Errata ${ }^{1}$
Doppler Radar and Weather Observations, Second Edition

Richard J. Doviak and Dusan S. Zrnic'
Academic Press, Inc., San Diego, 562 pp.
ISBN 0-12-221422-6.

Page Para. Line Remarks: Paragraph 0 is any paragraph started on a previous page that carries over to the current page
xvii
add to list of symbols: $\mathrm{g}_{\mathrm{s}} \quad$ System gain
6 change to: $c \quad$ Speed of light in a vacuum
xix add to list of symbols: $\gamma \quad$ Mass density of air
xix

10 Eq.(2.2a) Change ψ to ψ_{t}
$110 \quad 1 \quad$ as above

22 as above
Eq.(2.2b) as above
$12 \quad$ Fig.2.3 as above
1421 Change to read: The path of electromagnetic waves depends principally on the change of refractive index $n=c / v$ with height (or relative....... is unity).

4 "contet" should be "content"

7 change period to comma after "content"
8 insert "are" to read "developed herein are useful"
$151 \quad$ change ρ to γ in line 14, in Eqs.(2.8) and 2.9, and line 19

[^0]18 Fig.2.5 change caption to: "...in which n decreases with height."
$30 \quad 2 \quad 9 \quad$ italicize the " o " in oscillator

10 change "ad" to "and"
31 Fig.3.1 Change "synchronous detector" to "synchronous detectors"

54

13

Eqs.3.2
13

19
$0 \quad 7$

9

23
14,5

Eq.(3.14) replace subscript " m " with "w"
Fig. 3.5 insert Z in front of (dBZ) in the abscissa label
$11 \quad$ Replace "Remove" with "Remote"
36 change to "...attenuation for liquid cloud is..."
Eq.(3.17) change subscript " m " to " w "
020.0 .9 dB " should be " $0.43 \mathrm{~dB} "$
sect.3.3.4 add as a footnote: "Blake has published (1986, in "Radar range performance analysis", 2nd ed., ARTECH House, Norwood, MA.) new values of attenuation in gases. For example, at $\lambda=10 \mathrm{~cm}, \mathrm{r}=200 \mathrm{~km}, \theta_{\mathrm{e}}=$ 0°, the two way loss is about 0.3 dB larger than that given in Fig.3.6."

Fig.3.14 change $\boldsymbol{\gamma}(\mathrm{t})$ to $\psi_{e}(\mathrm{t})$ and $\Delta \boldsymbol{\gamma}$ to $\Delta \psi_{e}$
Fig.3.6 $\quad \phi_{\mathrm{e}}$ should be θ_{e} 0.63 MHZ is assumed.

501 last remove comma
Eq.(3.25) change ψ to ψ_{t}
111 delete sentence beginning with "Thus the sign..."
Eq.(3.27) Delete $" \sin (\omega t) "$
219 Start a new paragraph at: "A physical explanation...
13 Change "the scatter" to "its"
$\begin{array}{llll}61 & 0 & 7 & \text { Delete "(or folding)" }\end{array}$

6432 "than", not "then"
$650 \quad 6 \quad$ remove comma after "size"
14 change to:pulses (I and Q) at the output..... sample gate at $\tau_{s 1}$ (Section 4.2.2).

2 change $V(\mathrm{t})=I(t)+\mathrm{j} Q(t)$ to $V\left(\tau_{s l}\right)=I\left(\tau_{s 1}\right)+\mathrm{j} Q\left(\tau_{s l}\right)$.
$67 \quad 3 \quad 1 \quad$ Insert after $V\left(\tau_{s}\right)$: "at the receiver's output"

Table 3.1 change footnote c to read: "....antenna port, and a 3 dB filter bandwidth of

Fig.4.2 replace W with I in the figure, and change caption to read:...output I (or Q) to....and r_{o} is the range where scatterers contribute maximum weight to the

6817 bracketed text should end "...in Eq. (4.2).]", i.e., put period between right parenthesis and bracket

71 Eq.(4.4) insert $(1 / \sqrt{2})$ in front of the sum sign in each of these equations
Eq.(4.6) Delete the first " 2 "

74 Eq.(4.12) delete the boldness of " \mathbf{r} "
41 measurem(m)ents; delete the extra " m "
envelope
7 change to read:....the output of the receiver would be that sketched in Fig.3.12.).

Fig.4.5 Change to read: The arrow(s) indicates sliding....
coefficient $\mathrm{R}_{\mathrm{v}} / \mathrm{R}_{\mathrm{vv}}(0)$ "
45 change to "Noise-like signals..."
3 2,3,5 add comma after "domain" and one after "(Fig. 5.10 RECT)"
caption add comma after "Oklahoma,"
Eq.(5.40) remove the bold print from \mathbf{r}_{1}^{4} and in the factor $\left|\mathrm{W}\left(\mathrm{r}_{0}, \mathbf{r}_{1}\right)\right| ; \theta$ and ϕ need to have the subscript 1 appended to be consistent with symbols in Fig.5.11, and add the subscript "s" to W to be consistent with Eq.4.9c.

