The SWIFT UVOT Software Guide

Version 2.2
March 2008

S. Immler, M. Still, P. Boyd, S. Holland, F. Marshall, W.
Landsman, G. Rohrbach, M. Tripicco, R. Wiegand

NASA /GSFC — Swift Science Center

swifthelp@athena.gsfc.nasa.gov

ii

Contents

1 Introduction

1.1
1.2
1.3

14
1.5
1.6

Structure of this document
Software requirements
Data and science modes
1.3.1 Datamode
1.3.2 Filter
1.3.3 On-chip binning
1.3.4 Window size
1.3.5 Window location
Data archive and completeness
Filenames and archive structure

Exposure Time Keywords

2 UVOT Data Analysis Recipes

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Image Mode data reduction
Event mode data reduction
Summing a series of images
Extracting source counts from an image
Screening event data
Extracing an image from event data . .
Extracing a lightcurve from event data .
Extracing a spectrum from event data .
Lightcurve analysis
Extracting a grism spectrum
Fitting grism data
Aspect Correction

Broad-Band Spectral Fitting

3 Image Tools

3.1

UVOTBADPIX

iii

12
15
16
17
19
20
21
21
24
25
30
33

39

iv

3.2 UVOTMODMAP e 41
3.3 UVOTFLATFIELD e e e 44
3.4 UVOTFLUX . . . e 46
3.5 SWIFTXFORM 47
3.6 UVOTEXPMAP e 52
3.7 UVOTDETECT e e s e 55
3.8 UVOT2PHA . . . 57
3.9 UVOTMAG o 60
3.10 UVOTSOURCE e s 61
3.11 UVOTMAGHIST s 65
3.12 UVOTCENTROID e e 68
3.13 UVOTIMGRISM 72
3.14 UVOTRMFGEN o 76
3.15 UVOTIMSUM e e e 78
3.16 UVOTSEQUENCE e 79
3.17 UVOTIMAGE e 80
3.18 UVOTSKYCORR 82
3.19 UVOTASPCORR e 84
Event Tools 87
4.1 UVOTSCREEN . . . e 87
4.2 UVOTEVGRISM s e 89
FHelp 93
5.1 UVOT2PHA . . . 93
5.2 UVOTAPERCORR s, 95
5.3 UVOTASPCORR s 99
54 UVOTATTCORR s s e 100
55 UVOTBADPIX e 102
5.6 UVOTCENTROID e 103
5.7 UVOTCOINCIDENCE e 107
5.8 UVOTDETECT s e e 109
5.9 UVOTEVGRISM e 111
5.10 UVOTEVTLC e e e s e s 113
5.11 UVOTEXPCORR s s 116
5.12 UVOTEXPMAP e 118
5.13 UVOTFLATFIELD e e e e, 120

5.14

UVOTFLUX . . . e e s e 121

Swift UVOT Software Guide

5.15 UVOTIMAGE e
5.16 UVOTIMGRISM e
5.17 UVOTIMSUM e

5.18 UVOTLSS .
5.19 UVOTMAG

520 UVOTMAGHIST e
521 UVOTMODMAP e

5.22 UVOTPICT

5.23 UVOTPRODUCT e e
524 UVOTRMFGEN e
5.25 UVOTSCREEN
526 UVOTSEQUENCE e
5.27 UVOTSHIFTPHA e
528 UVOTSKYCORR
529 UVOTSOURCE e e s

5.30 UVOTTFC
6 Glossary

7 References

124
126
129
132
133
134
137
140
141
144
145
146
148
150
151
161

165

167

vi

Document History

Table 1: Document history.

Date Version | Author Comment
2004-Nov-19 | 1.0 Martin Still Swift 1.0 pre-launch version.
Software has not been tested on flight data.
Recipes use data based on simulated telemetry.
2005-Mar-10 | 1.1 Martin Still Swift 1.3 release version after feedback from the Science
Team.
2005-Aug-11 | 1.2 Martin Still Update for HEAsoft 6.0.2 after feedback from community.
New tools added.
2006-Nov-18 | 2.0 Stefan Immler | Update for HEAsoft 6.1 and new tools.
Converted from Word->Wiki->LaTeX->HTML
2006-Jun-18 2.1 Stefan Immler | Update for HEAsoft 6.2
Changes for UVOTSOURCE, UVOTMAGHIST,
New tools added:
UVOTAPERCORR and UVOTCOINCIDENCE
2008-March-3 | 2.2 Stefan Immler | Update for HEAsoft 6.3 and 6.4 and new tools

Chapter 1

Introduction

1.1 Structure of this document

This document describes the software, both developed and adopted, that we recommend for the
reduction and analysis of UVOT data. In Chapter 1 we briefly describe the software requirements
for your computer, the data formats and the structure of the Swift archive, although note that
these items are all discussed in more detail in other documents.

The next two chapters describe the software from differing perspectives. Chapter 2 provides a
set of ABC recipes that can be followed in sequence. The end result is to produce science quality
products from raw spacecraft data. These recipes are far from exhaustive. Their aim is to provide
a rough guide to UVOT data analysis, and should be used as the spring board for users who want
to become familiar with software.

Chapters 3 and 4 are a more detailed look at the UVOT tools developed for this mission. It is
envisioned that these sections will used for reference long after the user stops following the ABC
recipes of Chapter 2 rigorously. They detail the full functionality and I/O of each tool.

An important note to make is that the philosophy of UVOT software development has been
a conservative one. The goal has been convert the raw data into a form readily acceptable by
standard data analysis tools as quickly as possible. We use these standard tools liberally in our
examples from Chapter 2 but do not reproduce the documentation for these tools here. Instead
URL links are provided to existing web material, wherever appropriate.

Please forward comments, suggestions and bug reports for this document and the UVOT soft-
ware to the Swift Science Center at swifthelp@athena.gsfc.nasa.gov.

1.2 Software requirements

The software suite HEASoft is required to follow the steps in this guide. It is recommended
that users download this package and keep it up-to-date since it is updated on timescales of
weeks. HEASoft contains general and mission-specific tools for past and current high-energy
astrophysics space mission. Many of the generic tools for file viewing, imaging, photome-
try and spectroscopy will be used in our recipes. Download instructions can be found at
http://heasarc.gsfc.nasa.gov/docs/software/lheasoft. The HEASoft package also contains Swift-
specific tools, including the UVOT software described in Chapters 3 and 4.

One further package, the image viewer ds9 (http://hea-www.harvard.edu/RD/ds9) will be re-
quired to follow the recipes precisely.

4

1.3 Data and science modes

All data files conform to the current OGIP (Office of Guest Investigator Programs) FITS (Flexible
Image Transport System) standards and conventions. Details of these conventions can be found at:

http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/ofwg_intro.html.

The file headers are often commented, both to give a brief description of each keyword, and,
occasionally, slightly more detail is provided in COMMENT entries. The processing history of
these files are recorded by the HISTORY keywords. Exposure data can be fully described using
five criteria, which we summarize here.

1.3.1 Data mode

There are three basic data modes: Image, Event and Image&Event. Image mode provides a two-
dimensional sky map with a start and stop time for the exposure, but no arrival times for individual
events. Event mode provides position and time information for each recorded event. Image&Event
mode provides both types of data from the same exposure. The two windows need not have the same
size, location or binning. Data mode is the most basic criteria into which data is separated within
the HEASARC archive. There are separate files for Image and Event data. The Image&Event
mode data are split into their constituent parts and integrated into the separate Image and Event
Level I products. Science users never see this process.

1.3.2 Filter

There are 11 slots in the filter wheel in front of the UVOT camera. The full list of filters and their
character codes, used within the file name scheme is provided in Table 1.3.1. Filter type provides
the secondary criteria with which to separate data in the archive. There will be one Level I file for
every filter used for Image mode exposures during the observing sequence, and one file for every
filter used during Event mode observations in the sequence.

Table 1.3.1: UVOT filter character codes.

Filter keyword! | Filter code?
U uu
B bb
A% Vv
UVW1 wl
UvVM2 m2
UVW2 w2
WHITE wh
VGRISM gv
UGRISM gu
MAGNIFIER mg
BLOCKED bl
UNKNOWN? un

'From the header keywords within the file.
2From the filename.
3The UNKNOWN filter type occurs when the filter wheel has got lost.

Swift UVOT Software Guide 5

1.3.3 On-chip binning

UVOT images can be binned in four different configurations, 1x1, 2x2, 4x4 or 8x8, although only
the GeNi image, which is transmitted through the TDRSS/GCN system, is currently binned 2x2.
Event mode data will always be unbinned (1x1).

1.3.4 Window size

The size of the science window, in raw pixels, can change at any time during the observing sequence.

1.3.5 Window location

The science window location can change at any point during the observing sequence.

1.4 Data archive and completeness

Publicly available Swift data can be downloaded from two separate locations. The main facility
will be the HEASARC:

http://heasarc.gsfc.nasa.gov/docs/corp/data.html

An observing sequence will populate the archive once it has been fully telemetered to the
ground and reprocessed at the SDC (Swift Data Center). For a brief period after a burst (~1
week), preliminary data will be available at the SDC repository:

http://swift.gsfc.nasa.gov /sdc

This is, of course, to meet the requirement that Swift data be publicly available as soon as
possible. However, when using the repository, be aware that the entire observing sequence may
not yet have been telemetered. Early versions of these files may differ from those that eventually
populate the HEASARC archive at a later date.

The archive is populated by three separate levels of data product. Table 1.4.1 describes the
distinction. Note that there is no external way to tell which product belongs to which level, but
we provide some pointers in Sec 1.5.

Table 1.4.1: Data levels contained in the HEASARC archive

Level | Description

I Raw data. Generally the scientist need start their analysis from Level I products
only if there has been improvements in the telescope calibration since the most
recent data reprocessing, or if non-standard data screening is intended. Images are
stored in raw detector coordinates. Event data are unscreened and recorded in raw
detector coordinates.

II Reduced data. It is envisaged that most scientists will start their analysis from the
Level IT products. The UVOT reduction pipeline has been performed on images and
event tables. Images are stored in sky coordinates (RA2000, Dec2000), although
grism data is also stored in corrected detector coordinates. Exposure maps for
each individual image are available. Columns containing corrected detector and sky
coordinates have been populated. Event data has been screened for standard bad
times, e.g., SAA passage, Earth limb avoidance.

111 High-level data products. Level III products are intended to be quick-and-dirty
representations of many of the products that the scientist would routinely create
during their analysis, e.g., time-averaged images, light curves, spectra etc. Since
they are created non-interactively, they are not intended as publishable products
but as useful guides to the scientist. The number and type of Level III products
in the archive will be determined by the confidence in any non-interactive burst
detection and/or the time since the burst. More Level III products will populate
the archive at an early stage if the burst has been identified during standard pipeline
processing. Products will take longer to arrive if interactive analysis is required to
identify the burst.

1.5 Filenames and archive structure

The UVOT instrument provides a unique set of logistical problems for file formatting. The stan-
dard observing sequences for bursts are complex, yielding a large number of exposures, with a wide
variety of science modes. Formatting schemes also require the flexibility to cope with alterations
in the observing sequences uploaded after the start of the sequence and alterations in the science
windows during an exposure. A further complication is provided by Swift telemetry constraints.
Data is telemetered down in non-sequential order and sequences are not being completely teleme-
tered down until days after the burst. The archiving scheme minimizes the number of data files
and organizes the exposures sequentially. The caveat is that many files will contain image or event
data with a variety of science windows (varying in position, size, binning and exposure time). In
terms of obtaining accurate images and exposure times from the data, it is crucial that the scientist
is aware of this issue and analyzes their data accordingly. Table 1.5.1 lists some of the common
data files and their location. These can be opened and inspected by, e.g., the FITS viewer fv,
which comes with the obligatory HEASoft software distribution. Other instrument engineering
and housekeeping data are stored in the /uvot/hk folder, which are not discussed here.

Table 1.5.1: Selection of UVOT archive files. The characters in square brackets flags to which
data level each product belongs.

Swift UVOT Software Guide 7

Filename | Description

Directory: uvot/image

sw00000001001uuu_rw.img | U images in raw units (pixels) [I]

sw00000001001ubb_rw.img | B images in raw units (pixels) [I]

sw00000001001uvv_rw.img | V images in raw units (pixels) [I]

sw00000001001uvv_dt.img | V images in detector units (mm) [
sw00000001001uvv_sk.img | V images in sky units (RA, Dec) [
sw00000001001uvv_ex.img | V images exposure maps [II]

Directory: uvot/event

sw00000001001uvvpo_uf.evt | Unscreened V filter event tables [I]

sw00000001001uvvpo_cl.evt | Screened V filter event tables [II]

Directory: uvot/product

sw00000001001u_sk.img Co-added sky images (all filters) [III]
sw00000001001u_ex.img Co-added exposure maps [I1I]

sw00000001001uvvskim.gif | V filter co-added gif sky image [III]

GRB light curve derived from V Event data [III]
sw00000001001u.his Magnitude history derived from Image data [III]
sw00000001001u.cat Catalogue of detected sources, arranged by filter [I11]

Directory: uvot/auxil

sw00000001001sat.fits Attitude history file [I]
sw00000001001sao.fits Orbit and attitude filter data [I]

1]
1]

1.6 Exposure Time Keywords

UVOT science data files include a number of special keywords that are used to calculate the total
exposure time. These keywords contain information about the CCD read-out time, as well as the
amount of data lost due to several possible effects. The keywords, and their role in determining
the total exposure time, are described below.

This is how TIME keywords for UVOT raw images are defined as of the UVIT2FITS telemetry
conversion software version V3.15+:

TSTART = The actual start time (from the exposure report packet in the telemetry)
TSTOP = The actual end time (from the exposure report packet in the telemetry)
TELAPSE = TSTOP - TSTART

FRAMTIME = The calculated frame exposure interval which is a function of the UVOT detec-
tor hardware window size. This is usually the full 2048 by 2048 but can be smaller for exposures
in the White filter, to reduce telemetry volume.

BLOCLOSS = The time lost if the exposure began with the BLOCKED filter in place but was
later commanded to a different filter during the exposure. Effectively a dead time. Could be in
error by 0-10+ sec due to the timescale on which filter position is available in the housekeeping
data. This keyword is present only if the value is nonzero, and should only rarely be present. It is
nonzero for some grism observations of RS Oph.

TOSSLOSS = Time lost when the onboard shift-and-add algorithm, which corrects image posi-
tions for satellite drift, tosses event data completely off the image. Effectively a dead time. Loss of
Aspect Following packets in the housekeeping stream can cause this estimated value to be incorrect.

STALLOSS = Time lost when the DPU stalls because the count rate is too high. Estimated
from ((TELAPSE/FRAMTIME) - "EXP report total frames”) times FRAMTIME. Set to zero if

8

less than 1 sec.
ONTIME = TELAPSE - TOSSLOSS - STALLOSS - BLOCLOSS (as of UVOT2FITS V3.16)

BLOCLOSS was accounted for in the DEADC value for UVOT2FITS v3.15. It was removed
from the DEADC calculation and treated like all other time losses as of UVOT2FITS V3.16.

LIVETIME = (ONTIME * calculated dead fraction) - BLOCLOSS for UVOT2FITS v3.15.
LIVETIME = ONTIME * calculated dead fraction as of UVOT2FITS V3.16.

EXPOSURE = LIVETIME

DEADC = EXPOSURE / ONTIME

EXP_UNC = The uncertainty in the EXPOSURE keyword value. This attempts to account
for uncertainty sources from the telemetry. The major source of uncertainty in the EXPOSURE

keyword comes from lost telemetry during shift-and-add. When onboard shift-and-add is turned on
and telemetry loss is indicated, EXP_UNC is 1.0 - ("Found Shift&Add Intervals” / EXPOSURE).

CNTEXP =(GIMAGE/NEVENTS)*NFRAMES*CalcFrame*CalcDEAD as of UVOT2FITS
V3.16 when the image is 2048x2048. Parameters are defined by-> In sw*uct.hk, take the columns
NEVENTS, NFRAMES, GIMAGE. Get values of CalcFrame, and CalcDEAD for the standard

window.
NEVENTS = Number of events handled by DPU during exposure.

NFRAMES = Number of exposure frames handled by DPU during exposure. This figure
automatically accounts for STALLLOSS since stalled frames are not counted in this number (we
hope).

GIMAGE = Number of events found in the image on the ground. This may be in error if there
were lost rows in the telemetry. This number SHOULD be identical to NEVENTS in 2048x2048
images but often is smaller by fractions of a percent. The reason for this is unknown and helps
make CNTEXP a fuzzy value. One possible source is fractions of images shifted off by S&T.

CalcFrame = The time for 1 exposure frame based on the hardware window.

CalcDEAD = The 1 frame DEADC fraction which actually is 1.0 - dead fraction and thus
is the live fraction (I didn’t make this up, it is a standard). This value can only be applied to
actual exposed to sky time. For example, TELAPSE*DEADC is meaningless unless TELAPSE =
ONTIME.

Chapter 2

UVOT Data Analysis Recipes

This section provides a set of standard software recipes for reducing and analyzing UVOT science
data. While not comprehensive or exhaustive, the spirit of these recipes is to:

1. Provide the software user with the ability to repeat these tasks on any of the data populating
the HEASARC archive or SDC quicklook area.

2. Gain an understanding of the principles behind the software and data organization.

3. Obtain the confidence to move on to more advanced data analysis using software of the users
own choice.

The Recipes can be split into two parts. The first, covered in Sections 2.1 and 2.2, contain
mostly software written specifically for the reduction of UVOT software from raw (level I) data
to calibrated science-grade (Level II and III) products. The majority of these tools are only ever
run in the Swift pipeline before data populates the quicklook area and archive. It is anticipated
that the general user need only use these tools in cases where updates to the UVOT caldb make
a significant impact on the level II and III products. In these cases the user should follow these
recipes in order to create new science products.

The second set of recipes, Sections 2.3-2.13, comprise imaging, temporal and spectral analysis
of UVOT level II and III science products. The philosophy of the UVOT pipeline software develop-
ment has been to supply products that are, for the most part, readily readable by generic analysis
software. These recipes reflect that, although they are biased toward the software developed at the
HEASARC and contained in the HEASoft package (http://heasarc.gsfc.nasa.gov/docs/software/lheasoft).
Since the installation of this package is a prerequisite for the Swifft HEAdas tools, the majority
of the tools employed in these scripts are already installed on your machine. The exception is the
image viewer ds9 (http://hea-www.harvard.edu/RD/ds9).

Note that while the contents of these scripts are topical for the work of Swift Burst Advocates,
there exists a Burst Advocate Cookbook containing recipes specific to the unique tasks of Burst
Advocacy.

2.1 Image Mode data reduction

Synopsis

The purpose of this script is to recreate fully calibrated (level IT) images from raw (level I) images.
This is a necessary process if the UVOT calibration has changed significantly since the pipeline
processing of the archived data. This will generally affect data collected in the first few months of

10

operation, during which the caldb will evolve rapidly, or when data is extracted from the archive
after some significant time since it was first stored.

Processing flowchart

Figure 2.1.1 represents the flow of data through the UVOT pipeline image chain. The recipe below
follows this chain from generating the bad pixel maps to exposure map calculations. The level II1
portion of this flow diagram is covered in various individual recipes later in this Chapter.

e The orange boxes in the flow charts represent the execution of individual FTOOLs. Some
are specific to UVOT data processing, e.g. UVOTBADPIX, while others are applicable to
general Swift processing, e.g., SWIFTXFORM.

e The green boxes represent the input of calibration products into the FTOOL. These prod-
ucts populate the Swift CALDB. The caldb filenames are provided in the recipes and tool
descriptions in Chapters 3-5.

e The blue boxes represent the science products. Level I products, light-blue, are input to the
tools. Level IT and Level III products, medium- and dark-blue respectively, can be either
input or output.

Recipe

1. Create quality maps for each image exposure. Quality maps contain a raw array of flags
associated with the goodness or badness of each detector pixel and are used to help minimize
modulo 8 fixed-pattern noise from the images and build exposure maps.

e Namibia> uvotbadpix infile=00072901259 /uvot /image/sw00072901259ubb_rw.img.gz
outfile=quality_bb.img badpixlist=caldb compress=y

The bb in the output file name indicates the internal images were taken with the B filter.
It is crucial that you keep track of the filter associated with image file. Repeat this step for
all of the raw image files in the uvot/image directory, i.e., those files containing the string
rw.img in their names. Ensure that each output file has a unique filename. Each output file
will contain a series of images, mostly populated by zeros, except in the cases of cosmetically
bad pixels, or pixels damaged by telemetry compression.

2. Reduce modulo 8 fixed-pattern noise in the images. Generally, raw image pixels are smaller
than the original detector pixels by up to an integer factor of 8. This is because an on-board
algorithm is able to centroid the splash of events that a single photon produces. While this process
improves the resolution of the detector, artificial fixed-pattern structure is introduced into the
image. The nature of this structure is a bias in the photon position rather than an introduction of
bogus counts. To some extent the bias can be removed statistically without any loss in photometric
accuracy using the tool uvotmodmap:

e Namibia> uvotmodmap infile=00072901259/uvot /image /sw00072901259ubb_rw.img.gz
outfile=modmap_bb.img badpixfile=quality_bb.img mod8prod=no
mod8file=none nsig=>5 ncell=32 subimage=no

Repeat this step for all of the raw image files in the uvot/image directory,

Swift UVOT Software Guide

Bad pixel table

Flatfield images

Boresight
Distortion
Pixel scale

Grism equation
Order offsets
Source offsets
Dispersion direcrtion

Effective area
Bad pixel list

Zero points
Coincidence loss

Figure 2.1: The UVOT imaging chain
light-blue a Level I science product,
product.

11

m

>\UVOTBADPIX

UVOTMODMAP

Bad pixel map (1)

Attitude data (I)

UVOTEXPMAP

UVOTIMSUM UVOTIMGRISM

UVOTDETECT UVOTRMFGEN

. Orange denotes a software tool, green a calibration product,
medium-blue a Level II product and dark-blue a Level III

3. Remove pixel-to-pixel variation in the image due to detector sensitivity using uvotflatfield:

12

e Namibia> uvotflatfield infile=modmap_bb.img
outfile=flatfield_bb.img flatfile=caldb

Repeat this step for all of the modulo 8 corrected image files in your working directory. Note
that procedure can also be performed on the original raw data if you do not care to perform
mod 8 correction on the images. However it would incorrect to perform the mod 8 correction
after the flat field. Users are urged to follow these two steps in the correct order.

4. Convert the images from the raw coordinate system to a tangential projection of the sky:

e Namibia> swiftxform infile=flatfield_bb.img
outfile=sw00072901259ubb_sk.img to=SKY attfile=misc/sw00072901259sat.fits.gz
teldeffile=caldb ra=23.3555 dec=-41.8234 method=AREA bitpix=-32

Repeat this step for every filter taken in image mode. Either the raw, mod 8 corrected, or
flat-fielded images can be used as input to this tool, but uvotmodmap and uvotflatfield should
not be used on data output from swiftxform.

5. Construct exposure maps for each image.

e Namibia> uvotexpmap infile=sw(00072901259ubb_sk.img
outfile=sw00072901259ubb_ex.img badpixfile=quality_bb.img
teldeffile=caldb attfile=misc/sw00072901259sat.fits.gz
method=MEANFOV attdelta=5

Repeat this step for every file produced by swiftxform.

2.2 FEvent mode data reduction

Synopsis

The purpose of this script is recreate fully calibrated (level II) event files from raw (level I) files.
This is a necessary process if the UVOT calibration has changed significantly since the pipeline
processing of the archived data. This will generally affect data collected in the first few months of
operation, during which the caldb will evolve rapidly, or when data is extracted from the archive
after some significant time since it was first stored. Furthermore a reprocessing would be necessary
if the pipeline event screening is deemed too stringent for a specific users needs. For example it is
conceivable that raw event mode data come in a compressed format when telemetry volumes are
high. In certain cases it is possible for events to lose their time tags and are consequently flagged as
bad and rejected by screening. Users interested only in imaging do not care about photon arrival
times and have lost a potentially valuable data. These can be reclaimed by performing the event
chain on the raw data, as demonstrated in the following receipe.

Processing flowchart

Figure 2.2.1 represents the flow of data through the UVOT pipeline event chain. The recipe
below follows this chain from COORDINATOR TO UVOTSCREEN. The level III portion of the
chain is covered in individual recipes later in the Chapter. While the filter file constructed by the
PREFILTER tool is vital component of the chain, it is generated in the Swift pipeline and archived
with the data. It is unlikely that a user will need to re-run PREFILTER.

Swift UVOT Software Guide 13

e The orange boxes in the flow charts represent the execution of individual FTOOLs. Some are

specific to UVOT data processing, e.g. UVOTBADPIX, whie others are pre-existing generic
FTOOLS, e.g., COORDINATOR.

The green boxes represent the input of calibration products into the FTOOL. These prod-
ucts populate the Swift CALDB. The caldb filenames are provided in the recipes and tool
descriptions in Chapters 3-5.

