 (27 weeks scenario)
 - □ **<P> = 45%**
 - □ 4.1 pb⁻¹ recorded
 - Factor ~8 improvement in statistical error

Run-6

- 27 weeks
 - □ Au+Au 62.4 GeV
 - ♦ 9 physics weeks
 - ♦ Some rare channels
 - p+p 200 GeV
 - ♦ 8 physics weeks
 - ♦ Use cold snake
- 31 weeks
 - Au+Au 62.4 GeV
 - ♦ 10 physics weeks
 - ♦ Some rare channels
 - p+p 200 GeV
 - ♦ 11 physics weeks
 - Use cold snake

			200)6 (F	Run-6)
2 7	J/Ψ p _T (max)	9 Au+Au 197	weeks 62.4 197	GeV	47 [°] μb ⁻¹ 1.81 pb ⁻¹ 127 J/Ψ's 10.5 GeV/c
W e k	J/Ψ p _⊤ (max) A _{LL} (π⁰) p _⊺ (max)	8 ⁷ p+p	weeks 200	GeV	6 pb ⁻¹ 65% 9760 J/ψ's 18.4 GeV/c 8.6 GeV/c
3					49.24 pb ⁻¹
3 1	J/Ψ p _T (max)	10 Au+Au 197	weeks 62.4 197	GeV	54 [°] μb ⁻¹ 2.11 pb ⁻¹ 148 J/Ψ's 10.7 GeV/c
W					
e e k s	J/Ψ p _T (max) A _{LL} (π⁰) p _T (max)	11 p+p	weeks 200	GeV	9.8 pb ⁻¹ 65% 15617 J/ψ's 19.5 GeV/c 9.1 GeV/c

- 27 weeks
 - □ p+p 200 GeV
 - ♦ 20 physics weeks
 - Spin *production* run
 - "Ultimate" comparison set
- 31 weeks
 - □ p+p 62.4 GeV
 - ♦ 5 physics weeks
 - ♦ Some rare channels
 - ◆ ISR *extension*
 - (No species change)
 - □ p+p 200 GeV
 - ♦ 16 physics weeks
 - ◆ Spin *production* run
 - "Ultimate" comparison set

			20	07 (Run-7)		
2 7	J/Ψ p _T (max)	0 Au+Au 197	weeks 200 197	GeV	0 0.00 0 0.0	μb ⁻¹ pb ⁻¹ J/Ψ's GeV/	С
W e k	J/Ψ p _T (max) A _{LL} (π⁰) p _T (max)	20 [°] p+p	weeks 200	GeV	51 81790 23.7 11.5	pb ⁻¹ J/Ψ's GeV/ GeV/	70% c c
5					100.35	pb⁻¹	
3 1	J/Ψ p _T (max)	5 p-p 1	weeks 62.4 1	GeV	2.9 2.94 961 11.1	pb⁻¹ pb⁻¹ J/Ψ's GeV/	с
W e k s	J/Ψ p _T (max) A _{LL} (π ⁰) p _T (max)	16 [*] p+p	weeks 200	GeV	39 62546 23.0 11.2	pb ⁻¹ J/Ψ's GeV/ GeV/	70% c c

PH^{*}ENIX

Run-8

- 27 weeks
 - Au+Au 200 GeV
 - ♦ 20 physics weeks
 - "Penultimate" Au+Au run
 - First run with upgrades
- 31 weeks
 - Au+Au 200 GeV
 - ♦ 16 physics weeks
 - ♦ "Ultimate" Au+Au run
 - First run with upgrades
 - □ p+p 500 GeV
 - ♦ 5 physics weeks
 - Important acceleration of schedule for 500 GeV running

2 7	J/Ψ p _T (max)	20 Au+Au 197	weeks 200 197	GeV	1739 67.47 23180 24.6	μb ⁻¹ pb ⁻¹ J/Ψ's GeV/e	с
W e e k s	J/Ψ p _T (max) A _{LL} (π⁰) p _T (max)	0 [°] p+p	weeks 500	GeV	0 0 0.0 0.0	pb ⁻¹ J/Ψ's GeV/c GeV/c	70% c c
					107.03	pb	
3 1	J/Ψ p _ī (max)	16 Au+Au 197	weeks 200 197	GeV	1330 51.60 17726 23.8	μb ⁻¹ pb ⁻¹ J/ψ's GeV/0	с
W			wooko				
e e k s	J/Ψ p _T (max) A _{LL} (π ⁰) p _T (max)	5 p+p	500	GeV	24 105537 30.0 14.6 190.35	pb ⁻¹ J/Ψ's GeV/c GeV/c	70% c c

- PHENIX successes in Runs 1-4 have paralleled those of the accelerator
- Ongoing, productive enterprise engaged in timely publication of an extraordinarily broad spectrum of results (Au+Au, p+p, d+Au)
- Proposed program will extend
 - Investigation of rare processes to address fundamental questions in heavy ion physics
 - Demonstrated spin physics capabilities to higher p_T and to new channels
- Proposed program depends critically on timely development of luminosity and polarization through extended periods of beam development and steady running
- Immense benefit from incremental cost of additional weeks
 of running time

PH^{*}ENIX

On Energy Scans

Nearly all phenomena measured thus far exhibit smooth variation with energy:

- Those that don't(?)

 (e.g., kaon slopes)
 already present in pp data (next slide)
- Absent compelling arguments, and given
 - Natural smearing from Fermi momentum
 - Scarce beam hours
- Give higher priority to investigating with highest possible sensitivity the signals that are new at RHIC
 28-Set-04

FIG. 13. Plot of $\langle p_t \rangle$ as a function of \sqrt{s} ; the data for $\sqrt{s} < 100$ GeV are from Ref. [18].