1081 last add comma after "by definition,"
$10914 \quad 4 \quad$ remove comma after "replenished"
112 Eq.5.57 add the subscript " s " to W in order to be consistent with Eqs.4.9c and 5.40 (modified)

113 2,3
Delete the sentences beginning with "Furthermore, we assume..." and ending with "...scatterer's axis of symmetry)." in paragraph 3. Change Eq.(5.59a) to read

$$
\begin{gather*}
R\left(m T_{s}\right)=E\left[V^{*}\left(\tau_{s}, 0\right) V\left(\tau_{s}, m T_{s}\right)\right] \\
=E\left[\sum_{i} \sum_{k} F_{i}^{*}(0) A_{i}^{*}(0) F_{k}\left(m T_{s}\right) A_{k}\left(m T_{s}\right) \exp \left\{j\left(\phi_{i}-\phi_{k}-4 \pi v_{k} m T_{s} / \lambda\right)\right\}\right] \tag{5.59a}\\
=\sum_{k} E\left[A_{k}^{*}(0) A_{k}\left(m T_{s}\right) F_{k}^{*}(0) F_{k}\left(m T_{s}\right) \exp \left\{-j 4 \pi v_{k} m T_{s} / \lambda\right\}\right]
\end{gather*}
$$

Following this equation write:
The expectation in Eq.(5.59a) includes averages over the ensemble of statistically stationary and homogeneous turbulent velocity fields. The expectations of the off diagonal terms of the double sum are zero because the phases ($\phi_{i-} \phi_{k}$) are uniformly distributed across 2π; thus the double sum reduces to a single one. To simplify further analysis, assume that the weighted scatterer's cross section $F_{k} A_{k}$ is independent of v_{k}, and that F_{k} does not change appreciably [i.e., $\left.F_{k}(0) \approx F_{k}\left(m T_{s}\right)\right]$ while the scatterer moves during the time $m T_{s}$. Furthermore, assume A_{k} varies randomly in time (i.e., a hydrometeor may oscillate or change its orientation relative to the electric field). Thus Eq.(5.59a) reduces to

$$
\begin{equation*}
R\left(m T_{s}\right)=\sum_{k} R_{k}\left(m T_{s}\right)\left|F_{k}\right|^{2} E\left[\exp \left\{-j 4 \pi v_{k} m T_{s} / \lambda\right\}\right] \tag{5.59b}
\end{equation*}
$$

where

$$
R_{k}\left(m T_{s}\right) \equiv E\left[A_{k}^{*}(0) A_{k}\left(m T_{s}\right)\right]
$$

Because $R(0)$ is proportional to......(continue from the sentence containing Eq.5.59c)
$11511 \quad$ change Eq.(5.59a) to Eq.(5.59b)
22 change to: "....to the air) the expected (over the ensemble of turbulent velocity fields) normalized power spectrum

$$
\begin{equation*}
E\left[S_{n}\left(r_{o}, v\right)\right]=\frac{E\left[S\left(r_{o}, v\right)\right]}{\int_{-\infty}^{+\infty} E\left[S\left(r_{o}, v\right)\right] d v} \tag{5.60}
\end{equation*}
$$

is equal to..."
31 change to read: "......the autocorrelation $R_{\mathrm{k}}\left(m T_{\mathrm{s}}\right)$ would..."
7 change Eq.(5.59a) to Eq.(5.59b)
Eq.(5.64) place E[] around $S_{n}(f)$
116 Eq.(5.66) place E[] around $S_{n}(-v)$
1 change to: "Thus, for homogeneous turbulence, the expected normalizedand range weighting functions. Although, in deriving Eq.(5.66), we did not state reflectivity is uniform, our assumption that the weighted hydrometeor's cross section $F_{\mathrm{k}} A_{\mathrm{k}}$ does not depend......implicitly assumes reflectivity and $I_{\mathrm{n}}\left(\mathbf{r}_{\mathrm{o}}, \mathbf{r}\right)$ are uniform. In practice, for Eq.(5.66) to be valid, it suffices that the outer scale of turbulence is small compared to the size of V_{6}."

11727 eliminate "(e.g.x, y, z)"
31 change to read: " If the radial velocity is linear about v_{0} in the Cartesian coordinate system, it is expressed as

3 add at the end of the sentence: "....various axes; but then the shear is non linear in the spherical system. In the remainder of the text we assume a uniform wind in the Cartesian system and analyze the effects of this wind in the spherical system. If the resolution volume dimensions are much smaller than its range, distances transverse to the beam axis can be approximated by arclengths. Therefore, the radial velocity can be expressed as

$$
\begin{equation*}
v-v_{o}=k_{\phi} r_{o}\left(\phi-\phi_{o}\right)+k_{\theta} r_{o}\left(\theta-\theta_{o}\right)+k_{r}\left(r-r_{o}\right), \tag{5.72}
\end{equation*}
$$

where $k_{\theta}, k_{\phi}, k_{r}$ are constant shears in the θ, ϕ, r directions."
Eliminate sentences starting with "Let us orient... "up to, but not including Eq. (5.74), and replace with: "If the weighting function

$$
\begin{equation*}
I(r, \theta, \phi)=C\left|W_{s}(r)\right|^{2} f_{\phi}^{4}(\phi) f_{\theta}^{4}(\theta) / r_{o}^{2} \tag{5.73}
\end{equation*}
$$

and the reflectivity are product separable, substitution of (5.72) and (5.73) into (5.51) produces

1223 2,3 change to read "...signals, estimates using few samples have a large statistical uncertainty and therefore don't allow meaningful"
after Eq.(6.5) add: ρ in chapter 5 (e.g., Eq.5.63) is the complex correlation function. Here, and henceforth it represents the magnitude of this complex function.