The blue boxes represent the science products. Level I products, light-blue, are input to the
tools. Level IT and Level III products, medium- and dark-blue respectively, can be either
input or output. Filenames are provided in.

Recipe

1. Starting from the unscreened event tables in uvot/event, repopulate the DET and SKY table
columns. These columns contain the coordinates of each event in physical (mm) units and over a
tangential projection of the sky (RA2000 and Dec2000).

file.

e Namibia> coordinator eventfile=00072901259 /uvot/event /sw00072901259ubbpo_uf.evt.

eventext=EVENTS teldef=caldb attfile=00072901259/auxil/sw00072901259sat.fits.gz
aberration=n randomize=y seed=836 ra=23.3576 dec=-41.8234

This is a generic ftool and not a dedicated UVOT or Swift tool. Therefore we do not document
it here. A detailed description of this tool and parameter use can be obtained by typing fhelp
coordinator on your command line. Its generally advisable to unzip event files before running
the tool. Repeat this task for every raw event table in the uvot/event directory, e.g., those
files including the string po_uf.evt. Users are recommended to change the value of seed before
each execution but maintain consistent values of ra and dec. While ra and dec are not critical
parameters, they are used by imaging tools such as ds9 or ximage when reading these event
tables to define the center of the displayed image. Note that this tool overwrites its input
table. If this is undesirable, make a copy of the raw files to work upon.

. Screen the events using time-tagged quality information both internal and external to the

uvotscreen infile=uvot/event/sw00072901259ubbpo_uf.evt
attorbfile=00072901259 /auxil /sw00072901259sa0.fits.gz

outfile=sw00072901259ubbpo_cl.evt

badpixfile=caldb aocexpr="ANG_DIST < 100. && ELV > 10. && SAA == 0" ev-
expr="QUALITY == 0"

In order to keep events with corrupted time tags, as in our example at the top of the recipe,
we should replace the evexpr argument with an OR statement exexpr=QUALITY ==
QUALITY == 32. Repeat this step for every event table produced by coordinator. A full list
of parameters contained in the external attitude and orbit file, sw00072901259sa0.fits.gz, and
their definitions can be found by opening the header keywords of the file using FITS viewer
fv, e.g. on the command line: fv sw00072901259sa0.fits.gz and opening the header keyword
extension.

14

Raw event data (1) Attitude and orbit data

COORDINATOR PREFILTER

4

A

Processed raw

event data (1) Orbit data Bad pixel table

»{ UVOTSCREEN

»{ UVOTIMAGE

UVOTIMSUM UVOTRMFGEN

Response file UVOT2PHA

Figure 2.2: Flow of the UVOT event chain. Orange boxes represent software tools, green calibration
products, light-blue Level I science products, medium-blue Level II science products and dark-blue
Level III science products.

Swift UVOT Software Guide 15

2.3 Summing a series of images

Synopsis

UVOT images generally range in exposure time from 10s to 2,000s. To obtain the deepest ob-
servation possible from a sequential or non-sequential series of images, either of the same filter or
different filters, it is necessary to co-add. This is non-trivial because both the pointing and rotation
of each exposure will be slightly different, requiring a procedure of shifting and rebinning. We use
the HEASoft image analysis package ximage to demonstrate how this can be achieved.

Recipe 1

1. Call the ximage package from the command line, co-add,e.g., three images, write out the new
image to a file, total_sk.img, and quit the package:

e Namibia> ximage
[XIMAGE> read 00072901259 /uvot /image/sw00072901259ubb_sk.img-+1
[XIMAGE> save
[XIMAGE> read 00072901259 /uvot/image/sw00072901259ubb_sk.img+5
[XIMAGE> sum
[XIMAGE> save
[XIMAGE> read/size=2632 00072901259/uvot/image /sw00072901259uvv_sk.img+7
[XIMAGE> sum
[XIMAGE> save
[XIMAGE> write total_sk.img
IXIMAGE> exit

Images contained within the same file, and images contained in separate files can be co-
added. In this example we combine the first image extension in the B filter file, the fifth
image extension in the same file and the first image extension in the V filter file.

Ximage makes a default assumption that all images are smaller than 1024x1024 pixels in
size. Any images larger than this will be automatically truncated unless the user supplies
the size of the image in the read command. A reference RA/Dec can also be chosen (e.g.,
"read/size=512/ra=299.7/dec=35.25"). UVOT sky images can be significantly larger than
this limit. For example, an unbinned, full-frame, raw image rotated on the sky by 45 will
result in a sky image of 2896x2896 pixels. In the example we supply the size of the third
image, which exceeds the ximage default size.

2. Repeat the above step for the exposure maps corresponding to each of the images:

e Namibia> ximage
[XIMAGE> read 00072901259 /uvot/image/sw00072901259ubb_ex.img+1
[XIMAGE> save
[XIMAGE> read 00072901259 /uvot /image/sw00072901259ubb_ex.img+5
[XIMAGE> sum

16

[XIMAGE> save

[XIMAGE> read/size=2632 00072901259/uvot/image /sw00072901259uvv_ex.img+5
[XIMAGE> sum

[XIMAGE> save

[XIMAGE> write total_ex.img

[XIMAGE> exit

3. It is a trivial exercise to normalize the image by the exposure map, if desired, using the ftool
farith:

e Namibia> farith infill=total_sk.img+1 infil2=total ex.img+1 outfil=total nm.img ops=div
null=y

Recipe 11

Recipe I above can be a relatively typing-intensive and time consuming process, but provides the
user with the freedom to co-add any number of images from a variety of different files. A faster
method has been coded as part of the Swift pipeline in order to provide the deepest possible images
for each filter as level I11 product. The increase in speed is obtained because the tool is aware that all
UVOT sky images are oriented East-North, whereas ximage makes no such assumption. Scientists
can employ this faster tool with the caveat that all images in a specified file will be co-added by
default.

1. Co-add all image extensions for a specified file:

e uvotimsum infile=00072901259/uvot /image/sw00072901259ubb_sk.img
outfile=total_sk_bb.img method=GRID

2. Perform the same operation for the appropriate set of exposure maps:

e uvotimsum infile=00072901259/uvot /image/sw00072901259ubb_ex.img
outfile=total_ex_bb.img method=GRID

Figure 2.3 illustrates typical co-added images and exposure maps. The variation of window size
during the observing sequence is generally apparent in these images.

Note that recipe II is valid only for summing exposures within the same sequence. Images from
different sequences can be appended to image files using ftools such as fappend and ftappend (see
the ftool online help; e.g. by typing thelp fappend), although this process can be as time consuming
as recipe 1.

2.4 Extracting source counts from an image

Synopsis

One of the fundamental properties provided by the UVOT detector is source brightness. This
recipe illustrates a simple method of extracting source counts from an image, employing region files
similar to those constructed in Section 2.4. The first recipe performs count extraction from a single
generic image, whereas the second recipe extracts a series of source counts from the sequence of
images in a UVOT FITS image file.

Swift UVOT Software Guide 17

Image Exposure map
DEC DEC

2.« |HEN IR S A .. . NN

255%.9 259, 299.7 299.6 299.5 2595.5% 2%9%.8 295.7 295.6 295.5
RA RA

Figure 2.3: Examples of co-added images and the corresponding exposure map.

Recipe I UVOTSOURCE (see Section 3.9) provides the easiest way to calcuate source counts
and magnitudes in images. The example below illustrates how to obtain counts, magnitudes and
fluxes from a FITS file image extension:

uvotsource image=sw00221755992uwh_sk.img+1 srcreg=source.reg bkgreg=back.reg \
sigma=3 filter=WHITE method=aperture cleanup=yes chatter=1

Recipe I UVOTMAGHIST is a script that calls all image extensions in a UVOT file, in sequence,
and calculates and plots the magnitudes.

1. Call uvotmaghist, creating a FITS and GIF record of count rate over time.

e Namibia> uvotmaghist infile=00072901259 /uvot/image/sw00072901259ubb_sk.img \
outfile=maghist.fit plotfile=maghist.gif zerofile=caldb coinfile=caldb \
ra=23.35 dec=41.823 srcas=3 bkgas=10

The advantage of recipe II is that it also converts source count rates to instrumental magni-
tudes and fluxes, storing these quantities in the output FITS table.

2.5 Screening event data

Synopsis

The general tool for event screening, developed as part of the HEASoft package, is xselect. This is
a workhorse applied to data from multiple missions and has a wide variety of applications including
screening and the extraction of light curves, image and spectra. A thorough understanding of this
tool is recommended and can be found at

http://heasarc.gsfc.nasa.gov/docs/software/ftools /xselect /xselect.html.

18

B magnitude vs time since trigger

f - t11 S Irlfl i 1 'rl t 1 1;1=lf;11l1~l1-ﬁmmmnll 1
L —
. I]
gs
2 |]
5
g + +++ Ly L _— i
m . ”’:I: "’* &
: \ AARTE
ol 1
4|
&
I gt 4,“ o
1 [}
L | L 4 I = o 4 *4’4 *’*"WJ"-
1000 10* 10°

MET — 175893150.592 (s)

Figure 2.4: Example GIF output from uvotmaghist.

Recipes 2.6-2.8 provide only the simplest examples of xselects features. In the recipe below
we will create a file of Good Time Intervals (GTIs) based on the angular distance between the
telescope pointing and the bright Earth limb, e.g. to minimize Earth-glow effects in the data.
Events occurring within the GTIs will be included in an output table, while those occurring outside
the intervals will be thrown away.

Recipe

1. Create a GTI file based on data from the orbit filter file contained in the auxiliary directory of
your data:

e Namibia> maketime infile=00072901259 /auxil /sw00072901259sa0.fits.gz
outfile=br_earth.gti expr=BR_EARTH > 20. name=NAME value=VALUE time=TIME
compact=n prefr=1 postfr=1

2. Read an event table into xselect and screen using the GTI file:

e Namibia> xselect

Swift UVOT Software Guide

> Enter session name >[xsel] bertie

xsel:ASCA > read events sw00072901259ubbpo_cl.evt
> Enter the Event file dir >[./] uvot/event

Got new mission: SWIFT

> Reset the mission ? >[yes] y
xsel:SWIFT-UVOT-EVENT > filter time file br_earth.gti
xsel:SWIFT-UVOT-EVENT > extract events
xsel:SWIFT-UVOT-EVENT > save events output.evt
Wrote events list to file output.evt

> Use filtered events as input data file ? >[no| n
xse:SWIFT-UVOT-EVENT > exit

> Save this session? >[no| n

2.6 Extracing an image from event data

Synopsis

19

The general tool for event extraction, developed as part of the HEASoft package, is xselect. A

thorough understanding of this tool is recommended and can be found at
http://heasarc.gsfc.nasa.gov/docs/software/ftools/xselect /xselect.html.

Recipes 2.6-2.8 provide only the simplest examples of xselects features. In the recipe below we
will assume that the event file has been screened by the user, and extract a sky image from the

event list.

Recipe

1. Read an event table into xselect, extract, plot and save an image:

e Namibia> xselect
> Enter session name >[xsel] bertie
xsel: ASCA > read events sw00072901259ubbpo_cl.evt
> Enter the Event file dir >[./] uvot/event
Got new mission: SWIFT
> Reset the mission ? >[yes] y
xse:SWIFT-UVOT-EVENT > set xycenter 2000.5 2000.5
xsel:SWIFT-UVOT-EVENT > set xysize 300 450
xsel:SWIFT-UVOT-EVENT > set xybinsize 2
xse:SWIFT-UVOT-EVENT > extract image
xse:SWIFT-UVOT-EVENT > plot image
xsel:SWIFT-UVOT-EVENT > save image output.img
Wrote image to file output.img

20

> Use filtered events as input data file ? >[no| n
xse:SWIFT-UVOT-EVENT > exit
> Save this session? >[no| n

By setting xycenter, xysize and xybinsize, the user has the option to specify the center,
dimensions and binning of the output image.

2.7 Extracing a lightcurve from event data

Synopsis

Tool for light curve extraction, developed as part of the HEAsoft package, are uvotevtle and xselect.
A thorough understanding of the xselect tool is recommended and can be found at
http://heasarc.gsfc.nasa.gov/docs/software/ftools/xselect /xselect.html. The usage of uvotevtlec is
discussed in Section 5.11.

Recipes 2.6-2.8 provide only the simplest examples of xselects features. In the recipe below we
will assume that the event file has been screened by the user, and extract a source light curve from
the event list. This recipe requires a region file, resembling the source file from Sec. 2.4.

Recipe

1. Read an event table into xselect, extract using a region file, plot and save a light curve:

e Namibia> xselect
> Enter session name >[xsel] bertie
xsel: ASCA > read events sw00072901259ubbpo_cl.evt
> Enter the Event file dir >[./] uvot/event
Got new mission: SWIFT
> Reset the mission ? >[yes] y
xse:SWIFT-UVOT-EVENT > filter region ds9.reg
xse:SWIFT-UVOT-EVENT > extract curve
xsel:SWIFT-UVOT-EVENT > plot curve
xsel:SWIFT-UVOT-EVENT > save curve output.lc
Wrote light curve to file output.lc
> Use filtered events as input data file 7 >[no| n
xse:SWIFT-UVOT-EVENT > exit

> Save this session? >[no| n

2. Read an event table into uvotevtle, extract using source and background region files, and
save the light curve:

e Namibia> uvotevtlc infile=sw00072901259ubbpo_cl.evt outfile=output.lc srcreg=src.reg bkgreg=bkg.reg

Swift UVOT Software Guide 21

2.8 Extracing a spectrum from event data

Synopsis

Grism data obtained in Event mode is particularly useful for measuring spectral evolution over
time. in the recipe below we will assume that the event file has been screened for time constraints
by the user, extract an energy spectrum from the resulting event list. A pre-requisite for this recipe
is to have passed the event file through the UVOT tool uvotevgrism.

Recipe

1. Create a binned spectrum over wavelength, with bin size of 20 Angstrom:

e Namibia> fhisto infile=00072901259 /uvot/event/sw00072901259uvupo-cl_timel.evt+1
outfile=spectrum_timel.fits column=WAVELENGTH binsz=20

Note that this recipe provides a spectrum of counts, calibrated over wavelength. This is, of
course suitable for comparing count rates at different epochs. If you have a requirement to
flux the data, or fit spectral model in e.g., xspec, the correct procedure would be to extract
an image from the event table in DETX, DETY units, and then pass the image through the
uvotimgrism and uvotrmfgen tools (Sec 2.11).

2.9 Lightcurve analysis

Synopsis

The xronos package (http://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/xronos.html) has been in-
stalled on your machine as part of the LHEAsoft distribution. It contains applications dedicated
to the analysis of timing data, such as the light curve produced by xselect in Sec. 2.7. Table 2.10.1
lists a subset of these applications. More details and applications can be found at the URL above.

Table 2.10.1: xronos applications for time series analysis.

Application | Description

autocor Auto-correlation

Crosscor Cross-correlation of two time series
earth2sun Barycentric correction

efold Epoch folding

efsearch chi2 period search

flc2ascii FITS-to-ASCII conversion

lcmath Arithmetic between two time series
lcstats Time series statistics

lcurve Creates binned light curves and colour diagrams
powspec Power density analysis

The recipe below provides a simple example of rebinning and plotting a UVOT light curve,
which was originally extracted from Event mode data using xselect.

Recipe I

1. Load the unbinned light curve into the lcurve application:

22

e Namibia> lcurve

— lcurve 1.0 (xronos5.21)

Number of time series for this task[1] 1

Ser. 1 filename +options (or @file of filenames +options)[] sw00000001001ubb_sr.lc
Series 1 file 1:sw00000001001ubbsr.lc

Selected FITS extensions: 1 - RATE TABLE;

Source Safe Pointing 1 Start Time (d) 12991 15:34:19.567
FITS Extension 1 - RATE Stop Time (d) 12991 16:17:38.559
No. of Rows 35665 Bin Time (s) 0.1100E-01

Right Ascension ... 23.35 Internal time sys.. Converted to TJD
Declination -41.82305556 Experiment SWIFT UVOTA
Filter B

Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - No
Selected Columns: 1- Time; 2- Y-axis; 3- Y-error; 4- Fractional exposure;

File contains binned data.

Name of the window file (-’ for default window)[-]

Expected Start ... 12991.64883758009 (days) 15:34:19:567 (h:m:s:ms)
Expected Stop 12991.67891850347 (days) 16:17:38:559 (h:m:s:ms)
Minimum Newbin Time 0.11000000E-01 (s)

for Maximum Newbin No.. 236272

Default Newbin Time is: 5.0821114 (s) (to have 1 Intv. of 512 Newbins)

Type INDEF to accept the default value

The tool has read the light curve and provided some statistics to your shell such as the source
name and position, the instrument name and filter, type of data, start and stop times, the
time system, the amount of data and its binning.

. Choose an new bin size:

Newbin Time or negative rebinning[100] 1.0
Newbin Time 1.0000000 (s)

Maximum Newbin No. 2599

Default Newbins per Interval are: 512
(giving 6 Intervals of 512 Newbins each)
Type INDEF to accept the default value

3. Segregate the data into a number of time intervals. This is particularly useful for plotting the

evolution of colour-colour diagrams over the time interval, but has limited value in this example.
The full set of data has 2599 1-s bins, so we plot them all together:

Swift UVOT Software Guide

e Number of Newbins/Interval[98] 2599

Counts

Maximum of 1 Intvs. with 2599 Newbins of 1.00000 (s)

4. Define the output filename and the output plotting device:

e Name of output file[default] output.flc
Do you want to plot your results?[yes| yes
Enter PGPLOT device[/XW] /XW
2599 analysis results per interval
100% completed
Intv 1 Start 12991 15:34:20

— Ser.1 Avg 9.940 Chisq 337.0 Var 14.50 Newbs. 405
* Min 0.000 Max 40.11 expVar 12.41 Bins 35665

PLT> q
Writing output file: output.flc

T | T T T T | T T T T | T T T T | T T 1 T | T T T T | T
809 Cpew Bl
40+ . T = Bi
20 .

] |]]] .I I]]]] | | |]] I] | |] I]] | | |]

5500 600C 6500 7000 7500 8000

Time {s)

Figure 2.5: Time series output from the lcurve tool.

23

e Before plotting the new light curve to the xserver, the tool provides a few statistics, such as
the average count rate, minimum and maximum count rate values and variability measures.

24
Recipe 11

UVOT data from different filter can never be simultaneous, therefore plotting colour information
is not practical without choosing large time bins. However much more detailed colour analysis
is possible if further time series data is loaded into the tool from e.g. the XRT or ground-based
observatories.

1. In these instance the first input parameter asks or the number of time series used in the
analysis:

e Number of time series for this task[1]

In the previous example we used only one time series. But we can use up to three. A minimum
of two time series are required to plot a colour ratio versus time, while three are required to
plot a colour-colour diagram.

2. After the plotting device has been set, the tool will ask what type of plot is required.These
are designated by a numeric character whose meaning depends on the number of time series used:

e Enter PLOT style number (default=1)]]
For the two-series case:
1 = hardness ratio versus time
2 = intensity of both series versus time
3 = both intensity and harness ration versus time
For the three-series case:
1 = colour-colour diagram

3 = plot all three intensities versus time

2.10 Extracting a grism spectrum

Synopsis

This recipe illustrates the method of extracting a calibrated grism spectrum from an image. The tool
uvotimgrism extracts and calibrates the spectrum internally, producing a FITS table containing a
fluxed spectrum in units of erg s**-1 cm™*-2 Angstrom**-1, over wavelength, in units of Angstrom.
We have striven to make UVOT spectral data consistent with that expected from the xspec spectral
fitting package (http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec). This requires the raw spectrum
and calibration to be separated into distinct files. Therefore the output from uvotimgrism will have
two extension of spectral data, the first containing a raw spectrum and the second containing a
fully-calibrated spectrum. Users wishing to use xspec will have to perform a further task, creating
a response matrix for the spectrum.

The uvotimgrism tool requires an input image in detector (DET) coordinates rather than RA
and Dec (SKY). The user must supply the centroid of the zero order of the target source in detector
pixels. As of this writing, the option to supply a RA and Dec position for the centroid is not yet
available because the grism distortion has not been mapped, and so the astrometry is only good to
about 5”. Instead the centroid must be independently determined (e.g. using XIMAGE or DS9).
The user also needs to specified the angle that the first order makes with the X-axis. Approximate
values of this angle are 148.1 (V grism, nominal), 140.5 (V grism, clocked), 151.4 (U grism, nominal)
and 144.5 (U grism, clocked).

Swift UVOT Software Guide 25

Recipe
1. Extract a spectrum from a DET grism image:

e Namibia> uvotimgrism infile=sw(00000001001ugv_dt.img.gz+1
outfile=sw00000001001ugv_1.pha backfile=sw00000001001ugv_1_bk.pha
badpixfile=badpix.img+1 wavefile=caldb areafile=caldb teldeffile=caldb
ra=-1 dec=-1 sourcex=1553.67 sourcey=611.200 ang=148.1 srcwid=21 bkgwid1=20
bkgwid2=20 bkgoff1=7 bkgoff2=7 wavemin=2900 wavemax=>5500 nsigma=>5 cleanup=y
clobber=y history=y chatter=1

This call to uvotimgrism will output a region file sw00000001001ugv_dt.img.reg which can be
overlayed on the detector image in DS9 to examine the source and background extraction regions.
In addition, the third extension of the output spectrum file is an image containing just the Oth and
1st order light of the source, plus the background regions chosen by the input parameters above.
The image is rotated so that the X-axis is parallel with the 1st order dispersion direction, as in Fig
2.6.

Figure 2.6: A typical image contained in the output from uvotimgrism.

e Plotting the wavelength column in the third extension against counts, using, e.g., fv, yields a
spectrum similar to that in Fig. 2.7.

2. Construct a response matrix, containing wavelength and flux calibration data suitable for
use in xspec using uvorfmrgen:

e Namibia> uvotrmfgen spectrum=sw00000001001ugv_1.pha
outfile=sw00000001001ugv_1.rsp areafile=caldb lsfile=caldb

2.11 Fitting grism data
Synopsis
This recipe illustrates a simple fitting procedure using xspec. The xspec package has a large number

of useful features that we will not discuss here, but needless to say, the user will find reading the
xspec manual a worthwhile activity before ploughing too far into this topic:

26

COUNT 5

200 | — —

A00 a50 dn0 d50 S00 550
WMALVELENGETH

Figure 2.7: Spectrum output from uvotimgrism.

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec

We caution that the UVOT grism has many sources of systematic error (e.g. order overlap)
that are not reflected in the count statistics.

Swift UVOT Software Guide 27
Recipe

1. Start xspec and load grism source and background spectra and the response matrix:

e Namibia> xspec
XSPEC version: 12.3.0
Build Date/Time: Wed Aug 2 11:08:42 2006
XSPEC>data spectrum.pha
Net count rate (cts/s) for file 1 2.834 + 6.3628E-02(90.7% total)

— using background file... background.pha
1 data set is in use

XSPEC>resp spectrum.rmf
2. Ignore bad pixels:
e XSPEC>ignore bad

3. Define a spectral model and provide some starting parameters. In this example we will

combine three multiplicative models a powerlaw (power), reddening (redden), and a neutral H
edge, redshifted by z = 3 (zphabs):

e XSPEC>mo zphabs*redden*power
— Model: zphabs<1>*redden<2>(powerlaw<3>)
Input parameter value, delta, min, bot, top, and max values for ...
— 10.001 0 0 1IE405 1E406
1:zphabs:nH> 1
- 0-0.010010 10
2:zphabs:redshift>1
— 0.05 0.001 00 10 10
3:iredden:E(B-V)> 0.1
-10.01-3-2910
4:powerlaw:Pholndex> 0.9
—10.01 00 1E+24 1E+24

5:powerlaw:norm> 0.1

28

e Model: zphabs<1>*redden<2>(powerlaw<3>)
Model Fit Model Component Parameter Unit Value

par par comp
111 zphabs nH 10{A}22 1.00000 £ 0.00000

— 2 2 1 zphabs redshift 1.00000 frozen
3 3 2 redden E(B-V) 5.000000E-02 + 0.00000
4 4 3 powerlaw Pholndex 1.00000 £ 0.00000
5 5 3 powerlaw norm 0.100000 + 0.00000

e Chi-Squared = 33685.34 using 522 PHA bins.
Reduced chi-squared = 65.02961 for 518 degrees of freedom
Null hypothesis probability = 0.00

The information reported back to you after entering the initial fit parameters are the param-
eter values and chi{}2 goodness-of-fit statistics. These will be updated every time you fit to
the data.

