Dark Matter and Data (2007 will be here in no time)

Edward A. Baltz (KIPAC)

TeV Particle Astrophysics @ Fermilab

Dark Matter Annihilations

- WIMP models predict annihilation rates that may be observable
- Clearest signature is gamma ray lines (γγ, γΖ): universally loopsuppressed
 - In SUSY, BR as large as 0.001
- Hadronic channels usually dominate
 - pions decay into photons, leptons
 - baryons are a relatively small fraction
- Neutral pion decays expected dominate the gamma continuum
- Spectrum is hard at ~ 1 GeV
 - this may allow discrimination from astrophysical backgrounds

The Galactic Center

- EGRET observed a power-law point source
- HESS sees emission at energies > 10 TeV
- Black hole may confuse any dark matter signal
 - lines are always clear, but may not be bright enough
- Large astrophysical uncertainties
 - density profile?
 - adiabatic contraction?
 - "spike" around black hole?
 - disruption of cusp/spike?

Substructure in the Milky Way Halo

- CDM models predict a significant amount of substructure
 - "why don't galaxies look like clusters?"
- Satellites away from the galactic plane may be easier to see in annihilations – only extragalactic background
- Are they bright enough?
 - N-body simulations
 - semi-analytic models
- We use method of Taylor & Babul 04 (semi-analytic) to simulate Milky Way size halos (EAB, E. Bloom, J. Taylor, L. Wai, J. Chiang, in progress)
 - bulk halo (NFW)
 - satellites down to 1e6 solar masses

Mock Milky Way Halo

Visibility of Gamma Continuum

- Astrophysical input is the squared density
 - $J = \int \rho^2 dl / [(0.3 \,\text{GeV}\,\text{cm}^{-3})^2 (8.5 \,\text{kpc})]$
- J >~ 1000 is interesting
 - 100 GeV, 3e-26 cm^2 s^-1
 - ✤ 50 N / m^2 yr deg^-2
- Most models of the halo have J this large or larger
 - NFW easily makes this
 - isothermal with 1 kpc core
 - many satellites exceed this
- Distinguish satellites from point sources?

- Possible (probable?) scenario: GLAST survey finds candidate satellites, lines not observed
 - follow-up with ACTs
 - huge effective area, tiny FOV
 - energy resolution worse
- To do:
 - simulate detections of diffuse sources
 - simulate sub-GeV spectrum
 - can we pull this all together?

Studying Dark Matter at the LHC

- LHC dark matter search is very promising
 - properties measured well
 - ILC is a huge improvement
 - BUT, lifetime limit is ~ μs
- Can a candidate found at LHC be identified with a candidate found with GLAST, CDMS, etc? (and vice-versa?)
- Build a consistent picture
 - accelerator measurements, relic density, direct and indirect detection

Edward A. Baltz (KIPAC)

TeV Particle Astrophysics @ Fermilab

Dark Matter Observables at the LHC

- Strategy (work done with M. Battaglia, M. Peskin):
 - Benchmark SUSY models
 - ILC cosmology points
 - What does LHC measure at each point, with what error?
 - Explore likelihood surface for nearby models
 - calculate relevant quantities like relic density, direct detection rate, annihilation cross section
 - Find measurement accuracy for these astrophysically interesting quantities

- SUSY scans: benchmark points are mSUGRA
- Scan is more free: MSSM with 24 parameters at the electroweak scale
 - gaugino masses (3)
 - mu, m_A, tan beta (3)
 - A parameters (3rd gen) (3)
 - squark masses (3L, 6R)
 - slepton masses (3L, 3R)
- Use MCMC to explore likelihood surface
 - adaptive covariance matrix

Markov Chain Monte Carlo

- Efficient technique to sample large-dimensional parameter spaces
 - linear in D
- Use covariance matrix of current samples to propose new samples
 - this is just the local shape of the likelihood surfaces
- Chains of models have statistics according to true distribution
 - check convergence with power spectrum of chains

ILC Cosmology Benchmark Points

- LCC1: bulk region
- LCC2: focus point
- LCC3: stau coannihilations
- LCC4: Higgs resonance
- Low mass spectra
 - squarks heavy for LCC2
- Results for LCC1 and LCC2
 - relic density
 - direct detection rate
 - annihilation cross section

- What are the measurements?
 - neutralino masses, <u>splittings</u>
 - chargino masses (ILC only)
 - squark/gluino masses (< 2 TeV)
 - ILC improves measurement through better neutralino masses
 - stops only at ILC
 - slepton masses if < 300 GeV</p>
 - production cross sections (ILC only, polarized beams)
 - neutralino, chargino, selectron pairs
 - 3rd generation sfermions (L-R mixing)
 - Higgs masses (light, A)
 - → BR(b→sγ)

LCC1: Bulk Region

LCC1: Bulk Region

Edward A. Baltz (KIPAC)

TeV Particle Astrophysics @ Fermilab

LCC2: Focus Point Region

- Neutralinos are mixed: 107, 166, 190, 295 GeV
- Squarks, sleptons at 3.3 TeV, unobserved at LHC
- Gluino at 850 GeV
- Light Higgs at 119 GeV
- Heavy Higgses at 330 GeV

LCC2: Focus Point Region

Edward A. Baltz (KIPAC)

TeV Particle Astrophysics @ Fermilab

Summary

- 2007 will be a big year for dark matter
- GLAST all sky survey may find WIMP annihilations in the Milky Way substructure (resolved, flat spectrum sources)
 - follow-up with ACTs: hunt for the lines
- LHC may find a candidate dark matter particle, other states
 - measure properties relevant to dark matter
 - improve measurements by direct detection, relic density
 - ILC much more accurate
- Accelerators -> annihilation cross section -> density profile -> galaxy formation!
- Hopefully we can form a consistent picture