2-5 change " \bar{P} " to " S ". Furthermore, the sentence beginning with "The \bar{P} values of ..." should be moved to the end of the para.1, and there should be a subscript k on \bar{P}. The overbar on P should be removed in this sentence.
last change " $E(\mathrm{P})$ " to " $E(\hat{P})$ "
12733 change $\boldsymbol{\sigma}_{Q}^{2}$ to $\boldsymbol{\sigma}_{\hat{Q}}^{2}$, (the Q needs a hat (\wedge) over it)

Eq.(6.9) left side: place hat (^) over Q
5 place hat (\wedge) over Q in $\mathbf{\sigma}_{Q}^{2}$

Eq.(6.12) the subscript 1 on M on the left side of this equation should be "I"
26 change to "..... $\sigma_{\hat{Q}}$ of a M-sample power estimate equals \bar{P} / M_{I}.

0 6-7 insert at the end of line 6:independent samples can be determined using an.....

Table 6.1 add above Reflectivity factor calculator: "Sampling rate: 0.6 MHZ". Under "Reflectivity factor calculator" change "Range increment" to "Range interval $\Delta \mathrm{r}$ ", and add "Range increment"equals " 0.25 km "

11 change to "Sometimes the bandwidth of the receiver is about.."
111 the first line before Eq. (6,22a) should read: If $\sigma_{\mathrm{vn}} \ll 1$, but condition (6.20a) satisfied, the sum in Eq.(6.21)......

Fig.6.5 on the plot change $\geq 20 \mathrm{~dB}$ to $\geq 15 \mathrm{~dB}$ are relatively independent of SNR and σ_{vn} as long as $0.02<\sigma_{\mathrm{vn}}<0.2$ and SNR $\geq 15 \mathrm{~dB}$."

21 Delete " $\left(\sigma_{v n}>1 / 2 \pi\right)$ "
14 change unit to read "less than 1 dB ", not "dBZ"
Eq.(6.48) $\quad\left|\rho\left(m T_{s}\right)\right|^{2}$ should be $\mid \rho\left(\left.2 m T_{\mathrm{s}}\right|^{2}\right.$
Eq.(6.50) change i-1 below the summation sign to $\mathrm{i}=1$.
14 change to read: "... $=-2 T_{\mathrm{s}}\left(k+k_{v}\right) v \ldots$.
6-8 change to read: ".... scattering; k_{h} and k_{v} are increments, due to the presence of hydrometeors, added to the propagation wavenumber k of the atmosphere. The phase of R_{b} is......"

9,11 change k_{o} to k
$0 \quad 7 \quad$ change $\left|\rho_{h v}(0)\right|$ to $\mid \rho_{h v}(0)^{2}$

Eq.(6.57) The approximate form of this equation should be:

$$
\approx \frac{\left.\left|\rho_{h v}(0)\right|^{2} \mid \pi^{3 / 2} \sigma_{v n}-2 \rho\left(2 T_{s}\right) N / S\right]}{\pi^{3 / 2} \sigma_{v n}+N^{2} / S^{2}+2 N / S}
$$

1 12-15 change to read: "A normalized standard deviation is plotted in Fig. 18 for a slightly simpler estimator in which thein (6.66) is not used. Inclusion of these terms....."

23 at the end of this line add "(from Eq.3.40)"
$\begin{array}{lll}0 & 3 & T_{\mathrm{s}} \text { should be } \mathrm{T}_{2}\end{array}$
12 at the end of this line add "....the true velocity v_{t} is the least common multiple of $v_{\mathrm{a} 1}, v_{\mathrm{a} 2}$. Thus".

4 delete $" v_{\mathrm{t}}$ is the true velocity,"
12 "PTR" should be "PRT"
Eq.(7.12) $\quad W_{i} W_{i+1}$ should be $W_{i} W_{i+l}$
11 "though" should be "through"
24 "Fig.3.3" should be "Fig.3.2"
018 change "Pate" to "Plate"
19 replace "10 dBZ" with " 20 dBZ "
Fig.7.28 correct caption to read as: The WSR-88D antenna pattern in the vertical plane, the polarization was circular but has since been changed to linear, and the antenna was without a radome. Sidelobes with radome are specified to be below the dashed envelope. Subsequent measurements suggested that the radome increases the near (i.e., $\pm 5^{\circ}$) sidelobe levels by less than 2 dB and has negligible effect on the main lobe. (Note: the dashed lines are incorrectly drawn in the second edition, first printing. They should extend from -26 dB at $\pm 2^{\circ}$ to -38 dB at $\pm 10^{\circ}$, and then the constant level should be at -42 dB)