4. Fit the data:

o XSPEC>fit 100

Xspec now reports:

e Model: zphabs<1>*redden<2>(powerlaw<3>)
Model Fit Model Component Parameter Unit Value

par par comp

— 11 1 zphabs nH 10{}22 1.00000 frozen
2 2 1 zphabs redshift 3.00346 + 0.106201E-02
3 3 2 redden E(B-V) 2.280192E-02 + 0.224064
4 4 3 powerlaw Pholndex 1.06898 + 0.841269
5 5 3 powerlaw norm 0.602656 + 3.73260

e Chi-Squared = 564.6284 using 522 PHA bins.
Reduced chi-squared = 1.0914510 for 518 degrees of freedom
Null hypothesis probability = 1.00

Swift UVOT Software Guide 29

datg and folded model

swlO000001 001 ugv.fak

0.02
T

0.015
———

0.0
——

normalized counts//sec//Angstrom
5x1077
T
=

5000
channel wavelength (Angstrom)

3tlll 19—-Now—2C
Figure 2.8: A VGRISM spectrum with fit residuals.

Which according to the chi{}2 statistic is a good fit.

5. Uncertanties for each active parameter can be calculated thus:

e XSPEC>uncer 2-5
Parameter Confidence Range (2.706)
2 3.00097 3.00439 (-3.326416E-03, 9.632111E-05)
3 0.00000 2.122159E-02 (0.00000 , 2.122159E-02)
4 0.471290 1.25561 (-0.691941 , 9.237909E-02)
5 0.313522 8.59642 (-4.709452E-03, 8.27819)

The 2nd and 3rd columns contain the lower and upper 90% confidence limits.
6. Finally, set some plotting options and plot the data with fit, plus fit residials:

e XSPEC>cpd /xs

30

XSPEC>setplot wave

XSPEC>setplot rebin 5 100

XSPEC>plot data delchi

A typical output can be found in Figure 2.8.

2.12 Aspect Correction

Synopsis

Aspect correction is essential to obtain correct sky coordinates of UVOT sources and to ensure
that individual exposures are added without offsets. This recipe gives a brief instruction on how
to use the Swift FTOOLS aspect correction tool.

Recipe

Aspect corrections (i.e., shifts and rotations) can be applied to UVOT sky coordinate images using
the Swift tool UVOTSKYCORR. In this recipe, we will use Swift observations of GRB050525A
(sequence 00130088000) as an example.

Make sure that you have installed the WCSTools on your machine, which are needed to run the
UVOT aspect correction. In particular, make sure that the WCSTool ”scat” is installed.

The UVOTSKYCORR tool needs to be run twice to obtain aspect corrected UVOT images:

1. First the aspect corrections need to be computed by comparing UVOT source positions with
those of catalogued sources.

2. In the next step the computed aspect corrections need to be applied to the image(s).

You can obtain a list of the parameters and default settings of the "uvotskycorr” task by typing:
$ plist uvotskycorr

Help on "uvotskycorr” is available by typing

$ fthelp uvotskycorr

The parameters are (see Section 3.16):

Parameter Description
what [string] (ID—SKY)

Whether to find corrections (what=ID) or apply corrections (what=SKY).
skyfile [filename] Name of input image file(s).

This can be a comma-delimited list of file names or Q<file>

where <file> contains the names of the files to process, one per line.
corrfile [filename|Input corrections file for what=SKY.
attfile [filename] Input attitude file.
outfile [filename| Output file name.

For what=ID, the aspect corrections will be written to this file.

starid = NONE)

string] Parameters to pass to star identification.

catspec = usnobl.spec)

filename] Catalog descriptor file.

cleanup = yes)

boolean| Remove intermediate files?

history = yes)

clobber = no)

boolean| Overwrite existing files?

Py Py Py Py Py

chatter = 1)

[
[
[
[boolean] Write history keywords?
[
[

enumerated integer] Standard HEASoft chatter parameter.

Swift UVOT Software Guide 31

Optional parameters are given in parenthesis.

The ”"what” parameter switches between computing (”what=ID") and applying ("what=SKY”)
aspect corrections. If aspect corrections are computed, the ”outfile” parameter specifies the file
used to write the aspect corrections. That file is read in the next step, when the aspect solutions
are pplied to the image(s) ("what=SKY”). The ”starid” parameters sets the values passed to a
subroutine which control the star identification settings. The default parameters for ”starid” are
optimized to give best results.

Star catalog information is required to perform the aspect correction. The ”catspec” parameter
gives the catalog descriptor which describes how catalog information is to be loaded. It can point
to a local catalog installed on your computer or one that is to be queried over the web. More
information on how to access the catalog information is available here:

$ fhelp catspec

You can set ”catspec=usnobl.spec” to read the parameter file usnobl.spec, which looks like
this:

$ more usnobl.spec
partition summary
type => StarID::SearchCat
fields => ID,RA,DEC,MAG,TYPE
packed => 0
data => GSC
catalog/type => Indexed
catalog/n => 4
envvar => UB1_PATH
Local star catalog: on your machine:
#location => /ssdc/usnobl
USNO A server from [[BR]] #location => http://archive.eso.org/skycat/servers/usnoa-server[[BR]]
USNO B1 server from [[BR]] location => http://tdc-www.harvard.edu/cgi-bin/scat[[BR]] limit
=> 10000

In this case the USNO star catalog is retrieved over the web from Harvard.
1. Calculate the Aspect Correction:

To aspect-correct V-band UVOT images for our example (GRB050525A), the aspect solution
has to be calculated first:

$ uvotskycorr what=ID \
skyfile=00130088000/uvot/image/sw00130088000uvv_sk.img \
attfile=00130088000/auxil /sw00130088000sat.fits \
outfile=00130088000/out/CORR.00035227003.ALL ’starid=mag.err=5 rot.error=60" \
chatter=5 catspec=usnobl.spec clobber=yes history=yes cleanup=yes corrfile=NONE

This command reads the input image and the spacecraft attitude file, and writes the output into
a directory which needs to be created first. In addition, we opted to pass two parameters for the
star identification, using matching magnitudes between UVOT and catalogued sources to within 5
mag and allow a rotation of the UVOT image of up to 60-arcmin. The ”catspec” command gives
the location of the star catalog as described above. You can give a comma-delimited list of UVOT
images to be aspect-corrected or you can provide a file which lists all images to be aspect-corrected
using "skyfile=Q<file>".

2. Apply the Aspect Correction:

32

To apply the aspect corrections ”uvotskycorr” needs to read in the aspect solution file created
above.

$ uvotskycorr ”"what=SKY” \
skyfile=00130088000/uvot/image/sw00130088000uvv_sk.img \
attfile=00130088000/auxil /sw00130088000sat.fits \
corrfile=00130088000/out /CORR.00035227003.ALL \
chatter=5 catspec=usnobl.spec \ clobber=yes history=yes cleanup=yes

3. Check the Aspect Correction:

Check which header extensions were modified by ”uvotskycorr” by inspecting the headers of
the file extensions:

$ ftlist sw00130088000uvv_sk.img K include=EXTNAME,ASPCORR

Next, all individual exposures less the settling images (header extensions 1 and 2 in our example)
and less the file extensions which were not corrected (none in our example) need to be added by
running the command ”uvotimsum”:

$ uvotimsum sw00130088000uvv_sk.img uvv_sum.fits exclude=1,2 chatter=1

Open the added image "uvv_sum.fits” with DS9 or FV and visually inspect the improvement
in the aspect solution.

The images 2.9 give the un-corrected (left) and corrected (right) summed V-band images of
GRB 050525A. The XRT error position of GRB 050525A is marked by a circle with a radius of
6-arcsec as reported in GCNs. Note that the un-corrected image shows significant offsets between
individual exposures, which have been corrected for in the aspect-corrected image. The afterglow
candidate to the GRB (marked by two lines) is much fainter in the uncorrected image due to
the offsets of the individual exposures. The aspect-corrected image also shows updated centroid
positions of all UVOT sources, which also appear more point-like.

Figure 2.9: Merged UVOT B-filter images of GRB 050525A before (left) and after (right) aspect
correction.

Swift UVOT Software Guide 33
2.13 Broad-Band Spectral Fitting

Synopsis

This recipe gives a description how you can perform a broad-band (opt/UV/X-ray) spectral fitting
to 6-filter UVOT and XRT data to obtain the spectral energy distribution (SED) of your source of
interest. The example below uses data obtained on GRB 050525 (sequence 00130088000).

In this thread we describe how to

1) extract a spectrum from UVOT data,
2) shift the count rates of the spectrum to a common epoch,
3) extract an XRT X-ray spectrum, and
4) perform a joint spectral fitting of the UVOT and XRT data.

The example below uses data obtained on GRB 050525 (sequence 00130088000).

Recipe

1) Extract Spectrum from UVOT Data You can use individual UVOT images or co-add
individual image extensions to one image per filter to increase the photon statistics:

uvotimsum sw00130088000uvv_sk.img uvv_sum.fits chatter=1
uvotimsum sw00130088000ubb_sk.img ubb_sum.fits chatter=1
uvotimsum sw00130088000uuu_sk.img uuu_sum.fits chatter=1
uvotimsum sw00130088000uw1_sk.img uwl_sum.fits chatter=1
uvotimsum sw00130088000um?2_sk.img um2_sum.fits chatter=1
uvotimsum sw00130088000uw2_sk.img uw2_sum.fits chatter=1

You can prevent certain extentions from being coadded (if need) by employing the ’exclude’
parameter, e.g.:

uvotimsum sw00130088000uw2_sk.img uw2_sum.fits chatter=1 exclude=1
Now load the images into DS9 and create source and background region files:
ds9 uvv_sum.fits &

The burst is located at RA = 18:32:32.6, Dec = 26:20:22.3. The source spectrum region file,
‘source.reg’, centered in the burst needs to be in WCS coordinates, either in degrees or in sexades-
imal format:

fkb;circle(18:32:32.599,4-26:20:22.27,6”)
fk5;circle(278.13583,26.339519,6”)

A background region file, ’back.reg’, also needs to be created with DS9.

A response matrix is needed which defines the spectral properties of the data. These can be
downloaded from the Swift web pages where there is one available for every lenticular UVOT filter.
It is critical that the correct response matrix be used with the data (easily identified by the names
of the files):

http://swift.gsfc.nasa.gov/docs/swift /proposals/swift_responses.html

Next, you can use the tool 'uvot2pha’ to create a file that can be read into XSpec. Given the two
region files, one containing source counts from a specific object, the other containing background

34

counts from around that source, UVOT2PHA will extract counts from both regions accompanied
by Poisson uncertainties. These four quantities will be cast into two XSpec-compatible files.

uvot2pha infile=uvv_sum.fits srcpha=v.pha bkgpha=v_bkg.pha \
srcreg=source_v.reg bkgreg=back_v.reg respfile=v.rsp clobber=y chatter=1

uvot2pha infile=ubb_sum.fits srcpha=b.pha bkgpha=b_bkg.pha \
srcreg=source_b.reg bkgreg=back_b.reg respfile=b.rsp clobber=y chatter=1

uvot2pha infile=uuu_sum.fits srcpha=u.pha bkgpha=u_bkg.pha \
srcreg=source_u.reg bkgreg=back_u.reg respfile=u.rsp clobber=y chatter=1

uvot2pha infile=uw1_sum.fits srcpha=uvwl.pha bkgpha=uvwl_bkg.pha \
srcreg=source_uvwl.reg bkgreg=back_uvwl.reg respfile=uvwl.rsp clobber=y chatter=1

uvot2pha infile=um2_sum.fits srcpha=uvm2.pha bkgpha=uvm2_bkg.pha \
srcreg=source_uvm?2.reg bkgreg=back_uvm2.reg respfile=uvm2.rsp clobber=y chatter=1

uvot2pha infile=uw2_sum.fits srcpha=uvw2.pha bkgpha=uvw2_bkg.pha \
srcreg=source_uvw2.reg bkgreg=back_uvw2.reg respfile=uvw2.rsp clobber=y chatter=1

2) Correct for a temporal variation/decay of the source: It is important to note that
some astronomical objects, such as GRBs and supernovae, vary in flux on relatively short-term
time scales. In order to do a correct broad-band spectral fitting, the variability of the source
therefore has to be taken into account. There are two methods you could chose which are described
below. We leave it to the user which method is employed (this is where the ’art’ of being a scientist
comes in).

1) Select data from simultaneous epochs:

Select your epoch of interest for which you want well sampled data in the X-ray and UV /optical.
For X-ray data you can extract the time-interval of interest within 'xselect’ and produce a spectrum
that can be read into XSpec. For the UVOT you want to obtain the exposures in each filter that
correspond to the epoch of intestest and co-add them into one image per filter.

2) Fit data to get an SED at an instantaneous epoch:

For this method you need to fit each light curve individually and use the fit to determine the
corresponding count rate at the epoch of interest. In the case of the UVOT filters, to be accurate,
you want to perform a simultaneous fit to get an accurate measure of the decay rate. You then
re-fit your data filter by filter, fixing the decay slope in each case to the best-fit value determined
earlier. If you want to check if your source shows evidence for a color evolution, you have to do this
for multiple epochs. Once you have derived count rates, you then produce your spectral files as
described below, within "xselect’” and using 'uvot2pha’. You then need to update the 'EXPOSURE’
header keyword appropriately so that the count rate will be the one that you measured in your fits.

In detail, these are the steps that have to be performed to shift a UVOT .pha file to common
epoch:

Input:

e source.pha file

e background.pha file

1) Scale the background counts (or count rate) so that it has the same area as the source counts.

2) Subtract the scaled background counts from the source counts.

Swift UVOT Software Guide 35

3) Compute the counts at the time of the common epoch using the observed decay rate of the
afterglow. For a power-law decay the relationship is

e counts_common_epoch = count_original * (t_common_epoch / t_original){}alpha

where t is the time since the BAT trigger.

4) Add the background to the shifted counts to get the total counts at the common epoch.
5) Propagate the errors.

e sp = statistical error in shifted counts
s = statistical error in original counts
sb = statistical error in background counts
f = (t_.common_epoch / t_original){A}alpha
g = area of source region / area of background region

sp = SQRT([f * s]{}2 + [f * g * sb]{}2)

3) Extract Spectrum from XRT Data: Load the cleaned XRT photon-counting events file
into ds9

ds9 sw00130088000xpcw4dpo_cl.evt

and create a region file centered in the X-ray sources, as well as a background region file. In
our case, we chose a circular region file in WCS sky coordinates, centered on the source, and an
annulus around the source as background region file:

source_xrt.reg:
fk5;circle(278.13583,26.33951,47")

choosing a circle of radius 20 pixel (47 arcsec) which corresponds to the 90% encircled energy
radius at 1.5 keV. The background region files has the form:

back_xrt.reg:
annulus(278.13571,26.339051,75”,150”)

'xselect” can be used to extract counts from the events file using a spatial filtering with the
region files, and writing them to spectral files suitable for XSpec:

xselect

> Enter session name >[xsel]
xsel:SUZAKU > read events sw00130088000xpcw4po_cl.evt
> Enter the Event file dir >[./]
Got new mission: SWIFT
> Reset the mission ? >[yes]

Notes: XSELECT set up for SWIFT
Time keyword is TIME in units of s
Default timing binsize = 5.0000

Setting...
Image keywords = X Y with binning = 1
WMAP keywords = X Y with binning = 1

36

Energy keyword = PI with binning = 1

Getting Min and Max for Energy Column...
Got min and max for PI: 0 1023

Got the minimum time resolution of the read data: 2.5073
MJDREF = 5.1910000742870E+04 with TIMESYS = TT
Number of files read in: 1

Observation Catalogue:
Data Directory is: /namibia/00130088000/xrt/event/ HK Directory is: /namibia/GRB050525/00130088000/xr

OBJECT OBS_ID DATE-OBS DATAMODE
1 GRB050525 00130088000 2005-05-25T PHOTON

xse:SWIFT-XRT-PHOTON > set image sky
xsel: SWIFT-XRT-PHOTON > filter region source_xrt.reg
xsel: SWIFT-XRT-PHOTON > extract spectrum

extractor v4.67 11 Jul 2006
Getting FITS WCS Keywords
Doing file: /namibia/00130088000/xrt/event /sw00130088000xpcw4po_cl.evt
100% completed
Total Good Bad: Region Time Phase Grade Cut
3269 609 2660 0 00 0
Grand Total Good Bad: Region Time Phase Grade Cut
3269 609 2660 0 00 0
in 5755.9 seconds
Spectrum has 609 counts for .1058 counts/sec
written the PHA data Extension

xse:SWIFT-XRT-PHOTON > save spectrum xrt.pha
Wrote spectrum to xrt.pha
Next, do the same for the background region file and create a background spectrum, xrt_back.pha.

Now the response matrix and ancillary response file need to be created using xrtmkarf or
downloaded from the Swift calibration site. In this example, we write the headers for the generic
response files into the XRT spectrum:

xrtmkarf
Name of the input PHA FITS file[] xrt.pha
PSF correction active?(yes/no)[yes|
Name of the output ARF FITS file[] xrt.arf
Source X coordinate (SKY for PC and WT modes, DET for PD mode):]-1] 278.13583
Source Y coordinate (SKY for PC and WT modes, DET for PD mode):]-1] 26.339519

grppha
Please enter PHA filename[xrt.pha] xrt.pha
Please enter output filename[xrt.phal xrt.pi

Swift UVOT Software Guide 37

GRPPHA][] chkey RESPFILE swxpc0to12_20010101v008.rmf
GRPPHA][] chkey ANCRFILE xrt.arf

GRPPHA[] chkey BACKFILE xrt_back.pha

GRPPHA[exit

written the PHA data Extension
exiting, changes written to file : xrt.pi
grppha 3.0.0 completed successfully

4) Joint Spectral Fitting of UVOT and XRT Data Start an XSpec session, read in the
UVOT and XRT data, ignore energy channels outside the energy range of the instrument, and fit
the data:

XSPEC>cpd /xw
XSPEC>data 1:1 v.pha 1:2 b.pha 1:3 u.pha 1:4 uvwl.pha 1:5 uvm2.pha 1:6 uvw2.pha 2:1 xrt.pha
XSPEC>setpl en
XSPEC>ignore bad
XSPEC>ignore 0.0-0.0005,7.0-**
XSPEC>plot ldata
XSPEC>mo zwabs*power+wabs*power
XSPEC> fit
XSPEC> ...

Make a nice plot in IPLOT:
XSPEC> iplot

PLT> plot
PLT> label top
PLT> label file
PLT> time off
PLT> lwidth=2
PLT> la x Channel Energy (keV)
PLT> la y Counts s\ u-1\ d keV\ u-1\ d
PLT> plot

and create a postscript file:
PLT> hardcopy GRB050525.ps/cps
The output of the broad-band spectral fitting is shown in Fig. 2.10.

38

~
- ~ -
\\\ — z = 2.8 model
SO e z = 1.4436 model
3 =
E N 3
b 21 ~
= ~
C ~
QO - " ™~
o _ 3 ‘ X
u_é- g‘ "|'-|- UVOT filters E
,' XRT channels
: 2l
of : E
o 1 NN R | 1 T NN R | 1 L1 3

1615' 101 1077 1018
Frequency (Hz)

Figure 2.10: Broad-band SED using 6-filter UVOT and XRT data, and best fit spectral models.

Chapter 3

Image Tools

3.1 UVOTBADPIX

Updates

Table 3.1.1: UVOTBADPIX update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

UVOTBADPIX creates bad pixel maps for the images. These are deposited in a level I FITS image
file. A bad pixel map is an image of the same dimensions, binning and hardware window as the
original data, but populated by flags that describe the quality of each pixel. The meaning of each
flag is described in Table 3.1.1.

Most of the bad pixel cases result from chip defects on the instrument detector. Pixels in the
Level I images are generally sub-sampled, for instance a pixel binning of 1x1 results in sub-sampling
by a factor 8, so it is common to find bad pixels clustered in 8x8 arrays. Dead hardware pixels
contain no charge whatsoever. Cold pixels contain charge at a reduced level, resulting in fewer
counts than expected. Hot pixels contain more counts than expected, while flickering pixels can be
bad during some intervals, while good at others. By the nature of the detector, hot pixels are not
expected to occur. Cosmetic pixels are stored in the CALDB within a bad pixel table.

Compression damage may occur if the images were compressed on-board before being trans-
mitted to Earth. The compression algorithm stores the difference between counts in consecutive
pixels. If the difference is greater than a certain threshold, defined by flight software, then the pixel
value is clipped to reduce the telemetry rate. The telemetry-to-fits software that runs in the Swift
pipeline, UVOT2FITS, converts telemetry back to raw counts using reverse-compression, however
the software has no means of reconstructing the correct number of counts in clipped pixels. To
combat this, UVOTBADPIX compares adjacent pixels. If the difference between them equates to
the on-board compression threshold then the second pixel is flagged as damaged in the bad pixel
map. The user has the choice of whether to search for compression-damaged pixels or not.

NULL-valued image pixels result from either corrupted or missing telemetry. These are also
flagged in the bad pixel map.

39

40

It is possible for pixels to suffer from more than one type of badness. In these cases the bad
pixel map contains the sum of two or more flags. For example, a bad pixel flag of 136 indicates
that a flickering pixel has suffered from compression damage (8+128).

Table 3.1.2: Values for the potential flags within a bad pixel map.

Quality value | Description
0 Good
1 Dead pixel
2 Cold pixel
4 Hot pixel
8 Flickering pixel
128 Compression damaged value
256 NULL value
Input files

UVOTBADPIX requires two input files:

1. A level I FITS image file. This may contain multiple extensions, containing one image each.
Each image has raw chip coordinates, RAWX and RAWY, e.g.,

e sw00072901259.012/data/uvot/image/sw00072901259uvvrw.img.gz

2. The caldb product containing a cosmetic bad pixel list, e.g.,

e $CALDB/data/swift/uvot/bcf/badpix/swubadpix20041007v001.fits

Output files

UVOTBADPIX has a single output file:

1. A FITS image file, with an identical extension structure as the input image. Each extension
contains an image in RAWX, RAWY coordinates which matches the window size, location and
binning of the input image. Each output image is populated with image flags, according to Table
3.1.2. This output file is temporary in nature and not archived by HEASARC.

Parameters

Table 3.1.3 lists the input parameters for UVOTBADPIX. Parantheses indicate that parameters
are not compulsory. If these parameters are not specified on the command line, the tool will look-up
the current value in the parameter file. Users can do this by typing plist uvotbadpix.

Table 3.1.3: Parameter descriptions for UVOTBADPIX.

Swift UVOT Software Guide 41

Parameter | Description

infile Name of Level I FITS image file. These will have raw within the file name and
reside in the images subdirectory

badpixlist | Name of the badpixel list that resides in the caldb. If the SCALDB environment
variable is set, the path and name of the pixel list can be replaced simply with caldb

outfile The name of the output bad pixel map file.

(compress) | Should UVOTBADPIX search for compression-damaged pixels? The default is yes.
Turning this switch off will increase the speed of the tool, but should only be done
if the user is certain that the data was telemetered in an uncompressed format

(clobber) Should UVOTBADPIX overwrite a file with the same name as the output? The
default is no

(history) Should UVOTBADPIX write HISTORY keywords to the output file? This creates
a record of the processing performed on the file. The default is yes

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (1 =
quiet. 5 = noisy). The default is 1

Example

Below we provide a typical invocation of the UVOTBADPIX tool. The example files can be copied
from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo /uvotbadpix.

Namibia> uvotbadpix infile=sw00072901259ubb_rw.img badpixlist=caldb
outfile=sw00072901259ubb_bd.img compress=y clobber=y chatter=1

Warnings and Errors

3.2 UVOTMODMAP

Updates

Table 3.2.1: UVOTMODMAP update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

All images contain systematic modulo-8 fixed-pattern noise of amplitude ~50%. This effect is the
result of pixel sub-sampling on the detector. Photons passing through the UVOT aperture are
amplified by a series of phospher layers and micro-channel plates, so that an individual photon
results in a splash of photons (an event), on the CCD detector. Since the event is spread over
approximately 3x3 CCD pixels, an on-board algorithm can fit this distribution and centroid the
event to sub-pixel resolution. CCD pixels are therefore sub-sampled on-board such that a relatively
coarse detector of 256x256 4x4 active pixels yields a 2048x2048 image of 0.5x0.5 pixels.

The on-board centroiding algorithm is relatively simple, whereas the actual event distribution
can be variable in both CCD position (due to incident-angle effects) and time (due to variations in
detector gain). It is not efficient use of time to consistently calibrate the noise pattern and up-load
this regularly to flight software. Therefore Level I FITS images contain modulo-8 fixed pattern
noise.

42

Unfortunately there is no clean method of removing the fixed pattern noise without destroying
photometric accuracy. Note that within each 8x8 pixel block, photometry is conserved. Fourier
filtering would degrade this accuracy. A further complication arises when sources are bright (> 20
count s-1) and suffer from coincidence losses. Over these cases the fixed-pattern noise is modified
and cannot be recovered without a well-calibrated Monte Carlo analysis. The fixed-pattern will be
obvious in images around very bright sources as a grid-like effect.

The existing algorithm to help treat the mod-8 problem is identical to the algorithm in the
XMM-Newton OM tool kit. It takes each image individually, calculating the mean structure within
a sliding cell or group of n 8x8 pixels, using a sigma-clipping technique to reject outliers. In order
to retain photometric accuracy, it then resizes individual pixels according to the counts within each
and then rebins the entire image to yield a new linear array. An example of this algorithm working
on a combined flat field image is provided in Fig. 3.1.