Eq.(5.61) should be Eq.(5.69)
put "by radar" at the end of the sentence after "precipitation
35 "Foot" should be "Foote"

11 insert "up to" before the quantity $800 \mathrm{~kg} \mathrm{~m}^{-3}$
12 add comma after "frozen particles,"

Eq.(8.2) change period to comma and add the following after the equation: "for a range of Λ from about 0.1 to $1 \mathrm{~mm}^{-1}$.
change to read: First, the radar equation, Eq. (4.35), retrieves an estimate of the reflectivity factor $Z_{\mathrm{e}}=Z_{w}$ of water drops. If the scatterers are ice spheres, then Z_{i} is obtained from Z_{w} by using the following equation:

$$
\begin{equation*}
Z_{i}=\left(\left|K_{w}\right|^{2} /\left|K_{i}\right|^{2}\right) Z_{w} \tag{8.24}
\end{equation*}
$$

10-17 change to read: "...is immaterial and the value for $\left|K_{i}\right|^{2}$ is 0.176 . But researchers (e.g., Sekhon and Srivastava, 1970) usually express the drop size distributions in terms of the diameter of the melted particle. The diameters of melted particles are smaller by a factor of $0.92^{1 / 3}(0.92 \ldots .$. and thus must be increased by a factor of 1.028 in order to obtain the drop size distributions of equivalent ice spheres (Smith, 1984).

2 1-6 replace this paragraph with: For example, the Sekhon-Srivastava (1970) R, Z relation for snow is

$$
\begin{equation*}
Z=1780 R_{s}^{2.21} \tag{8.25a}
\end{equation*}
$$

But this needs to be multiplied by $(1.028)^{6}$ to obtain

$$
\begin{equation*}
Z_{i}=2103 R_{s}^{2.21} \tag{8.25b}
\end{equation*}
$$

the reflectivity factor of the ice particles. Eq.(8.25b) is the appropriate relation that must be used to estimate snowfall rate R_{s} from the Z_{i} measured by radar. To obtain radar measured Z_{i}, Eq.(8.24) should be used in Eq.(4.35) with $Z_{w}=Z_{e}$.

228 Eq.(8.26a) change the period to a comma and add the following: "where Λ lies in the interval from about 0.1 to $1 \mathrm{~mm}^{-1}$.

37 change "Eq.(8.14)" to "Eq.(8.15)"
Eq.(8.26b) change to:

$$
\begin{equation*}
Z_{H}=\frac{115}{\Lambda^{3.37}} \gamma\left(7, \Lambda D_{\max }\right) \tag{8.26b}
\end{equation*}
$$

22921 change "poduces" to "produces"
Fig. 8.8 remove subscript to unit "dBZ"; add "MDT" after time of 1535
$23011 \quad$ delete "Strong scattering capable to produce ...", and start paragraph with: "The three-body signature is ..."
$2320 \quad 10-11$ change to: ...microwave $(\lambda=0.84 \mathrm{~cm})$ path....
155 add comma after "(Fig. 8.1),"
Eq.(8.30) right bracket "\}" should be matched in size to left bracket "\{"
24 (8.7) should be (8.8)
24022 change to read: "...located at r_{n}. Using Eqs.(2.3), (3.20), and (3.24), it can be shown that...."

5 change to: "...k is the precipitation-free atmospheric wave number, P_{j} is .."
7 change to: "...is the rms received field. The magnitude of"

10 place expectation brackets around $\left|s_{i j}\right|^{2}$. This should look like $\left.\left.\langle | s_{i j}\right|^{2}\right\rangle$.
2410 4-5 change to read: ...is zero because the phase $2 k r_{\mathrm{n}}$ is uniformly distributed over 2π. Thus, radar.....

Eq.(8.44a) Eq.(8.44a) and the lines following it should read as follows:

$$
\begin{equation*}
=\int n(\boldsymbol{r})<s_{i j} s_{k l}^{*}>|F(\boldsymbol{r})|^{2} d V \tag{8.44a}
\end{equation*}
$$

In the last equality the summation over n is replaced with the integral over the product of the density $n(\boldsymbol{r})$ of drops at position \mathbf{r}, the ensemble average of $s_{i j} s_{k l}$, and the resolution volume weighting function.

2
2 change sentence to read "The number of attributes...."
$3 \quad 1-2$ change to read: Variables in this list are combinations of the three real diagonal terms and one complex off diagonal term. The other two complex terms have been less \qquad
24433 change to: $\ldots s_{\mathrm{vv}}$, and s_{rr} given by Eq.(8.52a) is zero;..

22 change Prat to Pratt
Eq.8.58 $\cos ^{2} \delta$ should be $\sin ^{2} \delta$; replace k_{o} with $k ; p_{\mathrm{v}}$ and p_{h} should be replaced with p_{a} and p_{b} respectively

Eq.8.59a, b change the subscripts h to b, and v to a
29 change to read: p_{a} and p_{b} are the drop's susceptibility in generating dipole moments along its axis of symmetry and in the plane perpendicular to it respectively, and e its eccentricity,

12-13 rewrite as: ...symmetry axis, and ψ is the apparent canting angle (i.e., the angle between the electric field direction for "vertically" polarized waves (\mathbf{v} in Fig.8.15) and the projection of the axis of symmetry onto the plane of polarization. The forward........
-
modify to read: $f_{\mathrm{h}}=k^{2} p_{\mathrm{b}}$, and $f_{\mathrm{v}}=k^{2}\left[\left(p_{\mathrm{a}}-p_{\mathrm{b}}\right) \sin ^{2} \delta+p_{\mathrm{b}}\right]$ (Oguchi, $\ldots \ldots .$.
Rewrite as: Hence from Eqs.(8.58) an oblate drop has, for horizontal propagation and an apparent canting angle equal to zero, the following cross sections for h and v polarizations:
ψ are the canting and apparent canting angles of the scatterer. The vectorx, z plane, and \mathbf{h} is parallel to the y axis. ψ is positive if n ' is ccw from v."
$19 \quad 9 \quad$ change " K_{w} " to " $K_{m}{ }^{\prime \prime}$
6 change to "...the data collection period,"
213 change ";" to "." and start new sentence "Instead..."
$1 \quad 1 \quad$ replace "the reduction" with "a reduction"
2 replace "is due.." with "would be due..."
3 replace sentence beginning with "The drop.." with "In general the change in the composite $\left|\rho_{\mathrm{hv}}(0)\right|$ depends on the relative reflectivities, differential reflectivities, and the $\left|\rho_{\mathrm{hv}}(0)\right| \mathrm{s}$ of the precipitation types."
$0 \quad 1 \quad$ insert "...the presence...."; add comma after "...diameter),"
change "survy" to "survey"
change title of section 8.6 to: "Size Distributions derived from Doppler Spectra"
$19 \quad$ "spectrum-broadening contributions"
110 change to: ".....from Eqs. (3.6) and (4.31), can be....
06 add comma after "At this wavelength,"
Fig. 8.36 add to figure caption: " $N(D)$ is in $\mathrm{m}^{-3} \mathrm{~mm}^{-1}$ if 10 is added to the ordinate values."

111 "shelf-like cloud"
change to read: "...[from Eq.(8.5)] to account..."
25 "...phenomena are..."
Fig.9.4b along the x axis the value "East 49.7" needs to be "East 44.7"
2 12,14 remove periods in time abbreviations (i.e., "CST", not C.S.T.", etc.) here and throughout the text

1 2,3 Delete hyphens between "three-Doppler" and "dual-Doppler" and add radar after "dual Doppler radar"

11 change this paragraph to be a continuation of the previous one and modify it to read: "where $\boldsymbol{\theta}_{e}^{\prime}$, the angle between the radar beam and the tangent plane below the data point, is the sum of"

215 Sentence beginning with "If the ground below..." should be changed to read: "Eq.(9.11) can be generalized (i.e., wind can have any z dependence) and yet greatly simplified if the wind is linear on spherical surfaces and γ_{o} depends only on z (Problem 9.9)."

19 insert v_{z}
33 "...if data are..."

1
10
16 change to "wind above it."
33 interchange word order to read "..by simultaneously displaying...."

Eq (9.33) subscript on right side should be " t " instead of " r "
111 change "whch" to "which"
27 add comma after "...Arkansas,"
Fig 9.43 delete the last sentence of the caption
14 add comma before ", causing it to flow...."
22 change comma to semicolon after "...atmosphere; however,"

10,11 change to read: "where the indices ii identify either the transverse or the longitudinal component. Furthermore, because $R_{\ell t}(0)=R_{t t}(0) \equiv R(0)$ for isotropic turbulence, $\rho_{o i}$ is the only parameter that differs for transverse and longitudinal correlations. For small values of $\rho \ll \rho_{o i} \ldots$."

Eq.(10.30) change to read:

$$
\begin{equation*}
D_{i i}(\rho) \approx 2 R(0)\left[\Gamma(1-v) / \Gamma(1+v]\left(\rho / 2 \rho_{o i}\right)^{2 v} .\right. \tag{10.30}
\end{equation*}
$$

Eq.(10.32) change to read:

$$
\begin{equation*}
C_{i i}^{2}=\left[3 x 2^{1 / 3} \Gamma(2 / 3) / \Gamma(1 / 3)\right] R(0) \rho_{o i}^{-2 / 3} \tag{10.32}
\end{equation*}
$$

delete last sentence beginning with " Furthermore,.."
Eq.(10.37) change to read:

$$
R_{i i}\left(\rho, \tau_{1}=0\right)\left[1-\left(\rho / \rho_{o i}\right)^{2 / 3}\right]
$$

Eq.(10.38) change the first equal sign to \approx.
44 modify to read: "....where $K \rho_{\mathrm{o}} \gg 1$ has been assumed, and the subscript..."

Eq.(10.59) change to:

$$
\begin{equation*}
\boldsymbol{\sigma}_{p}^{2}=\left\langle\boldsymbol{\sigma}_{t}^{2}\right\rangle+\sigma_{\bar{v}}^{2} \tag{10.59}
\end{equation*}
$$

$0 \quad 10 \quad$ change to read: "the ensemble average of σ_{t}^{2} and the variance of the turbulent velocities weighted spatially by..."