Figure 3.1: A sub-image of many flat fields combined, containing one cosmetically bad pixel, before
and after mod-8 fixed pattern noise correction.

The disadvantage of this method is, of course, that it only works correctly on fields that are
uniform. In individual images, this means that only the background is useful and point sources are
thrown out by sigma-clipping. Since the UVOT background is small, a large amount of pixels have
to be averaged in order to provide useful event statistics and this hampers the effort to remove

Swift UVOT Software Guide 43

mod-8 noise on local scales.

Since the primary UVOT science goals are the astrometry and photometry of point sources,
fixed-pattern noise will not affect this science in a major way. The one exception is grism analysis,
where the mod-8 noise will be obvious in bright spectra.

Since the Swift pipeline is dedicated to processing all spacecraft, BAT, XRT and UVOT data in
< 2 hr, mod-8 correction is not performed in the pipeline. UVOTMODMAP is very CPU-intensive,
the overhead of running UVOTMODMAP in the pipeline is unacceptable with questionable sci-
entific gain. It is left to the user’s taste, whether or not to reprocess archived data with mod-8
correction included.

In the long-term, the correct way to approach this problem is iterative fitting to a Monte Carlo
generated model, that ray-traces photons through the detector. This will treat mod-8 noise and
coincidence losses in a consistent way, retaining photometric accuracy. However, it is currently not
clear whether the fixed-noise pattern will remain stable enough to make this method viable.

Input files

UVOTMODMAP requires two input files:

A level T FITS image file. This may contain multiple extensions, containing one image each.
Each image has raw chip coordinates, RAWX and RAWY, e.g.,
sw00072901259.012/data/uvot /image/sw00072901259uvvrw.img.gz

1. The bad pixel maps. A FITS image file, with an identical extension structure as the
input image. Each extension contains an image in RAWX, RAWY coordinates which matches the
window size, location and binning of the input file. Each output image is populated with image
flags, according to Table 3.2.1. This file is a temporary structure generated by UVOTBADPIX.

Output files

UVOTBADPIX has one compulsory output file and one optional output file:

1. An image file, with the same extension structure as the input image file. The new coordinate
system in most UVOT cases will be either SKY or DET. This is a temporary file and not archived
by the HEASARC.

2. An image file, with the same extension structure as the input image file, but containing
the modulo-8 fixed-pattern noise that was calculated from each input image. This is an optional
output file, not created during pipeline processing and not archived by the HEASARC.

Parameters

Table 3.2.2 lists the input parameters for UVOTMODMAP. Parantheses indicate that parameters
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotmodmap.

Table 3.2.2: Parameter descriptions for UVOTMODMAP.

44

Parameter Description

infile Name of the input image file. These will probably have multiple image extensions

badpixfile Name of the file containing the bad pixel maps

outfile Name of the output image file

(subimage=no) | Process subimage?

(xmin=0) Subimage x-min

(xmax=2047) Subimage x-max

(ymin=0) Subimage y-min

(xmax=2074) Subimage y-max

(mod8prod) Should the tool output maps of the modulo-8 fixed-pattern noise? The default is no

(mod8file) Name of the optional output file containing modulo-8 fixed-pattern noise structure

nsig Significance level for sigma-clipping. Those pixels with counts above or below this
threshold from the mean value in a cell are discarded, and the mean recalculated

ncell The size of the cell that slides over the image, in units of 8 pixels

(clobber) Should UVOTMODMAP overwrite a file with the same name as the output? The
default is no

(history) Should UVOTMODMAP write HISTORY keywords to the output file? This creates
a record of the processing performed on the file. The default is yes

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (1 =
quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTMODMAP tool. The example files can be
copied from ftp://heasarc.gsfc.nasa.gov/docs/swift/foo/uvotmodmap.

Namibia> uvotmodmap infile=sw00072901259ubb_rw.img
outfile=sw00072901259ubb_md.img badpixfile=sw00072901259ubb_bd.img
mod8prod=n mod8file=foo.fits nsig=3 ncell=16 clobber=y chatter=1 history=y

Warnings and Errors

3.3 UVOTFLATFIELD

Updates

Table 3.3.1: UVOTFLATFIELD update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

Sensitivity variations occur across the detector. Due to the nature of the photon-counting detector,
large-scale variations are expected to be negligible. However pixel-to-pixel variations may be signif-
icant. These are corrected for by dividing each image through by a calibration image of a flat field.
Typically this field will be accumulated from many deep pointing with the point sources removed
and the image normalized. The operation of dividing this filed is a trivial one, but this tool provides
a labour-saving device to correct the many images from a given FITS file semi-autonomously.

Swift UVOT Software Guide 45

Input files

UVOTFLATFIELD requires two input files:

1. Raw image file. It is optional whether these files have been treated for modulo-8 noise
using uvotmodmap or not. Either case is valid. An example file location in the archive is
00072901259 /uvot/image/sw00072901259uvv_rw.img.gz.

2. The caldb product containing the flat field image, e.g.,

e $CALDB/data/swift/uvot/bcf/flats/swuppsens20041007v001.1it

Output files

UVOTFLATFIELD has a single output file:

1. An FITS file containing corrected images of the same dimensions, windowing and binning as
the input images. These files are temporary and not archived by the HEASARC.

Parameters

Table 3.3.2 lists the input parameters for UVOTFLATFIELD. Parantheses indicate parameters
that are not compulsory. If these parameters are not specified on the command line, the tool will
look-up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotflatfield.

Table 3.3.2: Parameter descriptions for UVOTFLATFIELD.

Parameter | Description

infile Name of the input image file
outfile Name of the output image file
flatfile Name of the calibration file containing the flat field data. If the CALDB environment

variable is set, caldb will point the tool to the most relevant version of the file

default is yes

(cleanup) | Whether to delete temporary files created during the execution of this tool. The

default is no

(clobber) | Should UVOTFLATFIELD overwrite a file with the same name as the output? The

creates a record of the processing performed on the file. The default is yes

(history) | Should UVOTFLATFIELD write HISTORY keywords to the output file? This

(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTFLATFIELD tool. Example input and output
files can be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift/foo/uvotflatfield.

Namibia> uvotflatfield infile=sw00072901259ubb_rw.img
outfile=sw00072901259ubb_ff.img flatfile=caldb cleanup=y clobber=y chatter=1

46

Warnings and Errors

3.4 UVOTFLUX

Updates

Table 3.8.1: UVOTFLUX update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training

HEAsoft 6.0.5 2006-04-26 | Added parameters for frame time, source aperture and

whether dead time correction has already been performed
Write saturated column

HEAsoft 6.3 2007-07-01 | Renamed from UVOTMAG to UVOTFLUX

Description

From a column of count rate data contained in a FITS table (and optional error column), UVOT-
FLUX calculates instrumental magnitudes and fluxes, in units of erg s**-1 cm**-2 Angstrom™*1,
using filter-specific zero-points and flux conversion coefficients. Zero-points are defined as the mag-
nitude at which the count rate is 1 s**-1. UVOTFLUX will work on a wide variety off FITS tables,
such as source lists, light curves and broad-band filter PHA files, provided the input column has

units s**-1.

The tool also corrects for dead time and coincidence losses, which occur because the detector
can only recognize one photon per detector pixel within each individual frame. The CCD frame rate
is 11 ms, hence sources brighter than 20 count s**-1 will suffer from coincidence loss. Obviously
the magnitude of this correction is directly related to the source brightness.

Input files

UVOTFLUX requires three input files:

1. A FITS table containing a column of count rates in units of s**-1. Count rate errors are
optional, e.g., 00072901259 /uvot/image/sw00072901259u.cat.

2. A calibration file containing the zero-points for each filter, e.g.,
$CALDB/data/swift/uvot /cpf/phot/swuphot20041007v001.fits.

3. A calibration file containing the coefficients of a polynomial fit to tabulated coincidence loss

data versus count rate, e.g.,
$CALDB/data/swift/uvot /bcf/coine/swucntcor20041007v001. fits.

Output files

UVOTFLUX has a single output file:

1. A FITS table identical to the input file, except for additional columns for instrumental
magnitude and flux. Error columns will also be generated if an input error column was provided.
The original input file is over-written.

Table 3.8.2: Description of additional columns in the UVOTFLUX output table.

Swift UVOT Software Guide

Parameter Description

MAG The instrumental magnitude of the source

MAG_ERR | Uncertainty on the instrumental magnitude

FLUX Source flux in units of erg s**-1 cm™*-2 Angstrom™**-1

FLUX_ERR | Uncertainty on the source flux in units of erg s**-1 cm**-2 Angstrom**-1
Parameters

47

Table 3.8.3 lists the input parameters for UVOTFLUX. Parantheses indicate parameters that are
not compulsory. If these parameters are not specified on the command line, the tool will look-up the
current value in the parameter file. Users can inspect the parameter file by typing plist uvotmag.

Table 3.8.3: Parameter descriptions for UVOTFLUX.

Parameter | Description

infile FITS table containing a row of count rate data in units of s-1

zerofile A CALDB file containing filter-dependent zero-points and linear flux con-
version coefficients. If the CALDB environment variable is set, caldb will
point the tool to the most relevant version of the zero-point file

coinfile A CALDRB file containing coincidence loss correction data

filter The tool will automatically look for the correct FILTER in the keywords of
the image file if this parameter is set to default. However UVOTFLUX is
a generic tool and user has the option of passing a filter name. The filter
options are u, b, v, uvwl, uvm2, uvw2, white, magnifier, ugrism, and vgrism

(ratecol) Name of the input table column containing the count rate data

(errcol) Name of the input table column containing the count rate error data

(history) Should UVOTFLUX write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes

(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTFLUX tool.

Namibia> uvotflux infile=sw00000001001u.cat+1 zerofile=caldb
coinfile=caldb filter=B ratecol=RATE errcol=RATE_ERR chatter=1

Warnings and Errors

3.5 SWIFTXFORM

Updates

Table 3.4.2: SWIFTXFORM update history.

HEADAS Version | Date Description of updates

8.0

Released to Swift science team

9.0

2004-10-07 | Released for Burst Advocate training

48

Description

SWIFTXFORM is a general Swift tool that converts images from one coordinate system to another.
The input coordinate system can be one of the following:

Table 3.4.2: The coordinate systems in UVOT data files.

System | Description

RAW A linear array, identical to the pixel array within the UVOT camera. The
image can be any rectangular sub-array of the detector, with binning of 1,
2, 4 or 8. The array unit is pixels

DET An array, in physical units of the image window. The array unit is mm.
Compared to a RAW image, the array has been flipped across the RAWX
axis, so that we look up at the sky, rather than down upon the detector,
distortion due to the telescope optics has been corrected for, and rebinned
so that the image remains linear

SKY A tangential projection of the image in ecliptic coordinates, (R.A2000,
Dec2000). Compared to a DET image, the SKY image has been rotated
according to the roll angle of the telescope. The array has been rebinned so
that pixels are linear and orthogonal to RA and Dec

Similarly, the output coordinate system can be one of the three alternatives in Table 3.4.2.
The UVOT pipeline will only perform the conversion RAW to SKY; the one exception is for grism
images where analysis should be performed after a RAW to DET conversion.

By default, SWIFTXFORM calculates the smallest output array possible that will contain the
input image. However, the user does have control over the center of the image when converting to
SKY, which also determines the size of the output array.

Output image are always linear arrays and this requires pixel rebinning after coordinate trans-
formations. The algorithm calculates the output coordinates of the four corners of each input pixel.
Those output pixels that overlap the resulting quadrilateral are flagged. The counts within each
input pixel are distributed among the output pixels, weighted according to one of the following
schemes listed in Table 3.4.3., which can be chosen by the user.

Table 3.4.3: Count redistribution methods available in SWIFTXFORM

Swift UVOT Software Guide 49

System

Description

AREA

This method treats the counts in each pixel as being spread evenly over the
area of the pixel. It distributes the value of each original pixel among the
transformed pixels it covers proportionally by the fraction of overlapping
area. This method preserves the sum over pixels, so the transformed image
can be used to calculate fluxes. The transformed pixels values will not be
integers. The argument bitpix=-32 must always be used with this option

CENTER

This method assumes the counts in each pixel are concentrated at the center.
For each pixel in the original image, it transforms the position of the pixel
center and then adds the full pixel value to the corresponding pixel in the
transformed image. This method is fast to calculate, and it preserves the
sum over pixels and the integer nature of the original image. However,
it produces artifacts when the original and transformed pixel grids do not
coincide. So this method should only be used for e.g. translations by an
integer number of pixels

EVENT

This method mimics the effect of the COORDINATOR FTOOL on an event
list. It assumes that the value of each pixel gives the number of events in that
pixel. It then assigns random positions for each event within the pixel and
transforms those positions to the new coordinate system. Then the events
are binned into the pixels of the transformed image. If the pixel values are
not integers, imagexform gives a warning and converts the values to integers
in an arbitrary way. This method preserves the total (integer) number of
counts in the image, and guarantees that the transformed pixel values will
all be integers. This method is best for ”counts” images

INTERPOLATE

This method linearly interpolates the input image. For each pixel in the
transformed image it calculates the position of the center of that pixel in
the original image. It then linearly interpolates the original image to get
the transformed pixel value. The output pixel values will not generally be
integers. This is a common technique for transforming terrestrial images, but
the sum of the pixels is not preserved, so fluxes derived from the transformed
image will be inaccurate

DEFAULT

In the UVOT case, this method is identical to AREA

Data containing the pixel sizes, reference telescope coordinates, optical distortion parameters
and rotation and flip conventions are stored in the Telescope Definition (TELDEF) file that resides
in the caldb. Optical distortion is stored as an array of RAW X and Y offset parameters, sampled
across the detector. Corrections for each pixel location are interpolated in two dimensions using

these offsets.

Input files

SWIFTXFORM requires three input files:

1. An input image file.

e Example of archive location:
00072901259/uvot /image/sw00072901259uvv_rw.img.gz

2. An attitude history file, which is a tabular record of the spacecrafts pointing and orientation
during the observation, generally with a time resolution of 10 s.

50

e Example of archive location:
00072901259/ auxil/sw00072901259sat.fits.gz

3. A telescope definition file. In order to convert from one coordinate system to another, the
tool requires telescope data such as boresight direction, focal length, pixel size and distortion map.
These quantities are contained within a single CALDB file.

e Example of caldb location:
$CALDB/data/swift/uvot/bcf/teldef/swugen20041007.teldef

Output files

SWIFTXFORM yields a single output file:

1. A FITS file containing one or more image extensions.

e Archive location example:
00072901259/uvot /image /sw00072901259uvv_sk.img.gz

Parameters

Table 3.4.4 lists the input parameters for SWIFTXFORM. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
swiftxform.

Table 3.4.4: Parameter descriptions for SWIFTXFORM.

o1

Swift UVOT Software Guide

Parameter Description

infile Name of the input FITS image file. The input file will generally have more
than one image extension. SWIFTXFORM will perform a transformation
on a single extension if the extension name is specified in this parame-
ter, e.g., sw00073422001.img[00148265E]. Alternatively, all extensions will
be processed if only the filename is specified

outfile Name of the output FITS image file. This can have multiple image extensions

attfile Name of the input attitude history file. This will reside in the att subdirec-
tory of archived data

method Interpolation method during the transformation. The options are: AREA,
CENTER, EVENTS, INTENSITY and DEFAULT. The recommended
method is AREA. Definitions for these methods are provided in Table 3.4.3

teldeffile Name of the input telescope definition file. Entering caldb for this parameter
will allow the tool to find the most appropriate version of the alignment file
in the Swift CALDB

to The coordinate system of the output file, RAW, DET or SKY

ra For a SKY output image, the RA(2000) coordinate of the center of the array.
This parameter is redundant for other types of transformation. Units are
decimal degrees

dec For a SKY output image, the Dec(2000) coordinate of the center of the array.
This parameter is redundant for other types of transformation. Units are
decimal degrees

(bitpix) The number of bits stored in the output image. The default is to write the
same type of array to output as the input array. This argument should be
used when this is not a desired feature. The recommended value is 32 for
most applications, corresponding to an integer array of single precision. The
one exception to this rule occurs when method=AREA and the output array
must be real, i.e. bitpix=-32

(seed) Random number seed for the EVENT interpolation method

(aberration) | Whether velocity aberration is included in a translation to or from SKY
coordinates. The default is no since velocity aberration is compensated for
by on-board software before the attitude data is transmitted

(zeronulls) | Whether to treat NULL pixel values as zero.The default is no

(copyall) Copy all image extensions over to the output file. This is only applicable
when a specific image extension is requested as input. The default is no

(clobber) Should SWIFTXFORM overwrite a file with the same name as the output?
The default is no

(history) Should SWIFTXFORM write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes

(cleanup) SWIFTXFORM is a perl script that stitches several base tools together.
The default, yes, indicates that the tool will delete temporary files created
during execution

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the SWIFTXFORM tool. Example input and output files
can be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo/swiftxform.

52

Namibia> swiftxform infile=sw00072901259uvv_rw.img \
outfile=sw00072901259uvv_sk.img attfile=sw00072901259sat.fits \
method=AREA to=SKY ra=299.67 dec=35.235 teldeffile=caldb bitpix=-32 \
clobber=y chatter=1 cleanup=y history=y

Warnings and Errors

3.6 UVOTEXPMAP

Updates

Table 3.5.1: UVOTEXPMAP update history.

HEADAS Version | Date Description of updates
8.0 Released to Swift science team
9.0 2004-10-07 | Released for Burst Advocate training
HEAsoft 6.0.5 2006-04-26 | Updated how RAW to SKY transform is determined
HEAsoft 6.4 2008-03-01 | ”Method” parameter revised
Description

UVOTEXPMAP creates exposure maps for each UVOT image in SKY coordinates. Telescope
pointing will vary by some degree during, and between, exposures. Exposure maps are arrays of
the same size as SKY images populated with effective exposure times smaller or equal than the
exposure integration time. They are therefore useful when analyzing sources near bad pixels or
window edges where telescope drift will reduce the effective exposure times of individual pixels.
Note that UVOT does not suffer from vignetting, so count rates will, in general, be linear across
the detector.

Given the exposure times of individual images, at its most basic, UVOTEXMAP takes a bad
pixel map, sets good pixels to 1 and bad pixels to 0, multiplies the image by the exposure time and
finally performs a transformation from RAW to SKY coordinates. Each pixel contains the interval,
in units of seconds, that it was effective during the exposure.

If an image has been constructed from event-like data, it is likely that photon positions have
been corrected to their true sky locations using attitude history data or similar diagnostics of the
drift in spacecraft pointing. In these cases an identical correction must be made to the exposure
map. A large number of intermediate exposure maps are created for each individual exposure, one
map for each time quanta used to correct photon positions. The position (and roll if available) of
each map is defined by the mean telescope pointing during that time interval. The final exposure
map is constructed by co-adding the series of maps and rebinning so that the final product contains
the same pointing and binning as the parent image. If consecutive pointing entries in the drift data
differ by a user-defined threshold, the tool will linearly interpolate new points in the table so that
the threshold is never exceeded.

The UVOT approach to exposure map creation will depend upon the data format. For standard
imaging mode the process is relatively simple and fast. In this case, each image pixel has been
exposed for equal amounts of time so no delicate calculations of aspect drift corrections around
window edges and bad pixels are required. However, if spacecraft pointing stability is found to be
poor, a shift-and-add algorithm will be implemented by on-board software, where photon arrival
locations will be shifted in the RAWX and RAWY dimensions according to the attitude data at 10s
intervals before the image is summed. In this case UVOTEXPMAP must recreate these on-board

Swift UVOT Software Guide 53

shifts when creating the exposure map. In this mode, the spacecraft will send down an aspect
report packet containing the shifts employed during this procedure. UVOTEXPMAP requires this
data in order to recreate the correction in the exposure maps. Finally exposure maps for images
constructed from event data can also be constructed using position corrections from attitude history
data provided the same data was used to calculate the sky position of each photon. These last two
cases are time consuming and CPU intensive tasks. Since the pipeline processing must complete
within 2 hours, it remains to be seen whether these steps can be used by the pipeline.

Input files

UVOTEXPMAP requires four input files:

1. A Level IT FITS input file, containing SKY coordinate images, e.g.,
00072901259 /uvot /image/sw00072901259uvv_sk.img.gz

2. A bad pixel file containing image extensions that correspond to the input images. This is a
FITS image file, with an identical extension structure as the Level II sky image. Each extension
contains an image in RAWX, RAWY coordinates. This file is a temporary structure generated by
UVOTBADPIX.

3. Am aspect report packet or attitude history file which contains a tabular record of the
spacecrafts pointing and orientation during the observation. , e.g.,

e 00072901259/auxil/image/sw00072901259sat.fits.gz

4. A telescope definition file. In order to convert from one coordinate system to another, the
tool requires telescope data such as boresight direction, focal length, pixel size and distortion map.
These quantities are contained within a single CALDB file.

e Example of caldb location:
$CALDB/data/swift/uvot/bcf/teldef/swugen20041007.teldef

Output files

UVOTEXPMAP has a single output file:

An output image array, containing exposure map image extensions in SKY coordinates. Image
sizes, positions and file extension structure are identical to the input image.

Parameters

Table 3.5.2 lists the input parameters for UVOTEXPMAP. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotexpmap.

Table 3.5.2: Parameter descriptions for UVOTEXPMAP.

54

Parameter Description

Infile Name of the Level IT FITS image file, containing images in SKY coordinates.
Files may contain more than one image extension. This file is produced by
SWIFTXFORM

badpixfile Name of the file containing the bad pixel maps that correspond to the input
images. This file is produced by UVOTBADPIX

attfile Name of the attitude history file, contained in the att directory in archived
data
teldeffile Name of the telescope definition file contained in the CALDB. If the CALDB

environment variable is set, caldb will point the tool to the most relevant
version of the teldef file. This file contains telescope data such as an optical
distortion map, focal length, boresight and pixel size

outfile The name of the FITS image file containing exposure maps corresponding
to the input images. This file will have an identical structure to the input
image file

method This parameter defines the method of map construction used by the tool.

MEANFOV should be used for standard images, SHIFTADD for images
resulting from the onboard shift-and-add process.

attdelta If consecutive position records in the attitude history file differ by more
than this parameter, virtual records are interpolated linearly between them
so that the difference between adjacent records is no more than attdelta.
The unit is arcsec

(aberration) | Account for relativistic velocity aberration of source positions. This correc-
tion is made to attitude data on-board, so should never be required. The
default is no

(cleanup) UVOTEXPMARP is a perl script that wraps several base tools. This param-
eter tells the tool to delete all intermediate files in the working directory.
The default is yes

(clobber) Should UVOTEXPMAP overwrite a file with the same name as the output?
The default is no

(history) Should UVOTEXPMAP write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (0

= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the uvotexpmap tool. Example input and output files can
be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo/uvotexpmap.

Namibia> uvotexpmap infile=sw00072901259uvv_sk.img
outfile=sw00072901259uvv_ex.img badpixfile=sw00072901259uvv_bd.img
teldeffile=caldb attfile=sw00072901259sat.fits method=MEANFOV clobber=y

chatter=1 cleanup=y history=y clobber=y

Swift UVOT Software Guide 55

Warnings and Errors

3.7 UVOTDETECT

Updates

Table 3.6.1: UVOTDETECT update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training

HEASsoft 6.0.5 2006-04-26 | Updates to SExtractor parameters. Corrected background
mean and sigma estimates. Fixed RATE_ERRs when an ex-
posure map is provided

Description

UVOTDETECT detects sources within a single UVOT SKY image and constructs a source table.
This tool is a script wrapped around the public package sextractor. A homepage for this software,
containing a description of the algorithm, may be found at:

http://terapix.iap.fr /rubrique.php?id_rubrique=91

The choice of this tool was made because of sextractors capability to detect and measure
extended sources. This script records a subset of the sextractor output in the resulting FITS
table, including source positions in both epoch 2000 sky coordinates and pixel coordinates, the
faint detection threshold, the size, shape and orientation of extended sources (assuming elliptical
distributions), and warning flags from the tool.

Input files

UVOTDETECT requires one mandatory input file and one optional one:

1. A level IT input FITS file, containing one or more SKY coordinate images. Only the specified
image extension will be operated upon.

e Archive location, e.g.:
00072901259/uvot /image /sw00072901259uvv_sk.img.gz

2. An optional image file containing an array of weights for each pixel in the input image.
This is used to determine more accurate detection thresholds for each source. The exposure map
appropriate for the input image is a viable weight map.

e Archive location, e,g,:
00072901259 /uvot /image /sw00072901259uvv_ex.img.gz

Output files

UVOTDETECT has a single output file:

1. A FITS table containing one row for every source detected in the input image. Table 3.6.2
describes the content of each row.

56

Table 3.6.2: Description of the output table from UVOTDETECT.