11 delete the phrase "is independent of the weighting function but" in the first sentence.
"In addition.....energy, the two variances σ_{t}^{2} and $\sigma_{\bar{v}}^{2}$ have relative magnitudes that depend on $I_{n}\left(\boldsymbol{r}_{\boldsymbol{o}}, \boldsymbol{r}\right) \eta(\boldsymbol{r})$. These two variances describe..".

405222 replace σ_{v} with σ_{t}

Eqs.(10.61), (10.62) replace $\sigma_{\mathrm{v}}{ }^{2}$ with σ_{t}^{2}
$31 \quad$ replace $\sigma_{v}{ }^{2}(\phi)$ with $\sigma_{t}^{2}(\phi)$
28 replace $\left\langle\sigma_{v}^{2}\right\rangle$ with $\left\langle\sigma_{t}^{2}\right\rangle$
Eq.(10.65) replace $\left\langle\sigma_{v}^{2}\right\rangle$ with $\left\langle\sigma_{t}^{2}\right\rangle$

410 last last change sentence starting with "An example.." to "In Fig.10.10 is an example of a radial velocity field in a thunderstorm which exhibits areas of large shear."

41103 change to "...shear region is near the mesocyclone..."

41222 change "plane surface" to "linear model"
5 change "plane" to "model"
31 change "surface" to "model"
3 insertion: "...origin of the fitting surface."
41306 change to read "...to these uniform shears.."
$4140 \quad 1 \quad$ space between "the up-" and "(down-)"
insert at the end of the paragraph: "Pilots consider turbulence to be severe if $\mathcal{E} \geq 0.1 \mathrm{~m}^{2} \mathrm{~s}^{-3}$ (Trout and Panofsky, 1969)"

Fig. 10.18

0

2 13,16

0
$0 \quad 5$

Eq. 11.27

20

21
$0 \quad 16$

1 last

4 following Eq.(11.33), the equation
insert the following after Eq.(11.31c): , here and henceforth we drop the $e^{j \omega}{ }^{j} t$ term.
change to: Applying the divergence theorem to $\phi \mathbf{u}$, and the argument

Eq.(11.42) the third unit vector $\mathbf{a}_{\mathrm{r} 0}$ should be \mathbf{a}_{to}

4 last this line should end with a comma
$01 \quad$ change "Equation (11.46)" to "Inequality (11.46)"

24 change to read: "....smaller subvolumes (i.e., Bragg scatterers having dimensions. \qquad ."

5,6 change to read: " ...The scattered fields from these subvolumes add incoherently...."

43702 for consistency change "scatter" to "scattering"
4 should read "substitution of Eqs...."
to avoid possibly confusing the $\underline{B r a g g}$ wavelength with the outer scale (e.g., Chapter 10 and Fig.11.8), change all Λ_{o} to Λ_{B}, and all K_{o} to K_{B}; also change τ_{o} to τ_{B}.

Eq.(11.79) $\quad L_{\mathrm{z}}$ should be L_{x} only in the first line of Eq.(11.79).
13 change "when" to "if"
25 to have Fig. 11.8 relate explicitly to the text, it is suggested to modify this line to read: ".... $2 L_{\mathrm{y}}, 2 L_{\mathrm{z}}$, and assume $\mathbf{q}=\mathbf{K}-\mathbf{a}_{\mathrm{z}} k_{\mathrm{o}} m_{\mathrm{z}} . "$

27 after Eq.(11.85a) replace "whose first" with "where $q_{\mathrm{z}}=K_{\mathrm{z}}-k_{\mathrm{o}} m_{\mathrm{z}} \cdot F(\mathbf{q})$ has first zeros at

$$
\begin{equation*}
K_{x}= \pm \frac{\pi}{L_{x}}, \quad K_{y}= \pm \frac{\pi}{L_{y}}, \quad K_{z}=k_{o} m_{z} \pm \frac{\pi}{L_{z}} \tag{11.85b}
\end{equation*}
$$

The region of wavenumber space over which $F(\mathbf{q})$ is appreciable is of the order of

$$
\begin{equation*}
\frac{\pi^{3}}{L_{x} L_{y} L_{z}}=\frac{8 \pi^{3}}{V} \equiv \Upsilon \tag{11.86}
\end{equation*}
$$

$450 \quad 1 \quad 6 \quad$ change to "Because $m_{\mathrm{x}}=m_{\mathrm{y}}=0$, the point $\left(K_{\mathrm{x}}=0, K_{\mathrm{y}}=0, K_{\mathrm{z}}=k_{\mathrm{o}}|\mathbf{m}|\right)$ locates the position...."

3
16
change "scatter" to "scattering"
modify sentence beginning with "The assumptions needed are...." to read: "The assumption needed is that the Bragg scatterer's correlation lengths transverse to \mathbf{m} (Fig.11.10) must satisfy....". (Comment: the first assumption in the unmodified sentence is already used to derive Eq.11.80; see lines 5-6, p.447!)

Eqs.(11.105)
and (11.106) The subscript "c," should be replaced by subscript "B"
Eq.(11.106) the square root radical sign needs to be extended over π.
12 Here and everywhere in the text remaining throughout the book, replace "blob(s)" with "Bragg scatterer(s)".

12,13 change subscript " c " to " B "
14 Insert the sentence: "A Bragg scatterer is defined by correlation lengths of the refractive index irregularities at the Bragg wavelength; these lengths are inversely proportional to the width of $\Phi_{n}(\boldsymbol{K})$ at the Bragg wavenumber."

Eq.11.107 replace the comma at the end of this equation with a period
Fig.(11.10) Here and everywhere in the text remaining throughout the book, replace "scattering blob(s)" with "Bragg scatterer(s)". For example, the caption should read "A Bragg scatterer with a size determined by its correlation lengths. The Bragg scatterer is assumed to..". Furthermore, figure 11.10 needs to be redrawn to change "Scattering blob" to "Bragg scatterer", and subscripts "c" to "B"
$0 \quad 0$
0
delete the first line and modify the first sentence to read: "The phase is quadratic.....to \mathbf{m} and nearly linear in \mathbf{r} along $\mathbf{m} . "$. After this sentence insert the following: "But under condition (11.107), the phase in the plane perpendicular to \mathbf{m} is essentially uniform across the Bragg scatterer.

6 change subscript "c" to "B"
Eq.(11.109) the label is missing from this equation
02 the phrase "of the common volume V_{c} " should be placed after Eq.(11.111), but delete " V_{c} " in this phrase.

Eq.(11.115) $\quad \mathrm{P}_{\mathrm{r}}$ " should be " P_{t}. Absolute sign around $\mathrm{W}(\mathrm{r})$ should be removed
1 last because 10! might be confused with ten factorial, change " 10 " to "ten"
24 make a footnote after $\sqrt{2}$ to read: z^{\prime} is the projection of r^{\prime} onto the z axis; not to be confused with z^{\prime} in Fig. 11.12 which is the vertical of the rotated coordinate system used in section 11.5.4.

1 4-9 delete the third to fifth sentences in this paragraph and replace with the following:

Condition (11.124) is more restrictive than (11.106); if (11.124) is violated the Fresnel term is required to account for the quadratic phase distribution across the scattering volume, whereas (11.106) imposes phase uniformity across the Bragg scatterer. Bragg scatterers outside the first Fresnel zone have a relatively large change of phase across them compared to those at the same height but within it. Condition (11.124) has the following physical interpretation: Bragg scatterers with transverse correlation lengths larger than an antenna diameter scatter mainly within a solid angle smaller than the transmitter's beam width, and the change of phase across the Bragg scatterer causes radiation to principally scatter in directions other than to the transmitter. Hence scatterers near the periphery of the illuminated area do not contribute as significantly to backscatter as those closer to the beam axis. The Fresnel term accounts for this diminished contribution from Bragg scatterers (also see comments at the end of section 11.5.3).

9

463 Eq.(11.133)
5,13 delete "linear"
7 delete the sentence beginning with "Only when this...." (comment: this sentence gives an erroneous interpretation because we have stated on p.459, para.2, that in the far field the resolution weighting function can be ignored if the Fresnel term can be ignored; that is, in the far field the sampling function $F(\mathbf{K})$ is principally dependent on the Fresnel term. Because of the reciprocal relations between spectral widths and correlation widths, however, even if the Fresnel term in Eq.(11.122) can be ignored, its spectral counterpart $F(\mathbf{K})$ cannot be ignored)
to be consistent with Fig.11.12, Eq.(11.133) should read:
$\boldsymbol{\delta}_{x}^{\prime}=\boldsymbol{\delta}_{x} \cos \psi+\boldsymbol{\delta}_{z} \sin \psi, \quad \boldsymbol{\delta}_{y}^{\prime}=\boldsymbol{\delta}_{y}, \quad \boldsymbol{\delta}_{z}^{\prime}=-\boldsymbol{\delta}_{y} \sin \psi+\boldsymbol{\delta}_{z} \cos \psi$

46417 add comma after "...refractive index, it is...."
46512 change to "...passive additive (e.g., chaff) is..."

2 last add comma before ", and thus"
$3 \quad 6-8$

318

Fig. 11.23d
211

Fig. 11.35 equation
citation for the Bebbington et al. reference should be IEE, not IEEE
interchange the order of the Browning references
Refer. add: Kristensen, L., 1979: On Longitudinal spectral coherence. Boundary Layer Meteorol., 16, 145-153.

Nutten, et al. Remove redundant "T" in "TThe Ronsard radars"

Rinehart, 1991: "Grand Forks", not "Grandd Forks"
alphabetically, Seliga follows Sekhon
15 The year for the Sachidananda and Zrnic reference should be 1989 instead of 1988, and the volume number should be $\mathbf{6}$ instead of 4.

23 change "Doviack" to "Doviak"
Index "Beamwidth, one-way" citation should read 32-34.