Column Description

REFID Internal reference number of each source, 1-n

RA Epoch 2000 right ascension of the source in decimal degrees

DEC Epoch 2000 declination of the source in decimal degrees

RA_ERR 1-sigma uncertainty in RA

DEC_ERR 1-sigma uncertainty in Dec

THRESHOLD | Detection threshold in magnitude. This parameter is related to the threshold input
parameter

X IMAGE x-position of the source in the input image in pixels

Y_IMAGE y-position of the source in the input image in pixels

X_ERR 1-sigma uncertainty in X_IMAGE

Y_ERR 1-sigma uncertainty in Y_IMAGE

PROF_MAJOR | Size of semi-major axis of source in arcsec

PROF_MINOR | Size of semi-minor axis of source in arcsec

PROF_THETA | Angle subtending the major axis and equator in degrees counter-clockwize

FLAGS Warning flags generated by sextractor

ORIGIN Origin of source list, e.g., image, TDRSS packet

Quoting directly from Sec 8.1 of the sextractor users guide, the origin of warning flags will be
one of the following:

Table 3.6.3: Key to warning flags in the UVOTDETECT source table.

Flag | Description

1 The object has neighbours, bright and close enough to significantly bias
photometry, or bad pixels where more than 10% of the integrated area is
affected

2 The object was originally blended with another one

4 At least one pixel of the object is saturated, or very close it

8 The object is truncated, i.e. too close to the image boundary

16 Data in the extraction aperture is incomplete or corrupted

32 Objects isophotal data is corrupted or incomplete

64 A memory overflow occurred during deblending

128 | A memory overflow error occurred during extraction

Note that more than one warning could be given for a source, hence FLAGS = 8416432 = 56
is a possible value.

Parameters

Table 3.6.4 lists the input parameters for UVOTDETECT. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotdetect.

Table 3.6.4: Parameter descriptions for UVOTDETECT.

Swift UVOT Software Guide 57

Parameter | Description

infile Input level IT image FITS file. Only one image is accepted, so if the file has
multiple image extensions, the correct extension should be provided
outfile Output FITS source table

weightfile | An image extension containing exposure weights for each pixel. none is the
default, but an accurate exposure map should be supplied here, if the input
image is a mosaic or sum of several individual exposures

threshold | Detection threshold above the background in terms of signal-to-noise. Poten-
tial sources detected below this threshold will not be written to the output
table

(cleanup) | UVOTDETECT is a wrapper script. This parameter determines whether
intermediate files are deleted from the working directory. The default is yes
(clobber) | Should UVOTDETECT overwrite a file with the same name as the output?
The default is no

(history) | Should UVOTDETECT write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(cleanup) | UVOTDETECT is a perl script that wraps an external program. In do-
ing so, several parameter control files need to be created before executing
sextractor. This parameter tells the tool to delete the control files in the
working directory. The default is yes

(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTDETECT tool. Example input and output files
can be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo/uvotdetect.

Namibia> uvotdetect infile=sw00000001001u_sk.img+1 outfile=sources.fit
weightfile=sw00000001001u_ex.img+1 threshold=2 history=y cleanup=y clobber=y chatter=1

Warnings and Errors

3.8 UVOT2PHA

Updates

Table 3.7.1: UVOT2PHA update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

Swift is a panchromatic instrument consisting of three detectors, BAT, XRT and UVOT. It will often
be critical to analyze data from two or three of these instruments simultaneously and consistently.
We therefore provide this tool that constructs data files from the UVOT images that are compatible
with XSPEC, the X-ray spectral analysis package which both XRT and BAT data conform to. It
then becomes possible to perform panchromatic spectral fitting across the optical, UV, soft X-ray

58

and hard X-ray bands simultaneously. XSPEC is incorporated in the XANADU subpackage of
the HEASoft distribution which is required before attempting any Swift data analysis, therefore it
should already exist on your machine. A description of the XSPEC package can be found at:

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/index.html

UVOT2PHA is only applicable to images derived from the UVOTSs lenticular (broad-band) fil-
ters, i.e., U, B, V, UVW1, UVM2, UVW2, WHITE and MAGNIFIER. The tasks for converting
grism image data to XSPEC compatible spectra are contained in UVOTIMGRISM and UVOTRM-
FGEN. Of course, other than a central wavelength, data from an individual lenticular filter contains
no spectral information. However, by combining two or more lenticular filter data files, or one or
more lenticular filter file with XRT or BAT files, spectral analysis may be performed in XSPEC
such as spectral slope and redshift measurements. These can also be fit simultaneously with any
XRT or BAT data available. Note this one word of caution, UVOT exposures are taken in series,
not parallel, so the user must understand the potential of time-variable phenomena biasing the
results of spectral fitting.

The core of this tool is inherently simple. Given two region files, one containing source
counts from a specific object, the other containing background counts from around that source,
UVOT2PHA will extract counts from both regions accompanied by Poisson uncertainties. These
four quantities will be cast into two XSPEC-compatible files. The specific file format is documented
at the HEASARC:

http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary /ogip-92_007_summary.html

The extraction regions should be stored in two external ascii files prior to executing this tool.
These can be created by hand, or more conveniently, using standard image analysis tools such as
DS9:

http://hea-www.harvard.edu/RD/ds9
or XIMAGE:
http://heasarc.gsfc.nasa.gov/docs/xanadu/ximage /ximage.html

XIMAGE is also part of the XANADU package and will be installed on your machine at the
same time as the rest of the HEASoft distribution. Note that when using DS9 to create these
extraction region files the user must ensure that they are written in image pixel coordinates rather
than RA and Dec coordinates. This is the tool default, but it can be verified by clicking on the
region button on the upmost tool bar above the image. The data extraction itself is executed by
an internal call to XIMAGE, using the command counts/regionfile.

While the output from UVOT2PHA is XSPEC-ready, it is not scientifically useful without a
suitable response matrix, which defines the spectral properties of the data. These can be down-
loaded from the Swift web pages, where there is one for every lenticular filter. It is critical that the
correct response matrix be used with the data:

http://swift.gsfc.nasa.gov/docs/swift /proposals/swift_responses.html

UVOT2PHA propagates required keywords from the image header extension to the spectrum
files. However if the user attempts to execute this tool using image files that do not contain these
mandatory keywords then he or she is required to supply suitable keywords values manually using
the optional parameters ra, dec, date-obs, time-obs, date-end and time-end described in Table 3.7.2.

UVOT2PHA is a value-added tool and not employed in the automated Swift data reduction
pipeline.

Swift UVOT Software Guide 59

Input files
UVOT2PHA requires three input files:

1. A specific extension within a level IT UVOT FITS image file, e.g.,
00072901259 /uvot/image/sw00072901259uvv_sk.img+1.

2. An ascii file containing the source extraction region using WCS sky coordinates. A simple
example would be:

o fk5;circle(273.7256,-23.9964,12)

the coordinates are relative to the lower-left pixel in the image.

3. An ascii file containing the background extraction region, e.g.:

o fk5;circle(273.7256,-23.9964,24)

fk5;-circle(273.7256,-23.9964,12)

Output files

UVOT2PHA has two output files:
1. An XSPEC-compatible FITS file containing source counts.
2. An XSPEC-compatible FITS file containing background counts.

Parameters

Table 3.7.2 lists the input parameters for UVOT2PHA. Parantheses indicate parameters that are
not compulsory. If these parameters are not specified on the command line, the tool will look-up the
current value in the parameter file. Users can inspect the parameter file by typing plist uvot2pha.

Table 3.7.2: Parameter descriptions for UVOT2PHA.

60

Parameter | Description

Infile Input image file or extension

Srcpha Output pha file containing the source 4+ background count rate

bkgpha Output pha file containing the background count rate

srcreg Region file defining the source extraction area

bkgreg Region file defining the background extraction area

(phatype) | Type of output data. The options are counts, providing an output table
containing counts, or rate, providing an output table containing data in
units of count s-1. The rate option is essential if the user intends to run
UVOTMAG on the output from this tool

(ra) The Right Ascension (epoch 2000) of the source in decimal degrees

(dec) The Declination (epoch 2000) of the source in decimal degrees

(date_obs) | Date at the start of the observation

(time_obs) | The observation start time in MET

(date_end) | Date at the end of the observation

(time_end) | The observation end time in MET

(tmpdir) Name of the directory to store temporary files. The default is .

(clobber) | Should UVOT2PHA overwrite a file with the same name as the output? The
default is no

(history) Should UVOT2PHA write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes

(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOT2PHA tool.

Namibia> uvot2pha infile=sw00072901259uvv_sk.img+1 srcpha=v.pha
bkgpha=b_bkg.pha srcreg=v.reg bkgreg=v_bkg.reg clobber=y chatter=1

Warnings and Errors

3.9 UVOTMAG

Updates

Table 3.8.1: UVOTMAG update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training

HEAsoft 6.0.5 2006-04-26 | Added parameters for frame time, source aperture and
whether dead time correction has already been performed
Write saturated column

HEAsoft 6.3 2007-07-01 | Renamed from UVOTMAG to UVOTFLUX

Description

This tool was renamed UVOTFLUX and is obsolete.

Swift UVOT Software Guide 61
3.10 UVOTSOURCE

Updates

Table 3.9.1: UVOTSOURCE update history.

HEAsoft Version | Date Description of updates

6.0.1 2005-04-01 | Released to public

6.0.2 2005-08-11 | Flux and count rate output option added. Detection signifi-
cance calculated. Temporary file handling recoded

6.0.5 2006-04-26 | Added output in mJy
Changed default value of output parameter to ALL

6.2.1 2007-06-18 | Revision includes aperture correction and coincidence loss
correction

Description

This tool performs aperture photometry on a single source in a UVOT SKY exposure (sw*.img+extension).
It returns information about the count rate from the source, the source’s magnitude, and flux den-
sity information, corrected for the employed aperture and coincidence losses.

The user specifies the source extraction region and background region using region files that
are in the standard ftool or DS9 format. If ”srcreg” is set to NONE then the tool will compute
the ”sigma’”-sigma limiting magnitude for the exposure. The ”sigma” parameter tells the tool
what level of significance to use to compute the background limit. Photometric and coincidence
loss calibration data are read from the files specifed by ”zerofile” and ”coinfile” respectively. The
special value CALDB tells the tool to obtain this data from the Swift/UVOT calibration database.

There are two methods for doing photometry. APERTURE does simple aperture photometry.
All of the counts in the ”srcreg” region are summed and divided by the exposure time to produce
a count rate. The background count rate is subtracted and the magnitude is computed from the
coincidence-corrected net count rate. Photometry is done as follows.

1. Extract the raw counts in three apertures.
The user-supplied source region, ”srcreg”.

The source aperture may be any size or shape that can be described in a valid region file.
The source region should be selected to maximize the science return. In general faint point
sources should use circular apertures with a radius that maximizes the signal-to-noise ratio in
the aperture. This is typically about 3 arcsec. For bright sources the standard photometric
aperture (defined in ”zerofile”) is usually prefered. The source aperture should be chosen to
minimize contamination from other sources.

The user-supplied background region, ”bkgreg”.

The background region may be any size or shape that can be described in a valid region file.
It should be chosen to have the same background properties as the source region. It should
be free of contaminating sources and large enough to that the mean pixel value is not biased
by Poisson statistics. The background value is computed by taking the mean of the pixel
values in the background region.

A coincidence-loss correction aperture, defined in ”coinfile”

62

This region is a circular aperture with an radius defined by the COTAPT column in the CO-
INCIDENCE extension of the ”coinfile” file. It is centred on the centre of the ”srcreg” region.
This is the region that is used to compute the coincidence loss correction factor. Counts are
extracted from the input exposure by the XImage ”counts” command. See the XImage User
Manual for details on how counts are extracted.

2. Calculate the coincidence loss correction factor from the count rate in the coincidence-loss
correction aperture. See the fhelp for uvotcoincidence for details about coincidence-loss corrections.

3. Apply the coincidence-loss factor to the raw count rate in the source aperture.

4. Scale the background count rate to the area of the coincidence-loss aperture and then apply
the coincidence loss factor.

5. Scale the coincidence-corrected background rate to the area of the user-supplied source
aperture and subtract this from the coincidence-corrected rate in the source aperture to get the
coincidence-corrected net count rate from the source.

6. Apply the photometric calibrations from ”zerofile” to the coincidence-corrected net count rate
from the source to obtain the magnitude and flux density information described below. Note that
the photometric calibrations assume that the source region is the same as the standard photometric
aperture, so the values returned using the APERTURE method are not on the standard UVOT
photometric system. See the description of the CURVEOFGROWTH method for details on how
to correct for this.

The CURVEOFGROWTH method does aperture photometry as for the APERTURE method
with one additional step. The APERTURE method will only return magnitudes and flux densities
that are on the standard UVOT photometric system if the source region is the same as the standard
photometric aperture defined in ”zerofile”. To bring these magnitudes onto the standard system the
CURVEOFGROWTH method computes an aperture correction to the coincidence-loss corrected
net count rate from the source. See the fhelp for uvotapercorr for details on aperture corrections
and how they are applied. The CURVEOFGROWTH method assumes that the source is a point
source.

The aperture correction applied by the CURVEOFGROWTH method is approximate and in-
tended for preliminary data analysis. It does not take into account changes in the PSF due to
voltage or count rate variations (see the uvotapercorr fhelp). For high-precision photometry the
APERTURE method should be used, and aperture corrections that take these factors into account
should be performed by the user.

Input files

UVOTSOURCE requires three input files:

1. A FITS file containing at least one image extension, e.g.,
sw00072901259 /uvot /image /sw00072901259uvv_sk.img.

2. An ascii file defining the source extraction region. Region files created using either ds9 or
ximage are compatible with this tool.

3. An ascii file defining the background region.

Output

Uvotsource returns the following information:

Swift UVOT Software Guide 63

Source Information: The position is the position specified in the ”srcreg” region file. The
exposure time is the value of the EXPOSURE keyword.

Magnitude Information: The magnitude of the source, its one-sigma statistical error, and the
significance of the detection. Background is the magnitude of the sky. Background-limit is the
7sigma’”-sigma limiting magnitude of the exposure. Coincidence-limit is the magnitude correspond-
ing to a count rate of one count per frame time.

Flux Information: The flux density information is given in cgs units. Flux densities are com-
puted assuming a mean spectrum taken ”zerofile”. They do not reflect the actual spectrum of the
source.

Coincidence Corrected Rate Information: This is the count rate of the source after all corrections
have been applied. This includes aperture corrections if the CURVEOFGROWTH method was
used.

Raw Rate Information: This is the raw count rate from the source after subtracting the back-
ground count rate, but before applying coincidence or aperture corrections.

Flux mJy: The flux density information is given in milliJansky. Flux densities are computed
assuming a mean spectrum taken from ”zerofile”. They do not reflect the actual spectrum of the
source.

The errors in the computed quantities are the 1-sigma statistical errors based on Poisson statis-
tics in the count rates. The computed quantities are appended to the FITS file specified by ”out-
file". If "syserr=YES” then the systematic errors in the calibration are added in quadrature
to the statistical errors.

Parameters

Table 3.9.2 lists the input parameters for UVOTSOURCE. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotsource.

Table 3.9.2: Parameter descriptions for UVOTSOURCE.

64

Parameter | Description

image FITS file containing at least one image extension

srcreg ds9 or ximage ascii region file defining the source extraction region

bkreg ds9 or ximage ascii region file defining the background extraction region

filter The tool will automatically look for the correct FILTER in the keywords of
the image file if this parameter is set to default. However UVOTSOURCE is
a generic tool and a user has the option of passing a filter name. The filter
options are u, b, v, uvwl, uvm2, uvw2, white, magnifier, ugrism, and vgrism

sigma The number of sigma above image noise that corresponds to a secure detec-
tion

outfile Output FITS file to append results to.

(coinfile) Coincidence loss correction file. The special value CALDB indicates to read
from the calibration data base.

(framtime) | If uvotsource is invoked with frametime=default and FRAMTIME is not
present in the header, uvotsource assumes frametime = 0.0110322 [s].

(syserr) Are systematic errors in the photometric calibration to be used in the error
calculations. If set to YES then systematic errors are added in quadrature to
the statistical errors. If set to NO then only statistical errors are returned.

(method) | Magnitude calculation method. APERTURE or CURVEOFGROWTH.
CURVEOFGROWN assumes a point source.

(output) Output units. The options are instrumental filter magnitude, flux density
in erg/s/cm{}2/Angstrom, corrected count rate in counts/s,
raw count rate in counts/s, flux density in milliJanskys. ALL indicate that
all sets of units are output.

(cleanup) | Whether to delete temporary files. Valid answers are y or n

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTSOURCE tool.

zerofile=CALDB coinfile=CALDB syserr=NO method=APERTURE output=ALL outfile=sources.fits

The following examples illustrate running uvotsource

1. run uvotsource prompting for all mandatory options:
uvotsource

2. run uvotsource specifying all arguments:
uvotsource image=sky.img.gz+1 srcreg=src.reg bkgreg=bkg.reg sigma=5 \

cleanup=yes clobber=no chatter=1

3. run uvotsource with the curve of growth method and include systematic errors:
uvotsource image=sky.img.gz+1 srcreg=src.reg bkgreg=bkg.reg sigma=5 \
syserr=YES method=CURVEOFGROWTH outfile=sources.fits

Swift UVOT Software Guide 65

Warnings and Errors

3.1 UVOTMAGHIST

Updates

Table 3.10.1: UVOTMAGHIST update history.

HEADAS Version | Date Description of updates
8.0 Released to Swift science team
9.0 2004-10-07 | Released for Burst Advocate training
HEAsoft 6.0.5 2006-04-26 | Added frametime parameter
HEAsoft 6.2.1 2007-06-16 | Revision

Description

This tool is a wrapper that calls UVOTSOURCE once per image extansion, makes a FITS table
and generates light curve plot(s). The fact that UVOTMAGHIST is now a wrapper that calls
UVOTSOURCE is a CHANGE compared to previous versions. The purpose of this change is to
remove duplicate functionality in the two tools. It is intended as a labour-saving script for the
analysis of UVOT image mode data.

In general, provided a user has suitable region files for a specific object, the extraction of count
rates from an image is a trivial exercise using, e.g. the counts/regionfile command in the HEASoft
XIMAGE, while the conversion of these count rates to instrumental magnitude and flux is provided
by a single call to UVOTMAG. With the large number of images produced by the UVOT, this
task becomes both arduous and repetitive. UVOTMAGHIST is a script that performs an identical
region extraction over all of the images contained in either a Level I, IT or II image file and converts
each count rate to magnitude and flux. Output files are a FITS table containing the magnitude
history of the source, and an optional GIF file containing the filter magnitude against time.

Input files

UVOTMAGHIST has three input files:

1. An FITS file containing a series of image extensions, e.g.,
sw00072901259 /uvot /image /sw00072901259uvv_sk.img.gz

2. A calibration file containing the zero-points for each filter, e.g.,
$CALDB/data/swift/uvot/cpf/phot/swuphot20041007v001.fits.

3. A calibration file containing the coefficients of a polynomial fit to tabulated coincidence loss
data versus count rate, e.g.,
$CALDB/data/swift/uvot /bcf/coine/swucntcor20041007v001 fits.

Output files

UVOTMAGHIST has two output files:
1. An optional GIF file plotting instrumental magnitude against time.

2. A FITS table containing information on time, count rate, magnitude, flux, etc., for each of
the images in the input file. Definitions for the table columns are provided in Table 3.10.2.

66

Table 3.10.2: Column definitions for UVOTMAGHIST output.

Col | Name Format [Units] Definition

1 | MET D [seconds] Mission time

2 EXTNAME 12A Image identifier

3 | TSTART D [seconds] Image start time

4 | TSTOP D [seconds] Image stop time

5 | EXPOSURE E [seconds] Corrected exposure time

6 TELAPSE E [seconds] TSTOP - TSTART

7 | TIME D [seconds] Offset from TIMEZERO

8 SRC_AREA E [arcsec2] Area of source extraction region

9 | BKG_.AREA E [arcsec2] Area of background region

10 | STD_AREA E [arcsec2] Area of Col aperture

11 | PLATE_SCALE E [arcsec/pix] Plate scale

12 | RAW_TOT_CNTS E [count] Total counts in source region

13 | RAW_TOT_CNTS_ERR E [count)] Error in RAW_TOT_CNTS

14 | RAW_BKG_CNTS E [count] Total counts in background region

15 | RAW_BKG_CNTS_ERR E [count)] Error in RAW_BKG_CNTS

16 | RAW_STD_CNTS E [count] Total counts in standard region

17 | RAW_STD_CNTS_ERR E [count)] Error in RAW_STD_CNTS

18 | RAW_TOT_RATE E [count /s] Measured count rate in source region
19 | RAW_TOT_RATE_ERR E [count/s] Error in RATE_TOT_RATE

20 | RAW_BKG_RATE E [count/s/arcsec2] | Measured count rate in bkg region

21 | RAW_BKG_RATE_ERR E [count/s/arcsec2] | Error in RAW_BKG_RATE

22 | RAW_STD_RATE E [count /s] Measured count rate in standard region
23 | RAW_STD_RATE_ERR E [count/s] Error in RATE_.STD_RATE

24 | COILSTD_FACTOR E Col factor for standard region

25 | COISTD_FACTOR_-ERR | E Error in COI.STD_FACTOR

26 | COI. BKG_FACTOR E Col factor for background region

27 | COI.BKG_.FACTOR_ERR | E Error in COI.LBKG_FACTOR

28 | COL.TOT_RATE E [count/s] Col corrected rate in source region

29 | COI.TOT_RATE_ERR E [count /s] Error in COLL.TOT_RATE

30 | COI.BKG_RATE E [count/s/arcsec2] | Col corrected rate in background region
31 | COI.BKG_.RATE_ERR E [count/s/arcsec2] | Error in COI.BKG_RATE

32 | COI.SRC_RATE E [count/s] Bkg subtracted, Col corrected source rate
33 | COI.SRC_RATE_ERR E [count/s] Error in COI.SRC_RATE

34 | AP_.FACTOR E Aperture correction factor

35 | AP_.FACTOR_ERR E Error in AP_FACTOR

36 | AP_.COI.SRC_RATE E [count/s] Aperture corrected, Col corrected source rate
37 | AP.COLSRC_RATE_ERR | E [count/s] Error in AP_COLSRC_RATE

38 | MAG E [mag] Magnitude from AP_COI_.SRC_RATE
39 | MAG_ERR E [mag] Error in MAG

Table 3.10.2 (continued): Column definitions for UVOTMAGHIST output.

Swift UVOT Software Guide

67

Col | Name

Format [Units]

Definition

40 | MAG_BKG

E [mag/arcsec2]

Sky magnitude

41 | MAG_.BKG_ERR E [mag/arcsec2] Error in MAG_BKG

42 | MAG_LIM E [mag] Limiting magnitude

43 | MAG_LIM SIG E [sigma)] Sigma for limiting magnitude

44 | MAG_COI_LIM E [mag] Coincidence limit magnitude

45 | FLUX_AA E [erg/s/cm2/A] Flux density

16 | FLUX_AA_ERR E [erg/s/cm2/A] | Error in FLUX_AA

47 | FLUX_AA BKG E Sky flux density
lerg/s/cm2/A Jarcsec?]

48 | FLUX_AA_BKG_ERR E Error in FLUX_AA_BKG
[erg/s/cm2/A/arcse02]

49 | FLUX_AA_LIM E [erg/s/cm2/A] Flux density corresponding to MAG_LIM

50 | FLUX_AA_COI_LIM E [erg/s/cm2/A] Coincidence limit flux density

51 | FLUX_HZ E [mjy] Flux density in mJy

52 | FLUX_HZ_ERR E [mjy] Error in FLUX_HZ

53 | FLUX_HZ_BKG E [mjy/arcsec2] Sky flux density

54 | FLUX_HZ_BKG_ERR E [mjy/arcsec2] Error in FLUX_HZ_BKG

55 | FLUX_HZ_LIM E [mjy] Flux density corresponding to MAG_LIM

56 | FLUX_HZ_COI_LIM E [mjy] Coincidence limit flux density in mJy

57 | COI.LRATE_LIMIT E [count/s] Col corrected rate limit

Parameters

Table 3.10.3 lists the input parameters for UVOTMAGHIST. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-

up the current value in the parameter file.

uvotmaghist.

Users can inspect the parameter file by typing plist

Table 3.10.3: Parameter descriptions for UVOTMAGHIST.

68

Parameter Description

Infile Input FITS image file containing a series of image extensions

oufhile Output FITS table containing exposure times, exposure durations, count
rates, instrumental magnitudes, fluxes and detection limits

plotfile Optional GIF file presenting instrumental magnitude over time. NONE pro-
duces no GIF output

zerofile A CALDRB file containing filter-dependent zero-points and linear flux con-
version coefficients. If the CALDB environment variable is set, caldb will
point the tool to the most relevant version of the zero-point file

coinfile A CALDRB file containing coincidence loss correction data

syserr Include systematic errors?

timezero Plot start time or 0 to determine from input data [seconds]

ra Epoch 2000 Right Ascension of the source in decimal degrees

dec Epoch 2000 Declination of the source in decimal degrees

(srcas) Radius of a circular extraction region for the source in units of arcsec

(bkgas) Radius of a circular extraction region for the background in units of arcsec

(srcreg) Source region file or NONE

(skgreg) Background region file or NONE

(exclude) List of extensions to exclude or NONE

(frametime) | Frame time [s]

(nsigma) No sigma for calculating faintest detection

(logtime) Plot time using log scale?