Index
add "Far field, antenna, 32; scattering volume,435-436.
12 Insert "Bragg scatterer's" in front of "correlation"
change entry for Dwell time to: Dwell time, 124,127 (comment: delete the phrase "sample time averaging" and change page numbers)
index add after "Matched Filters ...", 77, 80
index Scattering geometry, common volume scatter: change page numbers to 453-456.
index add: Scatter angle, 436-437.
index Resolution volume, range weighting, 75-79; delete this entry (comment: nowhere on these pages is there a reference to the resolution volume). Replace with: Resolution volume, weather radar equation, 80-81.
index
add: "Spectrum width, weighted velocity deviations, 110: as a sum, 116118."
index

The following comments and suggested insertions should clarify the text at the indicated places:

since there is considerable confusion concerning the use of the unit dBZ, and because some writers use dBz notation we should provide a footnote on this page that states the following:

Although the logarithm decibel dB is not an SI unit and according to SI rules should not be modified by the attachment of a qualifier such as in dBZ, dBZ has been accepted by the AMS as the symbol for the "unit" decibel of reflectivity factor referred to $1 \mathrm{~mm}^{6} \mathrm{~m}^{-3}$ (Bulletin, 1987, p.38). Furthermore, the dB has been accepted widely as the symbol of the decibel as a "unit" (e.g., The International Dictionary of Physics and Electronics, D. Van Nostrand Co. Inc., 1961, 1355 pp), and appendages to it usually refer to the reference level of the parameter being measured; e.g., dBm is the decibel unit for $10 \log _{10} \mathrm{P}$ where P is the power referenced to milliwatts (e.g., Reference Data for Radio Engineers, $5^{\text {th }}$ Edition, p.3-3).

1131 1-4 change to read: "......associated with spatially dependent steady wind $\mathrm{v}_{\mathrm{s}}(\mathbf{r})$ and turbulence $\mathrm{v}_{\mathrm{t}}(\mathbf{r})$. Each contributes to the width of the power spectrum (uniform steady wind, contributes to the spread..... V_{6}; steady wind also brings...."

136 footnote
change to read: To avoid occurrence of negative \hat{S} sometimes only the sum is used but multiplied with $S \hat{N} R /(S \hat{N} R+1)$

Fig.8.13 Figures a and b should have the same horizontal length
section 10.2.1: we introduce the parameter $\Phi_{v}(\mathbf{K})$ in Eq.(10.46) but define it later in Eq.(10.48). We should place Eq.(10.48), but label it (10.46), before Eq.(10.46) which now becomes Eq.(10.47). Other adjustments should be made to correct equation numbers; I believe these are minor.

4440
2-3 Gossard in "Radar in Meteorology" (Atlas, editor), states that we define stochastic Bragg scatter in our text, but it is not defined there. Therefore, we suggest deleting the words "expected (i.e., time or ensemble average)" on line 2 and, on line 3 , the words "the receiver location". Then change line 3 to read:"....statistical properties; this scatter is defined as stochastic Bragg scatter. The...."

45403 Insert: "But if condition (11.107) is satisfied, the phase is essentially uniform across the Bragg scatterer in the plane perpendicular to \mathbf{m}, although it is linear in directions parallel to \mathbf{m}."

46018 insert the following parenthetical phrase after the stating "...is linear across the Bragg scatterer": (yet uniform in a direction transverse to \mathbf{m})
$4610 \quad 11$ insert after "...in space.": "This is a consequence of the greater importance of the Fresnel term relative to the resolution volume weighting term (i.e., in Eq.11.122) along the transverse directions."

Index
for usefulness add: Antenna; far field, 435-436, 459.

Some definitions:

Radial: A radial is the center of a band of azimuths over which the radar beam scans during the period (i.e., the dwell time) in which a number M of pulses are transmitted and echoes received and processed. M echo samples at each range are processed to obtain spectral moments (e.g., reflectivity, velocity, and spectrum width) which are assigned to the center azimuth. A "radial of data" is usually the set of spectral moments at all the range gates (or resolution volumes) along the assigned azimuth.

Additional errata to be reviewed by Dusan

page para line
$136 \quad 4 \quad 1-5 \quad$ Change to read:
"If spectra are not Gaussian, Rummler (1968) has derived an estimator valid for small spectrum widths (i.e., $\sigma_{v n} \ll 1$), This estimator is

At large widths Eq. (6.29) has an asymptotic ($M \rightarrow \infty$) negative bias which causes an underestimate of the true spectrum width (Zrnić, 1977), whereas. \qquad is Gaussian)"

At the end of this paragraph, add the following:
"By expanding the argument of the logarithm in Eq. (6.27) for values of $\left|\hat{R}_{1}\right|$ close to \hat{S}, an estimator similar to Eq. (6.29) is obtained (i.e., the only difference is that the term in the absolute brackets is $\left.\left(\hat{S} /\left|\hat{R}_{1}\right|\right)-1\right)$. This latter estimator has an asymptotic positive bias, almost as big in magnitude as the negative bias found for Eq. (6.29)."

Added Reference:

Rummler, W. D. (1968), Introduction of a New Estimator for Velocity Spectral Parameters. Technical Memorandum, April 3, 1968. Bell Laboratories, Whippany, New Jersey 07981.

[^0]: ${ }^{1}$ The authors thank Dr. R.E. Rinehart of the University of North Dakota for many of these entries.