(cleanup) UVOTMAGHIST creates a number of intermediate files in your working
directory. These are only useful for software developers. This option removes
all intermediate files at the end of the routine. The default is yes

(clobber) Should UVOTMAGHIST overwrite a file with the same name as the output?
The default is no

(history) Should UVOTMAGHIST write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTMAGHIST tool.

Namibia> uvotmaghist infile=sw00072901259uvv_sk.img.gz outfile=maghist.fit
plotfile=maghist.gif zerofile=caldb coinfile=caldb ra=23.35 dec=41.823
srcas=3 bkgas=10 cleanup=y history=y clobber=y chatter=1

Warnings and Errors

3.12

Updates

UVOTCENTROID

Table 3.11.1: UVOTCENTROID update history.

HEAsoft Version | Date

Description of updates

6.2.1

2007-06-18

Released to the public

Swift UVOT Software Guide 69

Description

UVOTCENTROID locates the centroid positions of a source on a UVOT image.

One of the primary goals of the UVOT instrument is to provide accurate celestial positions
for gamma ray burst afterglows. The problem can be separated into three parts i) the conversion
from detector pixels to sky coordinates (see the ftool swiftxform), ii) an astrometric adjustment
to correct systematic pointing uncertainties in the spacecraft attitude (see uvotaspcorr), and iii)
within the statistical limits of the data, locate the centroid of a particular source on the image. It
is this last item which is performed by uvotcentroid. Sky coordinate conversion must have been
performed before running uvotcentroid. This tool can be used before an astrometric correction, but
only to determine a statistical confidence limit. An astrometric correction is required to determine
an accurate position. But note well that both items i) and ii) above can only be achieved to a certain
accuracy and this systematic uncertainty - *which can often exceed the statistical position error
provided by uvotcentroid* - is not propagated through the centroiding calculation. The statistical
and systematic errors must be combined before reporting a formal position ucertainty.

This tool employs uvotdetect to determine the position of sources. uvotdetect is a wrapper for
the sextractor tool which does the fundamental work of detecting and providing source positions;
see http://terapix.iap.fr/rubrique.php?id_rubrique=91/. Both point- and extended sources can be
centroided and relatively crowded fields can be accommodated. 1-sigma uncertainties are reported
by uvotdetect but the method by which sextractor obtains these errors is somewhat nebulous. In
order to achieve some confidence in the statistical error, uvotdetect performs a user-defined number
of trials. Before each trial a new, small image is created from the original with the source of interest
close to the center. The value of each individual pixel is ajusted by a value chosen at random from
the normal cummulative distribution function defined to have a sigma width of the square root of
the pixel value. This provides multiple images with identical noise distributions but pixel count
distributions varying within the limits defined by the noise. A centoid position for the source in
each trial image is recorded and the variance used to estimate confidence limits on the result.

The tool reports back the most-likely RA and Dec of the source, a confidence limit on the
position and the number of trials in which the source could not be detected (useful for faint soures).
Optionally a plot may be generated to inspect the trial distribution.

If more than one source is located within the subimage, the tool will default to the source
nearest to the center of a user-provided region file. The user has the ability to change the size of
the sub-field over which uvotcentroid regenerates source images. Small fields have the advantage of
less field sources and faster runtimes, at the expense of smaller background statistics. A reasonable
subimage size is 20x20 arcsec for optical filter observations and 40x40 arcsec for UV observations.

Input files

UVOTCENTROID requires three input files:

1. A FITS file containing at least one image extension, e.g.,
sw00072901259 /uvot /image /sw00072901259uvv_sk.img.

2. An ascii file defining the source extraction region. Region files created using either ds9 or
ximage are compatible with this tool.

Output

UVOTCENTROID returns the centroid position of the source on the screen.

70

Parameters

Table 3.11.2 lists the input parameters for UVOTCENTROID. Parantheses indicate parameters
that are not compulsory. If these parameters are not specified on the command line, the tool will
look-up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotcentroid.

Table 3.11.2: Parameter descriptions for UVOTCENTROID.

Parameter | Description

image The name and correct path to a standard UVOT FITS sky image. if either
are incorrect, the tool will complain that it has found no such image. The
name should normally contain the FITS extension hosting the image, either
by number, e.g. example.fits+1, or name, e.g. example. fitsfEXTNAME]. If
neither are supplied the tool will look for an image in the primary extension
and use it. If none is found, it will default to the first extension and look
again. If none is then found the tall will complain.

srcreg The name and correct path to a standard ds9 region file. These regions
can often be complex, uvotcentroid will read the first line which begins with
'tk5;” (ignoring any exclusion regions 'fk5:-’) and use these coordinates as
the center of each subimages it creates.

confidence | This is the level of confidence (percent) with which you would like the source
position reported. A typical value is 90, but the range is 0 < confidence <
100, exclusive.

niter The number of trials to be performed. The more trials, the more accurate
the result. A minimum of 100 successful trials are required to provide a
confidence estimate. If less than 100 trails could detect the source,a position
will be reported but no error estimate. In these cases, re-run the tool with a
larger number of trials. uvotcentroid can be run with just 1 trial which will
provide a position with no confidence. Provided an astrometic correction
has been peformed, most likely this position will be good to at least 1 arcsec
> 99.9% confidence.

threshold | uvotdetect will only recognise sources if they are detected above this thresh-
old. The units are sigma, assuming a Gaussian noise distribution. This
argument must be positive and larger than zero. For weak, marginal source
a threshold of 2 is suitable.

subdimsiz | The dimensions of the subimage are square and this argument provides the
length of one side in arcsec units. The subimage must be large enough to
incorporate the source and some background in order for the source to be
located.

ra This is not an input argument. It is used to store the output right ascension
in decimal degrees so that users and scripts can access the results easily,
using e.g. from a shell: 'pget uvotcentroid ra’

dec This is not an input argument. It is used to store the output declination in
decimal degrees so that users and scripts can access the results easily, using
e.g. from a shell: 'pget uvotcentroid dec’

Table 3.11.2 (continued): Parameter descriptions for UVOTCENTROID.

Swift UVOT Software Guide 71

Parameter | Description

conflimit This is not an input argument. It is used to store the output location
uncertainty in arcseconds so that users and scripts can access the results
easily, using e.g. from a shell: "'pget uvotcentroid conflimit’. Conflimit is only
useful if you get the confidence level associated with it: ’pget uvotcentroid
confidence’

plot If yes, the tool will plot a summary of the result and trials. Two windows are
plotted. The left one contains a histogram of the distance in arcsec between
the most-likely source position” and all of the trials. The confidence range
requested by the user is cast as a region colored yellow behind the histogram.
The most-likely RA and Dec, the confidence limit and the number of positive
source detections are provided in a dialog box in the top right of this window.
The right hand plot shows the distribution of trial positions in RA and Dec
space, relative to the most-likely position. The confidence limit is represented
as a yellow circle in the background. Each source position is marked by a
blue cross symbol. The size of each cross is arbitrary and has no relation to
a measured error.

plotdev The device through which you want to make the plot. Available options
will depend on your PGPLOT installation but common usages are: /XS -
xserver on your monitor /GIF - gif file /PS - postscript document

(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

The following examples illustrate running UVOTCENTROID:
1. run uvotcentroid prompting for all mandatory options:
uvotcentroid

2. run uvotcentroid specifying all required control arguments on the command line:
uvotcentroid image=sw00035934002uuu_sk.img+1 srcreg=srcreg confidence=90 \
niter=1000 threshold=3 subdimsiz=20 chatter=5

3. run uvotcentroid specifying all control arguments on the command line, plotting output to
a gif file and retaining all intermediate files:
uvotcentroid image=sw00035934002uuu_sk.img+1 srcreg=srcreg confidence=90 \
niter=1000 threshold=3 subdimsiz=20 plot=y plotdev=/gif cleanup=n chatter=5

Limitations

The subimage and region file must always be fully contained within the sky region sampled by the
input image. Cases where the source lies very close to RA = Oh or the celestial poles have not been
tested.

72

Warnings and Errors

3.13 UVOTIMGRISM

Updates

Table 3.12.1: UVOTIMGRISM update history.

HEADAS Version | Date Description of updates
8.0 Released to Swift science team
9.0 2004-10-07 | Released for Burst Advocate training
HEAsoft 6.0.5 2006-04-26 | Changed units of sourcex/y to input image pixels
More verbose description of positions in various coord sys-
tems
Generate a region file
ZERODETI[XY] now give physical pixels

Description

UVOTIMGRISM extracts 1-D FITS spectrum tables from 2-D grism images. The input image
must be in DET coordinates so that the dispersion direction is at a fixed angle in the image
array. FEventually the user should be able to supply position of a source in RA2000 and Dec2000
coordinates but this capability is not yet available because the grism-specific distortion has not yet
been mapped. Instead the user must currently use an external program (e.g. DS9 or XIMAGE)
to determine the centroid in pixels of the target zero order. Although the astrometry accuracy
(about 5”) is not sufficient for centroiding, it should be adequate to identify the zeroth order.
UVOTIMGRISM adds appropriate offsets to the source position and rotates this image about the
Oth order source so that the 1st order dispersion axis is parallel to the x-direction. The image is
rebinned so that square pixels are linear in size, oriented in the dispersion and cross-dispersion
directions.

The user also supplies extraction limits for the tool. The dispersion limits are in units of
Angstroms (Angstrom) and define the wavelength range of the output spectrum. The cross-
dispersion limits are in pixel units and some thought should be taken to optimize the source
signal over the background using these parameters. The source spectrum, with background, is
generated by summing each column of pixels between the limits in the cross-dispersion direction.
The uncertainty in each spectrum bin is calculated assuming a Poisson photon distribution. Note
that the detector, while containing a CCD device, behaves an event detector. Consequently there
is no effective readout noise.

The background is estimated by determining the mean spectrum in two user-defined regions on
either side of the source in the cross-dispersion direction. The mean is calculated iteratively with
pixel outliers rejected from the sum. Once a solution has been converged upon, the background
spectrum under the source extraction region is determined by interpolation. FErrors are, again,
treated as Poisson.

Wavelength bins that contain bad pixels are flagged in the QUALITY column of the output
spectrum tables. Spectrum bins are converted to wavelength units using a multi-termed polynomial
defined in the CALDB. Count rates in each wavelength bin are converted to flux (erg s-1 cm-2 -1)
using effective area curves stored in the CALDB.

Swift UVOT Software Guide 73

Input files

UVOTIMGRISM requires five input files:

1. A FITS grism image file. The file may contain multiple extensions but the tool will work on
only one image at a time, so the extension of an individual image must be specified. The image
must be in DET coordinates, e.g.,
sw00072901259 /uvot /image /sw00072901259ugu_dt.img+1

2. The corresponding bad pixel image file. This is created by UVOTBADPIX. Note that this
file is not archived by HEASARC or quicklook.

3. A CALDB file containing polynomial coefficients that describe the grating equation. This
equation defines the mapping between DET pixel and wavelength e.g.,
$CALDB/data/swift /uvot /bcf/grism /swuvgrism20041120v101.fits

4. A CALDB file containing the wavelength-dependent 1st order effective area curve for the
grism filters, e.g.,
$CALDB/data/swift/uvot/cpf/arf/swugv_20010101v013.arf

5. A telescope definition file. In order to convert from SKY to DET coordinates. The data
required to perform this operation contained within a single CALDB file, e.g.,
$CALDB/data/swift/uvot/bcf/teldef/swugv1000-20041120v101.teldef

Output files

UVOTIMGRISM puts two spectral extensions in the output file:

1 The first (SPECTRUM) extension, is constructed to be XSPEC
(http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec) compatible. This allows the grism spectra to be
analyzed consistently and simultaneously with the XRT data. Conventions for high-energy spectral
analysis differ from the usual optical approach. Raw, uncalibrated spectra are stored separately
from calibration files. Spectral models are fit iteratively to the data by folding the model through
the calibrations and then minimized by comparison with the raw data. Fluxes are determined
generally from the best-fit model, not the data. XSPEC-compatible data are provided in terms of
raw counts, pixels (CHANNEL) and bad pixel flags (QUALITY). The user must supply a suitable
calibration file before XSPEC analysis, and this is constructed using UVOTRMFGEN. The counts
in this extension have not been background-subtracted. This is done within XSPEC software and
requires a separate background spectrum file.

The second (CALSPEC) extension contains the fully-calibrated and background subtracted
source spectrum, provided in both net counts and flux units (erg s-1 cm-2 -1). 1-sigma uncertainties
are provided in both count and flux units. Wavelength is provided in . This spectrum is intended
as a standalone product for inspection and analysis with generic software.

A third extension, IMAGE, contains the Oth and 1st order source in the DET image, rotated
to the dispersion axis.

e An example of this FITS file can be found in the archive typically at a location resembling,
e.g., sw00072901259.012/data/uvot /product /sw00072901259ugu_1.pha

2. The background spectrum FITS table for use during XSPEC analysis, e.g.,
sw00072901259.012/data/uvot /product /sw00072901259ugu_1_back.pha.

74

Parameters

Table 3.12.2 lists the parameters for UVOTIMGRISM. Parantheses indicate parameters that are
not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotimgrism.

Table 3.12.2: Parameter descriptions for UVOTIMGRISM.

Swift UVOT Software Guide

Parameter | Description

Infile Name of the input grism image file or extension

Outfile Name of the output source spectrum file

backfile Name of the output background spectrum file

wavefile Name of the calibration file containing the pixel-to-wavelength conversion
factors. If the CALDB environment variable is set, caldb will point the tool
to the most relevant version of the file

areafile Name of the calibration file containing the filter effective areas. If the
CALDB environment variable is set, caldb will point the tool to the most
relevant version of the file

teldeffile Name of the calibration file containing the telscope definition data, such as
pixel size and optical distortion map. If the CALDB environment variable
is set, caldb will point the tool to the most relevant version of the file

badpixfile | Name of the bad pixel image file that corresponds to the input grism image.
The source of this bad pixel image is UVOTBADPIX

ra Right Ascension (epoch 2000) of the source, currently not implemented

dec Declination (epoch 2000) of the source, currently not implemented

(sourcex) Oth order position in pixels. This position will be used instead of ra if ra =
-1

(sourcey) Oth order position in pixels. This position will be used instead of dec if dec
=-1

(nsigma) For each image column, the threshold above or below the mean value over
which individual pixels should be rejected from the background calculation

— (uvmin) | UV grism filter only. The lower limit of the spatial filter region in the
dispersion direction. The units are Angstroms

(uvmax) UV grism filter only. The upper limit of the spatial filter region in the
dispersion direction. The units are Angstroms

(ang) Aangle in degrees subtended by the DETX axis and the dispersion direction
of the 1st order light. Approximate values are 148.1 (V grism,nominal), 140.5
(V grism, clocked), 151.4 (U grism, nominal) and 144.5 (U grism, clocked)

(srewid) The size of the spatial filter region of the source in cross-dispersion direction.
The units are pixels

(bkgwidl) | Width of lower background region [pixels]

(bkgoff1) Separation of lower background region from source region [pixels]

(bkgwid2) | Width of upper background region [pixels]

(bkgoff2) Separation of upper background region from source region [pixels]

(wavemin) | The lower limit of the spatial filter region in the dispersion direction. The
units are Angstroms

(wavemax) | The upper limit of the spatial filter region in the dispersion direction. The
units are Angstroms

(cleanup) UVOTIMGRISM is a wrapper script. This parameter determines whether
intermediate files are deleted from the working directory. The default is yes

(clobber) Should UVOTIMGRISM overwrite a file with the same name as the output?
The default is no

(history) Should UVOTIMGRISM write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes

(chatter) Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

75

76

Example

Below we provide a typical invocation of the UVOTIMGRISM tool.

Namibia> uvotimgrism infile=sw00072901259ugv_dt.img+1 \
outfile=sw00072901259ugv_sr.pha backfile=sw00072901259ugv_bk.pha \
badpixfile=badpix.img+1 wavefile=caldb areafile=caldb teldeffile=caldb \
ra=-1 dec=-1 sourcex=1539.99 sourcey=657.28 vang=206.7 vsrcwid=20 vbkgwid=50 \
wavemin=2900 wavemax=>5500 nsigma=>5 cleanup=y clobber=y history=y chatter=1

Warnings and Errors

3.14 UVOTRMFGEN

Updates

Table 3.13.1: UVOTRMFGEN update history.

HEAsoft Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

As described in section 3.11, the output from UVOTIMGRISM is not yet ready for spectral analysis
using the XSPEC package. First we must construct a specific calibration file that maps raw
pixels to physical units and converts raw counts to flux energy. The term for this calibration
file is Redistribution Matrix FILE or RMF. XSPEC will fold analytic or tabular spectral models
through the RMF before performing a statistical comparison between data and model and iterative
minimization of the parameters to produce a best-fit model.

The redistribution matrix is constructed using two factors. The first is a simple translation from
pixel number to photon energy using the grism dispersion equation stored in the caldb. This takes
the form of a low-order polynomial. The second is the finite possibility that a photon will land on
the pixel predicted by the dispersion equation. In other words each row of the redistribution matrix
is convolved by a function that defines the 1st order spectral resolution of the grism. Currently this
function is assumed to be Gaussian, where the Full-Width Half-Maximum (FWHM), which varies
with wavelength, is stored in the caldb.

In order to convert raw counts to flux, the area under the convolution function above for each
pixel varies as a function of wavelength and is equal to the 1st order effective area of the optics.
Input files

UVOTRMFGEN requires three input files:

1. A FITS table containing an XSPEC-compatible spectrum. UVOTIMGRISM will create this
file, e.g.,

e sw00072901259/uvot/product/sw00072901259uvu_sr.pha

Swift UVOT Software Guide 7

2. A CALDRB file containing the wavelength-dependent 1st order effective area curve for the
grism filters, e.g.,

e $CALDB/data/swift/uvot/cpf/arf/swu20041007v001.arf

3. A CALDB file containing the line spread function of the 1st order grism spectrum, e.g.,

e $CALDB/data/swift/uvot/bcf/grism/swvgrism20041007v001.fits

Output files

UVOTRMFGEN has a single output file:

A FITS file containing an ancillary response matrix, normalized to the effective area of the 1st
order grism throughput, e.g., sw00072901259/uvot/product/sw00072901259uvu_sr.rsp

Parameters

Table 3.13.2 lists the parameters for UVOTRMFGEN. Parantheses indicate parameters that are
not compulsory. If these parameters are not specified on the command line, the tool will look-up the
current value in the parameter file. Users can inspect the parameter file by typing plist uvotrmfgen.

Table 3.13.2: Parameter descriptions for UVOTRMFGEN.

Parameter | Description
spectrum | XSPEC-compliant FITS table containing a 1st order grism spectrum

outfile A Redistribution Matrix File, normalized for the 1st order effective area of
the grism filter
areafile Name of the calibration file containing the filter effective areas. If the

CALDB environment variable is set, caldb will point the tool to the most
relevant version of the file

Isfile Name of the calibration file containing the 1st order spectral line spread
functions. If the CALDB environment variable is set, caldb will point the
tool to the most relevant version of the file

(clobber) | Should UVOTRMFGEN overwrite a file with the same name as the output?
The default is no

(history) | Should UVOTRMFGEN write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTRMFGEN tool.

Namibia> uvotrmfgen spectrum=sw00072901259ugv_sr.pha \
outfile=sw00072901259ugv_sr.rsp areafile=caldb Isfile=caldb \
clobber=y history=y chatter=1

78

Warnings and Errors

3.15 UVOTIMSUM

Updates

Table 3.14.1: UVOTIMSUM update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training

HEAsoft 6.0.5 2006-04-26 | Modified exclude parameter to support excluding HDUs on

the basis of the presence/value of the ASPCORR keyword
By default, HDUs without ASPCORR keyword are excluded
from sum

Description

By co-adding a series of individual images the depth of UVOT observations can be maximized.
There are many tools available to perform this operation, e.g., XIMAGE, which is supplied as
part of the HEASoft distribution. During data reduction pipeline development, it became clear
that existing software was too slow to meet data availability requirements, therefore this tool was
developed to increase the efficiency of the pipeline. By default, UVOT sky images are all oriented in
the same direction which simplifies the rebinning necessary to accurately add images from slightly
different pointings. While users are welcome to employ this tool, note that it was developed for
speed, not flexibility. For example, there are no options to choose a subsample of images from a
UVOT file. It is recommended that post-pipeline users instead use XIMAGE for image-combining
tasks:

http://heasarc.gsfc.nasa.gov/docs/xanadu/ximage /ximage.html

In order to avoid the smearing effects of spacecraft aspect drift, UVOTIMSUM must translate
each image so that they have a common pointing. This requires image rebinning which results in
the loss of data near the detector or window edges and the smearing of bad pixels. It is therefore
critical that exposure maps are constructed for each image using UVOTEXPMAP and these maps
fed through UVOTIMSIM in an entirely consistent way to the data mages. By default, the output
image shares a consistent boresight position with the first exposure in the series, and has the same
pixel binning as the coarsest image in the series.

There are two rebinning methods available to the user. 1) GRID assumes that all images are
oriented in the same direction. This means that image rotations are ignored during image binning,
speeding up the process to a suitable level for rapid pipeline processing. All UVOT level II data
is oriented so that north is up and east is to the left. 2) XIMAGE is a slower process that makes
no assumption concerning image rotation. Both rotation and translation are performed during this
procedure.

Input files

UVOTIMSUM requires a single input file:

1. A FITS image file containing a series of image extensions, e.g.,

Swift UVOT Software Guide 79

e sw00072901259/uvot/image /sw00072901259uvv_sk.img.gz

Output files

UVOTIMSUM has a single output file:

2. A FITS file containing a single image extension.

Parameters

Table 3.14.2 lists the input parameters for UVOTIMSUM. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotimsum.

Table 3.14.2: Parameter descriptions for UVOTIMSUM.

Parameter | Description

Infile Input FITS image file containing a series of image extensions

outfile Output FITS image with a single image extension

method Image rebinning method. Options are GRID or XIMAGE

(pixsize) Pixel size for the output image. The default (or if pixsize=0) is to rebin the

input images to match the coarsest image in the series. Units are degrees
(cleanup) | UVOTIMSUM creates a number of intermediate files in your working direc-
tory. These are only useful for software developers. This option removes all
intermediate files at the end of the routine. The default is yes

(clobber) | Should UVOTIMSIM overwrite a file with the same name as the output?
The default is no

(history) | Should UVOTIMSIM write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTIMSUM tool.

Namibia> uvotimsum infile=sw00072901259uvv_sk.img.gz \
outfile=v_total.img method=GRID pixsize=0 cleanup=y history=y clobber=y chatter=1

Warnings and Errors

3.16 UVOTSEQUENCE

Updates

Table 3.15.1: UVOTSEQUENCE update history.

HEADAS Version | Date Description of updates
6.0.2 2005-08-18 | Released to public

80

Description

Lists and visualizes the exposures and snapshots contained within a UVOT observing sequence.
Given an ascii list of the full or relative paths to a series of UVOT FITS image files, this tool will
determine the times of each image exposure. Start and stop times of each snapshot are inferred
from a spacecraft attitude file provided and each image is mapped to a particular snapshot. Results
are provided as standard output. Optionally, the results may be plotted, e.g., in the image below.

Input files

UVOTSEQUENCE requires two input files:
1. An ascii file containing full or relative paths to a series of UVOT FITS image files.
2. A spacecraft attitude file; e.g., auxil/sw00072901259sat.fits.

Output files

UVOTIMSUM has one optional output file:

1. A plot of the exposure sequence in the format of the users choice; e.g. postscript, GIF.

Parameters

Table 3.15.2 lists the input parameters for UVOTSEQUENCE. Parantheses indicate parameters
that are not compulsory. If these parameters are not specified on the command line, the tool will
look-up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotsequence.

Table 3.15.2: Parameter descriptions for UVOTSEQUENCE.

Parameter | Description

infile Ascii list containing the paths to one or more UVOT image files

attfile Spacecraft attitude file

trigtime MET of the BAT trigger

(plotseq) Whether to display the sequence graphically.
The default is yes

(chatter) | Verbosity of the tool (0-5).
This parameter control how chatty the tool is (0 = quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTSEQUENCE tool.
uvotsequence infile=images.lis attfile=sw00072901259sat.fits trigtime=11896589

Warnings and Errors

3.17 UVOTIMAGE

Updates

Table 3.15.1: UVOTIMAGE update history.

Swift UVOT Software Guide

81

SWIFT-UVOT GRB0O50525 00130088000

WHITE
MAGN

B

Uvw1

el
oz [11]

YGRISM
UGRISM

vI-_'_f_l'[lf_"ﬁlf|.|f\l[lf_|ﬁl'_ﬁl'fl]l_f_f"f"_fffff_'_f_'_fff_f__f__ _
E I I 1111) e A1

UL
it

100

1000 10%

Time since trigger (MET — 138672173)

Figure 3.2: Graphical output from UVOTSEQUENCE, displaying the exposures (colours) and
snapshots (in between the gray intervals) of a sequence.

HEAsoft Version | Date Description of updates
6.0.0 2005-04-12 | Released to the public
6.0.5 2006-04-26 | Added output in mJy
Changed default value of output parameter to ALL
Description

UVOTIMAGE iterates over Level 1 UVOT image and event files creating Level 1 and 2 image files.

Input files

UVOTIMAGE requires four input files:

1. A FITS input image file(s) or a comma-delimited list of file names or @<file> where <file>
contains the names of the files to process, one per line.

82

2. Input attitude file.
3. Telescope definition calibration file or CALDB.
4. Alignment file or CALDB.

Output files

UVOTIMAGE creates Level 1 and 2 image files.

Parameters

Table 3.15.2 lists the input parameters for UVOTIMAGE. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotimage.

Table 3.15.2: Parameter descriptions for UVOTIMAGE.

Parameter Description

infile [filename] Name of input image file(s).
This can be a comma-delimited list of file names or @Q<file> where <file>
contains the names of the files to process, one per line.

prefix [string] Prefix for output files.

attfile filename| Input attitude file.

teldeffile filename]Telescope definition calibration file or CALDB.
alignfile filename| Alignment file or CALDB.

ra real] Nominal R.A.

dec real] Nominal Dec.

roll real] Nominal roll.

flatfield = no) boolean] Perform flat fielding? Not implemented.

mod8corr = no) | [boolean] Perform modulo 8 noise correction? Not implemented.

]
boolean] Remove intermediate files?
]

history = yes) boolean| Write history keywords?

clobber = no) boolean| Overwrite existing files?

[
[
[
[
|
(catfile = NONE) | [filename] UVOT exposure catalog or NONE.
([
([
(cleanup = yes) [
([
([
([

chatter = 1) enumerated integer] Standard HEASoft chatter parameter.

Example

Below we provide a typical invocation of the UVOTIMAGE tool.
Namibia> uvotimage infile=@files prefix=Q teldeffile=CALDB alignfile=CALDB

Warnings and Errors

3.18 UVOTSKYCORR

Updates

Table 3.17.1: UVOTSKYCORR update history.

Swift UVOT Software Guide 83

HEAsoft Version | Date Description of updates
6.0.3 2005-10-07 | Released to the public
6.0.4 2005-11-28 | Renamed ’partition’ parameter to ’catspec’,
which now gives the path of the catalog descriptor
Description

UVOTSKYCORR iterates over UVOT image files attempting to determine or applying aspect
corrections.

Input files

UVOTSKYCORR requires four input files:

1. A FITS input image file(s) or a comma-delimited list of file names or @Q<file> where <file>
contains the names of the files to process, one per line.

2. Input attitude file.

3. Input correction file.

Output files

UVOTSKYCORR creates Level 2 image files and write information about the aspect correction to
this file.

Parameters

Table 3.17.2 lists the input parameters for UVOTSKYCORR. Parantheses indicate parameters
that are not compulsory. If these parameters are not specified on the command line, the tool will
look-up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotimage.

Table 3.17.2: Parameter descriptions for UVOTSKYCORR.

Parameter Description
what [string] (ID—SKY)

Whether to find corrections (what=ID) or apply corrections (what=SKY).
skyfile [filename] Name of input image file(s).

This can be a comma-delimited list of file names or Q<file>

where <file> contains the names of the files to process, one per line.
corrfile [filename|Input corrections file for what=SKY.
attfile [filename] Input attitude file.
outfile [filename| Output file name.

For what=ID, the aspect corrections will be written to this file.

starid = NONE)

string] Parameters to pass to star identification.

catspec = usnobl.spec)

filename] Catalog descriptor file.

cleanup = yes)

boolean| Remove intermediate files?

history = yes)

clobber = no)

boolean| Overwrite existing files?

Py Py Py Py Py

chatter = 1)

[
[
[
[boolean] Write history keywords?
[
[

enumerated integer] Standard HEASoft chatter parameter.

84

Example

Below we provide a typical invocation of the UVOTSKYCORR tool.
uvotskycorr what=ID infile=usk.img

Warnings and Errors

3.19 UVOTASPCORR

Updates

Table 3.18.1: UVOTASPCORR update history.

HEAsoft Version | Date Description of updates
6.0.5 2006-04-26 | Released to the public
Description

UVOTASPCORR simplifies finding/applying aspect corrections to UVOT sky images.

Input files

UVOTASPCORR requires one input:

1. The name of a Swift observation directory. The structure of a Swift observation directory is
sw<obsid>/
auxil/sw*sat.fits
uvot/
mage/sw*u*_sk.img
See also the flat parameter.

Output files

UVOTASPCORR creates aspect solution log files.

Parameters

Table 3.18.2 lists the input parameters for UVOTASPCORR. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotimage.

Table 3.18.2: Parameter descriptions for UVOTASPCORR.

Swift UVOT Software Guide 85

Parameter Description

output [directory] Name of output directory.
This directory will hold the aspect solutions and log files.
The sky images are modified in place.

filter = ALL [string] (ALL—V—U—B—UVM2_UVWI_UVW2 _WHITE)
Which UVOT filter(s) to process.
apply [boolean]Apply the aspect corrections?

Note that the input images files must be updatable (writable and uncom-
pressed) to apply the corrections.

catspec = usnobl.spec | [filename] Star catalog descriptor.

(starid = NONE) [string] Star identification parameters.

(flat = no) [boolean] Is directory hierarchy flat?
Set flat=yes if all of the input files (attitude file, sky images) are in one (the
input) directory.

(chatter = 4) [integer] <1-5> Standard HEAdas chatter parameter.

Example

The following examples illustrate running uvotaspcorr and how to run uvotaspcorr on an observa-
tion:

Namibia> uvotaspcorr input=12345678012

Warnings and Errors
Note

See Section 2.12. for a description how to apply an aspect correction to UVOT images.

86

Chapter 4

Event Tools

4.1 UVOTSCREEN

Updates

Table 4.1.1: UVOTSCREEN update history.

HEADAS Version | Date Description of updates

8.0 Released to Swift science team

9.0 2004-10-07 | Released for Burst Advocate training
Description

UVOTSCREEN reads a FITS event table, determines the quality of each event, grades each event
as good or bad according to user-defined criteria, and rejects all bad events from the output FITS
table. Screening criteria can be related to internal data, performing logical calculations on, e.g.,
the arrival times of events and event position, but can also be related to external data, such as the
orbit and attitude data of the spacecraft during the observation.

Event quality can be deemed to be poor based on two tests. The first is to compare the
pixel position with a list of known cosmetic defects over the detector that is stored in the caldb.
UVOTSCREEN updates the values of the QUALITY column in the FITS table for cosmetic defects.
The second test is to check pixels for compression damage. UVOT telemettry may or may not come
down in a compressed format, depending on the volume of the data. The compression schemes
can potentially corrupt data if events from the same readout frame are widely separated or too
numerous, or events occur to infrequently in time. Compression damaged is already flagged in the
QUALITY column by the telemetry-to-FITS conversion software executed in the pipeline.

Table 4.1.2: Types of event badness found in Event mode tables.

QUALITY | Description

0 Good event

1 Dead pixel

2 Cold pixel

4 Hot pixel

8 Flickering pixel

16 Compression damaged event position

32 Compression damaged event time

64 Compression has caused loss of events from frame

87

88

Data is screened by calling the FTOOLS MAKETIME and EXTRACTOR internally. Screening
arguments are a string of operators passed to the tool as input parameters. For example, to screen
by both time and pixel quality, an argument resembling:

evexpr=time > 123456789 && quality == 0

is appropriate. External parameters, from, e.g., tbe orbit and attitude filter file provided with
yout data can also be used to screen events. For example, the following argument will EXCLUDE
events from the output file that were obtained within 10 degrees of the bright Earth limb or from
within the South Atlantic Anomaly:

aoexpr=BR_EARTH > 10 && SAA == 0

The full functionality and syntax of these operators is discussed in the MAKETIME and EX-
TRACTOR on-line helps, e.g., type thelp extractor on your command line.

UVOTSCREEN was developed as a pipeline tool rather than a user tool. it is recommended
that general Swift users screen their UVOT data using the general HEASoft tools MAKETIME
and XSELECT:

http://heasarc.gsfc.nasa.gov/docs/software /lheasoft /ftools /xselect /xselect.html

The one exception to this rule is if the bad pixel table in the Swift caldb has been updated
since the pipeline processing of your data. In this case, UVOTSCREEN should be run in order to
populate the QUALITY column in the event tables correctly.

Input files

UVOTSCREEN requires three input files:
1. A FITS table containing UVOT events, e.g.,

e 00072901259 /uvot/event /sw00072901259uvvpo_uf.evt.gz

2. A FITS table containing time-tagged spacecraft orbit and attitude data for the observation,
e.g.,

e 00072901259.012/auxil /sw00072901259sa0.fits.gz

3. The caldb product containing a cosmetic bad pixel list, e.g.,

e $CALDB/data/swift/uvot/bcf/badpix/swubadpix20041007v001.fits

Output files

UVOTSCREEN has a single output file:

1. A FITS table containing screened UVOT events, e.g.,

e 00072901259/uvot /event /sw00072901259uvvpo_cl.evt

Swift UVOT Software Guide 89

Parameters

Table 4.1.3 lists the input parameters for UVOTSCREEN. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotscreen.

Table 4.1.3: Parameter descriptions for UVOTSCREEN.

Parameter | Description

infile Name of the input UVOT event file

outfile Name of the screened output event file

attorbfile | The attitude and orbit data file. This is calculated in the Swift pipeline and
supplied with each observation in the archive, but can also be generated by
the user using the PREFILTER tool

badpixfile | Name of the calibration file containing a list of cosmetic defects over the
detector. If the CALDB environment variable is set, caldb will point the
tool to the most relevant version of the file

aoexpr The filtering expression, based on the attitude and orbit data, with which
to screen the events
evexpr The filtering expression, based on internal data within the event file, with

which to screen the events

(cleanup) | UVOTSCREEN creates a number of intermediate files in your working di-
rectory. These are only useful for software developers. This option removes
all intermediate files at the end of the routine. The default is yes

(clobber) | Should UVOTSCREEN overwrite a file with the same name as the output?
The default is no

(history) | Should UVOTSCREEN write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTSCREEN tool. Example input and output files
can be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo/uvotscreen.

Namibia> uvotscreen infile=sw00072901259uvvpo_uf.evt.gz outfile=sw00072901259uvvpo_cl.evt
badpixfile=caldb attorbfile=sw00072901259sa0.fits.gz
aoexpr=SUN_ANGLE > 20 evexpr=QUALITY == 0 cleanup=y history=y clobber=y chatter=1

Warnings and Errors

4.2 UVOTEVGRISM

Updates

Table 4.2.1: UVTEVGRISM update history.

HEADAS Version | Date Description of updates
8.0 Released to Swift science team
9.0 2004-10-07 | Released for Burst Advocate training

90

Description

UVOTEVGRISM performs two functions. Firstly it screens events according to position, keeping
only those that coincide approximately with the Oth and 1st order light of a specific source. The
resulting list is output to a new FITS event table. By default this table will also include a contribu-
tion from the background sky and possibly neighbouring sources that are confused with the target.
Secondly this tool uses the UVOT dispersion equations to calculate wavelengths for each event.
Results are written in units of Angstroms () to a column called WAVELENGTH. The dispersion
equation is stored as polynomial coefficients in the caldb.

The user must supply a source position in RA2000 and Dec2000 coordinates, or alternatively a
location of the Oth order source in detector coordinates (DETX,DETY) in units of mm. They must
also supply the angle of the dispersion axis relative to the DETX direction, the cross-dispersion
width of the screened region and the wavelength range.

In order to improve the accuracy of the wavelength calculations the tool uses the attitude
history file to track spacecraft pointing during the grism exposures and correct event positions on
the detector. In the absence of a series of records in the attitude history, the tool will interpolate
linearly between two disparate records.

Input files

UVOTEVGRISM requires four input files:
1. A FITS event table, e.g.,

e 00072901259 /uvot/ievent /sw00072901259uvupo_cl.evt.gz

2. A spacecraft attitude file covering the duration of the UVOT exposure, e.g.,

e $CALDB/data/swift/misc/sw00072901259sat.fits.gz

3. A CALDB file containing polynomial coefficients that describe the grating equation. This
equation defines the mapping between DET pixel and wavelength e.g.,

e $CALDB/data/swift/uvot/bcf/grism/swuvegrism20041007v001.fits

4. A telescope definition file. In order to convert from SKY to DET coordinates. The data
required to perform this operation contained within a single CALDB file, e.g.,

e $CALDB/data/swift/uvot/bcf/teldef/swu20041007.teldef

Output files

UVOTEVGRISM has a single output file:

1. A FITS event table, screened by region to contain Oth and 1st order events from a specific
source, and with an additional column containing the wavelength of each event in units of .

Swift UVOT Software Guide 91

Parameters

Table 4.2.2 lists the input parameters for UVOTEVGRISM. Parantheses indicate parameters that
are not compulsory. If these parameters are not specified on the command line, the tool will look-
up the current value in the parameter file. Users can inspect the parameter file by typing plist
uvotevgrism.

Table 4.2.2: Parameter descriptions for UVOTEVGRISM.

Parameter | Description

infile Name of the input grism event file
outfile Name of the output grism event file, with wavelength column added
wavefile Name of the calibration file containing the pixel-to-wavelength conversion

factors. If the CALDB environment variable is set, caldb will point the tool
to the most relevant version of the file

teldeffile Name of the calibration file containing the telscope definition data, such as
pixel size and optical distortion map. If the CALDB environment variable
is set, caldb will point the tool to the most relevant version of the file
attfile Name of the attitude history table for the observation

(attlim) The number of seconds beyond a particular entry in the attitude history file
after which the tool is allowed to interpolate pointing data. The tool will
warn the user if gaps in the attitude file exceed this limit

ra The Right Ascension (epoch 2000) of the source

dec The Declination (epoch 2000) of the source

(uvang) UV grism filter only. The angle in degrees subtended by the DETX axis and
the dispersion direction of the 1st order light

(uvwid) UV grism filter only. The size of the spatial filter region in cross-dispersion
direction. The units are pixels

(uvmin) UV grism filter only. The lower limit of the spatial filter region in the
dispersion direction. The units are Angstroms

(uvmax) UV grism filter only. The upper limit of the spatial filter region in the
dispersion direction. The units are Angstroms

(vang) V grism filter only. The angle in degrees subtended by the DETX axis and
the dispersion direction of the 1st order light

(vwid) V grism filter only. The size of the spatial filter region in cross-dispersion
direction. The units are pixels

(vmin) V grism filter only. The lower limit of the spatial filter region in the disper-
sion direction. The units are Angstroms

(vmax) V grism filter only. The upper limit of the spatial filter region in the disper-

sion direction. The units are Angstroms

(clobber) | Should UVOTEVGRISM overwrite a file with the same name as the output?
The default is no

(history) Should UVOTEVGRISM write HISTORY keywords to the output file? This
creates a record of the processing performed on the file. The default is yes
(chatter) | Verbosity of the tool (0-5). This parameter control how chatty the tool is (0
= quiet. 5 = noisy)

Example

Below we provide a typical invocation of the UVOTEVGRISM tool. Example input and output
files can be copied from ftp://heasarc.gsfc.nasa.gov/docs/swift /foo/uvotevgrism.

92

Namibia> uvotevgrism infile=sw00072901259uvupo_cl.evt.gz outfile=vgrism.evt
wavelfile=caldb teldeffile=caldb attfile=sw00072901259sat.fits.gz attlim=32
vang=212.5 vwid=20 vmin=2900 vmax=>5500 history=y clobber=y chatter=1

Warnings and Errors

Chapter 5

FHelp

5.1 UVOT2PHA

NAME

uvotpha - create a pha file from a UVOT image and region files

USAGE

uvotpha infile=<filename> srcreg=<filename> bkgreg=<filename> srcpha=<filename> bkgpha=<filename>

DESCRIPTION

This tool uses XIMAGE to compute counts and areas from specified regions of a UVOT image and
then calls ASCII2PHA to generate corresponding OGIP-compliant PHA files for the source and
background regions.

PARAMETERS
infile [filename]

e UVOT FITS image file. If a particular extension isn’t specified then the first extension will
be used.

srcreg = "source.reg” [filename]

e Name of source region file (ascii) generated, eg, by XIMAGE or DS9.
bkgreg = "background.reg” [filename]

e Background region file (ascii) generated, eg, by XIMAGE or DS9
srcpha = ”source.pha” [filename]

e Name for the output FITS source PHA file.

93

94

bkgpha = "background.pha” [filename]
e Name for the output FITS background PHA file.
respfile [filename]

e Name of the UVOT response file to be used. Specifying ”CALDB” will cause the tool to look
up the proper file in the Calibration Database and use it.

(phatype = "rate”) [string]
e Output pha files may be expressed in COUNTS or RATE (default)
(ra = -) [string]

e Right Ascension. If provided, it will be written in the output pha file as RA_OBJ. The default
is to do nothing.

(dec = -) [string]

e Declination. If provided, it will be written in the output pha file as DEC_OBJ. The default
is to do nothing.

(date_obs = -) [string]

e Start date for observation. If provided, this value will be written in the output pha file as
DATE-OBS. By default the value of DATE-OBS, if present, will be copied from the input file
instead.

(time_obs = -) [string]

e Start time for observation. If provided, this value will be written in the output pha file as
TIME-OBS. By default the value of TIME-OBS, if present, will be copied from the input file
instead. The FITS standard allows for the time to be included as part of DATE-OBS so that
a separate TIME-OBS keyword is not needed.

(date_end = -) [string]

e End date for observation. If provided, this value will be written in the output pha file as
DATE-END. By default the value of DATE-END, if present, will be copied from the input
file instead.

(time_end = -) [string]

e End time for observation. If provided, this value will be written in the output pha file as
TIME-END. By default the value of TIME-END, if present, will be copied from the input
file instead. The FITS standard allows for the time to be included as part of DATE-END so
that a separate TIME-END keyword is not needed.

Swift UVOT Software Guide 95

(tmpdir = .) [directory]

e Location to write two very small temporary ascii files. The default is the current working
directory.

(chatter = 1) [enumerated integer]
e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task.
(clobber = no) [boolean]

e Standard HEAdas clobber parameter; controls whether the output pha files (and temporary
ascii files) are permitted to overwrite existing files.

(history = yes) [boolean]

e Standard HEAdas history parameter; controls whether the runtime parameter values should
be written in block of HISTORY keywords in the output pha files.

EXAMPLES

The following examples illustrate running uvot2pha

1. run uvot2pha prompting for all options:
e uvot2pha

2. run uvot2pha specifying image and region files on command line (output and response
filenames will be prompted for):

e uvot2pha infile=sw00000001001ubbsky.img srcreg=source.reg bkgreg=background.reg
3. run uvot2pha specifying the RA/DEC (with required parameters prompted for):

e uvot2pha ra="23 21 01’ dec="-41 48 36’

SEE ALSO
LAST MODIFIED

October 2007

5.2 UVOTAPERCORR

NAME

uvotapercorr - aperture correction for SWIFT-UVOT source count rates.

96

USAGE

uvotapercorr cntrate=<float> ratesig=<float> aperad=<float> fwhmsig=<float> filter=<string>
psffile=<filename> chatter=<enumerated integer>

DESCRIPTION

The Swift-UVOT photometry aperture used to derive the photometric zero points is a circle of
radius 5 arcsec. This aperture contains approximately 85% of the photons from a point source,
and keeps background contamination to a reasonable level. It is large enough to smooth out the
ubiquitous modulo-8 fixed-pattern image noise which results from the electronic oversampling of
UVOT detector pixels. In cases where UVOT point sources are faint and approach the background-
limited detection threshold, it is desirable to perform source detection using smaller apertures.
While reducing the aperture from the size of a 5 arcsec radius circle increases signal-to-noise,
and consequently the detection probability, the drawback is that counts within the wings of the
source point spread function (PSF) are ignored and the brightness of the source underestimated.
uvotapercorr is a tool to calculate and add the neglected photons within the PSF wings to small-
aperture count rates so that magnitude conversions can be performed accurately.

The method adopted in this tool is a quick-and-dirty approach with a number of critical caveats
which are discussed below. The mean PSFs for each broad band filter are characterized as encircling
energy functions in tables within the Swift-UVOT CALDB; see $CALDB/data/swift /uvota/cpf/pst/
and the release note at http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/uvot/. The U,
B, and V PSFs are all similar in form and width. The UVW1, UVM2 and UVW2 PSFs are generally
narrower in the core with broader wings compared to the optical filters. The PSFs are employed to
extrapolate count rates measured within a small aperture to count rates predicted from within the
5 arcsec aperture used to derive the photometric zero points. This is achieved cheaply by a linear
interpolaton of the PSF table, which provides the fraction of total energy within the user-provided
circular aperture radius, "aperad”. The fraction is a simple scaling quantity which is applied to
both the user supplied count rate, ”cntrate” and count rate uncertainty, ”raterr” in order to provide
an aperture-corrected count rate.

This procedure is a useful approximation if the extraction aperture is circular and centered
precisely on the centroid of the PSF. Any deviation from these criteria will yield unquantified
systematic errors.

There are systematic problems to be aware of. The FWHM of the PSF is dependent on the
temperature of the UVOT focusing rods. Their temperature varies slightly with time because
the voltage on the heaters changes through the spacecraft orbit. This can cause variations in the
shape of the PSF. Currently this variation has not been well-characterized. Until this occurs it
remains the user’s responsibility to add a systematic uncertainty to the width of the PSF which
is propagated into the corrected count rate uncertainty. Current functionality assumes that the
form of the PSF is constant over time, i.e., the ratio of counts in the line core and line wings
remains constant, but the width of the entire profile is scaled by a variable quantity during a
sequence of exposures. The PSFs characterized in the Swift-UVOT CALDB are considered to be
‘typical’. To characterize the systematic uncertainty added by variable PSFs to the corrected count
rate, the user provides an argument, ”fwhmsig”, which estimates the fractional rms variation of
the FWHM of point sources. The UVOT team recommends that this number be 3%. The rms
spread is then propagated through the calculation and is added in quadrature to the corrected
measurement uncertainty. Consequently, be aware that the signal-to-noise in the corrected count
rate is greater than the signal-to-noise in the raw count rate. This may result in some confusion
when reporting results. When using apertures < 5 arcsec, detection thresholds should be reported

Swift UVOT Software Guide 97

using raw count rates, whereas magnitudes should be calculated using aperture-corrected count
rates but with systematically larger uncertanties.

The other systematic to be aware of is that the PSF is a function of count rate; significant
photon coincidence losses will result in flatter PSFs. A detailed characterization of this effect is
pending, but it will result in the CALDB PSFs becoming increasingly obsolete at high count rates.
For most small aperture cases, coincidence loss is not an issue in the sense that if an object is
bright enough to have significant losses then the 5 arcsec aperture should be used to extract count
rates. The PSF is fully-sampled in a 5 arcsec aperture and no aperture correction will be necessary.
However the one exception is background limited cases where the sky is bright, which often occurs
when observing through the WHITE filter. Currently the aperture correction systematics attached
to such ocurrances are unquantified.

It is suggested that the current tool provides a useful 1st order count rate correction for rapid-
response analysis of gamma ray bursts and targets of opportunity. However a more rigorous ap-
proach is recommended for longer-term analysis activities where aperture corrections are conducted
using e.g., curve of growth methods for each individual exposure in a sequence.

PARAMETERS

cntrate [float]

e The count rate (counts/sec) from a SWIFT-UVOT detected point source. Background count
rates must have been subtracted prior to running this tool.

ratesig [float]

e The statistical 1-sigma measurement uncertainty attached to the source count rate (counts/sec).
aperad [float]

e The radius (in arcsec) of the CIRCULAR aperture used to extract the count rate.

(fwhmsig = 6.0) [float]

e The systematic rms uncertainty (percent) on the FWHM of the PSF caused by voltage vari-
ations during the observing sequence. This is a relatively nebulous quantity until it can be
formally characterized by the UVOT team, but a value of 5% is currently recommended.

(filter = WHITE—U—B—V—UVW1—UVM2—UVW?2) [string]

e The UVOT filter through which the field was observed. In the general case, the filter informa-
tion is stored both in the image filename, as it is extracted from the Archive or Quick-Look

database, and in the "filter” keyword within the header items of each image or event table.
At present the WHITE PSF is unavailable, so the B PSF is used if WHITE is requested.

(psffile = "CALDB”) [filename]

98

e The path+name of a FITS table containing CALDB-compliant PSF data. This is a simple
two-column table containing encircled enery fraction (in column REEF) vs PSF radius in
arcseconds (in column RADIUS). If a FITS HDU (extension) number is provided, the tool
will open that HDU directly and use its contents. If no HDU is provided, the tool will
search each extension in the FITS file until the keyword ”filter” matches argument ’filter’
above. However, the easiest way to use this function is to download the UVOT caldb from
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift. If 'TCALDB’ is then provided as the
argument to "e;psflile”, software will select the correct file and extension for you.

aperate [float]

e The aperture corrected count rate (counts/sec). This is not an input argument. While the
corrected count rate is reported to STDOUT at the end of the task, it is convenient to have
this quantity stores as an argument. This can be retrieved by the user or scripts with the
pget task, e.g., 'pget uvotapercorr aperate’.

apersig [float]

e The 1-sigma error on the aperture corrected count rate (counts/sec). This also is not an
input argument. It can be retrieved by the user or scripts with the pget task, e.g., 'pget
uvotapercorr apersig’.

(chatter = 1) [enumerated integer]

e Standard HEAsoft chatter parameter (1-5) controlling the verbosity of the task. Setting 1 is
mute except for the final result reported to STDOUT, while setting 5 is the most wordy.

EXAMPLES

The following examples illustrate running uvotapercorr

1. run uvotapercorr prompting for all mandatory arguments:
e uvotapercorr
2. run uvotapercorr specifying all control arguments on the command line:

e uvotapercorr cntrate=20.3 ratesig=1.2 aperad=3.0 fwhmsig=6.0 filter="WHITE’ psffile="CALDB’
chatter=>5

SEE ALSO

uvotsource

LAST MODIFIED

July 19, 2007

Swift UVOT Software Guide 99
5.3 UVOTASPCORR

NAME

uvotaspcorr - find aspect corrections for UVOT sky images

USAGE

uvotaspcorr input=<directory> output=<directory>

DESCRIPTION

This tool processes an Swift observation attempting to find aspect corrections for UVOT sky images.
The aspect corrections can also be applied by setting apply=yes. Note that the input image files
must be updatable (writable and uncompressed) to apply the corrections.

PARAMETERS
input [directory]

e Swift observation directory. The structure of a Swift observation directory is

— sw<obsid>/

* auxil/sw*sat.fits uvot/

- image/sw*u*_sk.img

See also the flat parameter.

output [directory]

e Name of output directory. This directory will hold the aspect solutions and log files. The sky
images are modified in place.

filter = ALL [string] (ALL—V—U—B—UVM2—UVW1—UVW2—WHITE)
e Which UVOT filter(s) to process.
apply [boolean]

e Apply the aspect corrections? Note that the input images files must be updatable (writable
and uncompressed) to apply the corrections.

catspec = usnobl.spec [filename]
e Star catalog descriptor.

(starid = NONE) [string]

100

e Star identification parameters.
(flat = no) [boolean]

e Is directory hierarchy flat? Set flat=yes if all of the input files (attitude file, sky images) are
in one (the input) directory.

(chatter = 4) [integer| <1-5>

e Standard HEAdas chatter parameter.

EXAMPLES

The following examples illustrate running uvotaspcorr:

e uvotaspcorr input=12345678012

SEE ALSO

uvotskycorr aspcorr tristarid catspec

LAST MODIFIED

June 2007

5.4 UVOTATTCORR

NAME

uvotattcorr - adjust attitude file with information from UVOT aspect corrections

USAGE

uvotattcorr attfile=<sw12345678012sat.fits> outfile=<uvotatt.fits>

DESCRIPTION

The Swift spacecraft attitude is available from several sources in the telemetry. Attitude knowledge
onboard is not as fine as what can be obtained from comparing positions of stars in UVOT images
to catalog positions. In addition, when the spacecraft transitions between slewing and pointed
observations, the source of attitude information shifts from coarse to fine, resulting in a noticeable
jump in the earliest exposures found in particular in GRB AT sequences. The purpose of uvotattcorr
is to take the refined position information obtained from "uvotskycorr’ and apply it to the available
spacecraft attitude information (which is ’atjumpcorr’ed in the pipeline), creating a more accurate
attitude file. The pipeline attempts to find an aspect solution for each image in a UVOT observing
sequence. The results of these corrections can then applied to the existing attitude file. Since a
sequence can contain gaps between images (and thus aspect solutions), and the exposure times

Swift UVOT Software Guide 101

can vary from tens of seconds to thousands of seconds, the offsets are first interpolated before
being applied to the existing attitude. Corrections are considered valid for the snapshot in which
they occur. During a snapshot which has no aspect corrections, no chance is made to the attitude.
Otherwise, the correction at a given time is found by linearly iterpolating between (or extrapolating)
the nearest known correction(s).

The solutions to the aspect corrections are found in the housekeeping file sw*uac.hk. At present,
the pipeline creates a new corrected attitude file, sw*uat.fits, when uvotattcorr is run.

PARAMETERS

attfile [filename]
e Swift attitude file (normally sw<obsid>sat.fits).
corrfile [filename]
e UVOT aspect corrections file (normally sw<obsid>uac.hk).
outfile [filename]
o Attitude file corrected for UVOT.
(deltafile = NONE) [filename]
e Delta attitude file. The special value NONE indicates to not create this output.
(chatter = 3) [integer| <1-5>
e Standard HEAdas chatter parameter.
EXAMPLES
The following examples illustrate running uvotattcorr:
e uvotattcorr infile=sw12345678012sat.fits corrfile=sw12345678012uac.hk \

— outfile=uvotatt.fits

SEE ALSO

uvotskycorr, uvotaspcorr, attjumpcorr

LAST MODIFIED

June 2007

102
5.5 UVOTBADPIX

NAME

uvotbadpix - create pixel quality maps for images

USAGE

uvotbadpix infile=<filename> outfile=<filename>

DESCRIPTION

This program takes a caldb bad pixel list and creates a pixel quality map for use in uvotmodmap
and exposure map generation. This tool checks for missing rows due to packet loss, and optionally
check the input image for compression damage (overflows and underflows). uvotbadpix allows the
user to

specify the caldb bad pixel list specify a fits (multi-extension) image file for which to generate
matching quality maps

PARAMETERS

infile [filename]
e Input image file for which quality maps are created.
badpixlist [filename]

e Input caldb bad pixel table. Specify the name of a file, or 7CALDB” to retrieve from the
calibration database.

outfile [filename]
e Output quality map file name.
(compress = yes) [boolean]

e If compress = yes then check for compression over or under flows. If compress = no then
don’t check.

(clobber = no) [boolean]
e If outfile already exists, then ”clobber = yes” will overwrite it.
(history = yes) [boolean]

e If history = yes, then a set of HISTORY keywords will be written to the header of the output
file to record the value of all the ftcopy task parameters that were used to produce the output
file.

Swift UVOT Software Guide 103

(chatter = 1) [integer, O - 5]

e Controls the amount of informative text written to standard output. Verbosity increases with
larger numbers.

(mode = ql)

e Standard PIL mode parameter.

EXAMPLES

The following example is a typical uvotbadpix run.
e uvotbadpix images.fits swubadpix.fits quality.fits

Where images is the name of the input image files, swubadpix.fits holds the CALDB bad pixel
list, and quality.fits is the name of the generated quality map,.

Alternatively the user could just run uvotbadpix and be prompted for the inputs.

LAST MODIFIED

October 2004

5.6 UVOTCENTROID

NAME

uvotcentroid - Locate the centroid of a source on a UVOT image.

USAGE

uvotcentroid image=<filename> srcreg=<filename> confidence=<float> niter=<integer> threshold=<float>
subdimsiz=<integer> plot=<boolean> plotdev=<string> cleanup=<boolean> chatter=<enumerated
integer>

DESCRIPTION

One of the primary goals of the UVOT instrument is to provide accurate celestial positions for
gamma ray burst afterglows. The problem can be separated into three parts i) the conversion from
detector pixels to sky coordinates (see the ftool swiftxform), ii) an astrometric adjustment to correct
systematic pointing uncertainties in the spacecraft attitude (see uvotaspcorr), and iii) within the
statistical limits of the data, locate the centroid of a particular source on the image. It is this last
item which is performed by uvotcentroid. Sky coordinate conversion must have been performed
before running uvotcentroid. This tool can be used before an astrometric correction, but only
to determine a statistical confidence limit. An astrometric correction is required to determine an
accurate position. But note well that both items i) and ii) above can only be achieved to a certain
accuracy and this systematic uncertainty - which can often exceed the statistical position error

104

provided by uvotcentroid - is not propagated through the centroiding calculation. The statistical
and systematic errors must be combined before reporting a formal position ucertainty.

This tool employs uvotdetect to determine the position of sources. uvotdetect is a wrapper for
the sextractor tool which does the fundamental work of detecting and providing source positions;
see http://terapix.iap.fr/rubrique.php?id_rubrique=91/. Both point- and extended sources can be
centroided and relatively crowded fields can be accommodated. 1-sigma uncertainties are reported
by uvotdetect but the method by which sextractor obtains these errors is somewhat nebulous.
In order to achieve some confidence in the statistical error, uvotcentroid performs a user-defined
number of trials. Before each trial a new, small image is created from the original with the source
of interest close to the center. The value of each individual pixel is ajusted by a value chosen at
random from the normal cummulative distribution function defined to have a sigma width of the
square root of the pixel value. This provides multiple images with identical noise distributions but
pixel count distributions varying within the limits defined by the noise. A centoid position for the
source in each trial image is recorded and the variance used to estimate confidence limits on the
result.

The tool reports back the most-likely RA and Dec of the source, a confidence limit on the
position and the number of trials in which the source could not be detected (useful for faint soures).
Optionally a plot may be generated to inspect the trial distribution.

If more than one source is located within the subimage, the tool will default to the source
nearest to the center of a user-provided region file. The user has the ability to change the size of
the sub-field over which uvotcentroid regenerates source images. Small fields have the advantage of
less field sources and faster runtimes, at the expense of smaller background statistics. A reasonable
subimage size is 20x20 arcsec for optical filter observations and 40x40 arcsec for UV observations.

PARAMETERS
image [string]

e The name and correct path to a standard UVOT FITS sky image. if either are incorrect,
the tool will complain that it has found no such image. The name should normally contain
the FITS extension hosting the image, either by number, e.g. example.fits+1, or name, e.g.
example.fits EXTNAME]. If neither are supplied the tool will look for an image in the primary
extension and use it. If none is found, it will default to the first extension and look again. If
none is then found the tall will complain.

srcreg [string]

e The name and correct path to a standard ds9 region file. These regions can often be complex,
uvotcentroid will read the first line which begins with ’fk5;’ (ignoring any exclusion regions

'fk5:-") and use these coordinates as the center of each subimages it creates. A typical region
file looks like this:

Region file format: DS9 version 4.0 # Filename: /Volumes/data/00035934002/uvot/image/sw00035934002u
tk5;circle(76.37975,-4.3054021,5”)

The circle radius is ignored by uvotcentroid in this case. The onus is on the user to provide a
region file as close to the source of interest as possible. As an absolute minimum, the center of the
region must be closer to the interesting source than any other in the image.

confidence [float]

Swift UVOT Software Guide 105

e This is the level of confidence (percent) with which you would like the source position reported.
A typical value is 90, but the range is 0 < confidence < 100, exclusive.

niter [integer]

e The number of trials to be performed. The more trials, the more accurate the result. A
minimum of 100 successful trials are required to provide a confidence estimate. If less than
100 trails could detect the source,a position will be reported but no error estimate. In these
cases, re-run the tool with a larger number of trials. uvotcentroid can be run with just 1 trial

which will provide a position with no confidence. Provided an astrometic correction has been
peformed, most likely this position will be good to at least 1 arcsec > 99.9% confidence.

threshold [float]

e uvotdetect will only recognise sources if they are detected above this threshold. The units are
sigma, assuming a Gaussian noise distribution. This argument must be positive and larger
than zero. For weak, marginal source a threshold of 2 is suitable.

subdimsiz [integer]

e The dimensions of the subimage are square and this argument provides the length of one
side in arcsec units. The subimage must be large enough to incorporate the source and some
background in order for the source to be located.

ra [float]

e This is not an input argument. It is used to store the output right ascension in decimal
degrees so that users and scripts can access the results easily, using e.g. from a shell:

'pget uvotcentroid ra’
dec [float]

e This is not an input argument. It is used to store the output declination in decimal degrees
so that users and scripts can access the results easily, using e.g. from a shell:

'pget uvotcentroid dec’

conflimit [float]

e This is not an input argument. It is used to store the output location uncertainty in arcseconds
so that users and scripts can access the results easily, using e.g. from a shell:

pget uvotcentroid conflimit’conflimit is only useful if you get the confidence level associated
with it:

e ’'pget uvotcentroid confidence’

plot [boolean]

106

o If yes, the tool will plot a summary of the result and trials. Two windows are plotted. The
left one contains a histogram of the distance in arcsec between the most-likely source position’
and all of the trials. The confidence range requested by the user is cast as a region colored
yellow behind the histogram. The most-likely RA and Dec, the confidence limit and the
number of positive source detections are provided in a dialog box in the top right of this
window. The right hand plot shows the distribution of trial positions in RA and Dec space,
relative to the most-likely position. The confidence limit is represented as a yellow circle in
the background. Each source position is marked by a blue cross symbol. The size of each
cross is arbitrary and has no relation to a measured error.

plotdev[boolean]

e The device through which you want to make the plot. Available options will depend on your
PGPLOT installation but common usages are: /XS - xserver on your monitor /GIF - gif file
/PS - postscript document

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter (0-5) controlling the verbosity of the task. Setting 0 is
mute except for the final result reported to STDOUT, while setting 5 is the most wordy.

EXAMPLES

The following examples illustrate running uvotcentroid

1. run uvotcentroid and get prompted for all mandatory arguments:
e uvotcentroid
2. run uvotcentroid specifying all required control arguments on the command line:

e uvotcentroid image=sw00035934002uuu_sk.img+1 srcreg=srcreg confidence=90 niter=1000
threshold=3 subdimsiz=20 chatter=>5

3. run uvotcentroid specifying all control arguments on the command line, plotting output to
a gif file and retaining all intermediate files:

e uvotcentroid image=sw00035934002uuu_sk.img+1 srcreg=srcreg confidence=90 niter=1000
threshold=3 subdimsiz=20 plot=y plotdev=/gif cleanup=n chatter=>5

LIMITATIONS
The subimage and region file must always be fully contained within the sky region sampled by the

input image. Cases where the source lies very close to RA = Oh or the celestial poles have not been
tested.

SEE ALSO

uvotdetect

Swift UVOT Software Guide 107

LAST MODIFIED

July 19, 2007

5.7 UVOTCOINCIDENCE

NAME

uvotcoincidence - performs coincidence loss correction

USAGE

uvotcoincidence infile=<filename> coinfile=<filename> ratecol=<string> errcol=<string> frametime=<real>
deadtimecorr=<boolean> history=<bool> chatter=<enumerated integer>

DESCRIPTION

Given a count rate in units of counts per second, and a 1-sigma error in the same units, uvotcoin-
cidence will find the corresponding coincidence loss correction factors and rates. Normally 1/0 is
performed through a FITS table which must be prepared by the user. Requirements are to provide
a minimum of two columns with arbitrary names containing numeric values. One column contains
a count rate, the other contains the associated 1-sigma error. The table may contain any number
of rows or other columns, the task will perform the conversion on all data rows. The output is
written to the same FITS table. Five columns are created or updated:

e COI_FACTOR correction factor COI_LFACTOR_ERR 1-sigma error associated with COI_.FACTOR
COI_RATE Col corrected rate in units of count/s COI_.RATE_ERR 1-sigma error associated
with COI_LRATE SATURATED boolean; true indicates saturation

PARAMETERS
infile [filename]

e FITS input table containing at least two numeric columns, one containing count rates in
units of counts per second, the other containing 1-sigma measurement error in the same
units. Output data will be appended to the same table. If infile=NONE, the values of the
ratecol and errcol parameters are operated on directly.

coinfile [filename]

e Name of file containing coincidence loss correction calibration. The special value CALDB
causes the CALDB to be queried for the proper file.

(ratecol = RATE) [string]

e Name of the table column in infile containing the count rates. Each row must contain a
numeric value. If infile=NONE, pass a single rate through this parameter.

108

(errcol = RATE_ERR) [string]

e Name of the table column in infile containing the 1-sigma count rate error. Each row must
contain a numeric value. If infile=NONE, pass a single rate error through this parameter.

(frametime = DEFAULT) [string]

e Frame time [s]. Used for calculating dead time correction. The special value DEFAULT
results in the value of the FRAMTIME keyword being used if it is present in the source table,
otherwise, the value 0.0110322 [s] is used.

(deadtimecorr = yes) [boolean]

e Input already dead time corrected? deadtimecorr=yes means that the dead tim e correction
has already been applied in the exposure time. deadtimecorr=no mea ns that uvotcoincidence
will apply the dead time correction.

(history = yes) [boolean]

e If yes, a HISTORY keyword will be written to the header of infile containing the uvotcoinci-
dence arguments.

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task. Setting 1 is
mute, while setting 5 is the most wordy.

EXAMPLES

The following examples illustrate running uvotcoincidence

1. run uvotcoincidence specifying source list and rate columns on the shell command line.
countrates.fits is a FITS file containing a table in HDU number 1. (note that the first extension in
the file, often an empty primary extension, is designated HDU number 0, by convention). The tool
will look for table columns names RATEX (containing the source count rate) and RATEX_ERR
(the 1-sigma error attached to RATEX) to propogate through the magnitude and flux conversion.

e uvotcoincidence infile=countrates.fits+1 ratecol=RATEX errcol=RATEX_ERR

2. run uvotcoincidence specifying a single rate and error for conversion on the command line:
e uvotcoincidence infile=countrates.fits+1 ratecol=13.4 errcol=1.13

3. run uvotcoincidence specifying the coincidence loss calibration file on the command line:

e uvotcoincidence infile=countrates.fits+1 \ coinfile=/caldb/data/swift/uvota/bcf/phot /swucntcorr20041120v

Swift UVOT Software Guide 109

SEE ALSO

uvotdetect, uvotflux, uvotsource, uvotmaghist, uvotproduct, uvotapercorr

LAST MODIFIED

May 21, 2007

5.8 UVOTDETECT

NAME

uvotdetect - detect sources in an UVOT image

USAGE

uvotdetect infile=<filename> outfile=<filename>

DESCRIPTION

This tool runs SExtractor to detect sources in a UVOT image. By default. the output FITS
table includes absolutely calibrated magnitudes (MAG) and fluxes (FLUX). The resulting columns
*_ ERR in the output (e.g., RA_LERR, Y_.ERR, MAG_ERR, FLUX_ERR) give 1-sigma errors.

PARAMETERS
infile [filename]

e Input filename parameter (UVOT Sky FITS image). If the input file has multiple extensions,
the user must specify on which extension to operate. See the HEASOFT help on filenames
for specifying the extension (in section B.2).

outfile [filename]

e Output filename parameter. FITS file containing table(s) of sources corresponding to input
image(s).

expfile [filename]

e Exposure map file name or NONE. This value is passed to SExtractor if the sexfile parameter
is DEFAULT.

(sexfile = DEFAULT) [filename]

e SExtractor configuration file or DEFAULT. The user can control nearly every aspect of SEx-
tractor by providing this file. There are certain parameters which uvotdetect overrides for its
own purposes: CATALOG NAME, CATALOG_TYPE.

110

threshold [real]

e Detection threshold. This value is passed to SExtractor if the sexfile parameter is DEFAULT.

(zerobkg = 0.03) [boolean]

e Maximum fraction of nulls in image to allow SExtractor to calculate background If the fraction
of nulls in the 'middle’ third of the image exceeds this limit, the background mean and sigma
will be calculated externally using ftstat and passed as constants to SExtractor. This is
sometimes needed because the SExtractor calculation performs poorly at low counts. Set
ZEROBKG =-1 to always use the external calculation.

detected [integer]

e This output parameter gives the number of sources detected or -1 in the event of an error.

(plotsrc = no) [boolean]

e Display detected source positions in the ds9 viewer.

(expopt = BETA) [string]

e Controls processing when an exposure map is provided. The BETA method better handles
the edges of single images . Specify expopt=ALPHA to use the default behavior prior to
June 2007, which is generally better for co-added images.

(calibrate = Y) [boolean]

e If true, then the coincidence loss correction and absolute calibration is applied to the SEx-
tractor output.

(clobber = no) [boolean]

e Standard HEAdas clobber parameter. If true, the output file will be overwritten.

(cleanup = yes) [boolean]

e Remove temporary files at end of run.

(chatter = 1) [integer]

e Standard HEAdas chatter parameter.

Swift UVOT Software Guide 111

EXAMPLES

The following examples illustrate running uvotdetect

1. run uvotdetect prompting for options
e uvotdetect

2. run uvotdetect specifying input and output filenames on command line. Specify a threshold
of 2 sigma above the background

e uvotdetect infile=image.fits outfile=source.fits threshold=2

SEE ALSO

SExtractor

LAST MODIFIED

June 2007

5.9 UVOTEVGRISM

NAME

uvotevgrism - filter a UVOT grism event list and determine wavelength

USAGE

uvotevgrism infile=<filename> outfile=<filename>

DESCRIPTION

This tool operates on grism UVOT level 2 event files. The output file matches the input except for
the EVENT extension which is updated to include only those events which fall in the dispersion
region. The dispersion region is a rectangle defined in terms of the source position (0th order right
ascension and declination), the angle of the dispersion axis (measured clockwise from the +X axis),
pixel width, and wavelength bounds for position on the dispersion axis.

PARAMETERS

infile [filename]
e UVOT level 2 events file (see SSC UVOT Data Handbook).
outfile [filename]

e UVOT level 2 events file (see SSC UVOT Data Handbook).

112

wavefile [filename]

e Pixel to wavelength conversion calibration file.
teldeffile [filename]

e Telescope definition file.

attfile [filename]

e Attitude history file.

(attlim = 32) [real]

e Attitude extrapolation limit [s]

ra [real]

e Oth order right ascension [degrees]
dec [real]

e Oth order declination [degrees]

(uvang = 207) [real]

e Angle from +X axis to UV dispersion axis [degrees]

(uvwid = 30) [real]
e Width of UV 1st order dispersion region [pixels]

(uvmin = 300) [A]

e Wavelength corresponding to lower end of UV extraction region.

(uvmax = 2000) [A]

e Wavelength corresponding to upper end of UV extraction region.

(vang = 207) [real]
e Angle from +X axis to V dispersion axis [degrees]

(vwid = 30) [real]

Swift UVOT Software Guide 113

e Width of V 1st order dispersion region [pixels]

(vmin = 2000) [A]

e Wavelength corresponding to lower end of V extraction region.
(vmax = 6000) [A]

e Wavelength corresponding to upper end of V extraction region.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter. A range of 0 to 5 is enforced by the min and max fields
in the parameter file.

(clobber = no) [boolean]
e Standard HEAdas clobber parameter.
(history = yes) [boolean]
e Standard HEAdas history parameter.

EXAMPLES

The following example illustrates running uvotevgrism.

1. run uvotevgrism specifying input and output event files, attitude file, and source position
(ra and dec) on the command line

e uvotevgrism infile=sw00070911011ugvbl.unf.fits outfile=evgrism.fits \
ra=286.16 dec=08.17 attfile=sw00070911011snone.att.fits

SEE ALSO
LAST MODIFIED

May 2004

5.10 UVOTEVTLC
NAME

uvotevtle - make a background subtracted light curve from UVOT event data

USAGE

uvotevtle infile outfile srcreg bkgreg

114

DESCRIPTION

This task makes a light curve from UVOT event files. It performs region selection and background
subtraction. The user can supply custom time bins using the gtifile parameter. Both source and
background regions must be supplied. Complex region files are permitted.

The user can specify one file on the command line, or an ”@” style batch file listing multiple
files. Event files taken with different UVOT filters should never be mixed in one call to uvotevtlc.

To make sure the UVOT events have been converted to sky positions using the best available
Swift spacecraft attitude, the task ’coordinator’ should first be run on the event file, with an
aspect-corrected attitude file that contains the ajumpapp keyword set to "T’.

This task calls the batbinevt task to actual perform the light curve binning. The user has
a choice of binning styles via the ”timebinalg” parameter. Binning can be either ”U”niform,
indicating constant bin sizes, or ”G”TI, meaning the user choses the bin edges explicitly with a
good time interval file. Each separate good time interval will be turned into one output light curve
time bin. The good time interval file is also used for time-based filtering of UVOT events.

Output lightcurves contain the keyword TIMEPIXR which indicates the reference point for light
curve time bins. For light curves, the start, stop and center times of each bin can be calculated as:

e TIME_START = TIME - TIMEPIXR*TIMEDEL TIME_STOP = TIME + (1-TIMEPIXR)*TIMEDEL
TIME_CENT = TIME + (0.5-TIMEPIXR)*TIMEDEL

Since for uvotevtle TIMEPIXR should always be 0.5, the TIME column marks the center of
each bin, and TIME_START and TIME_STOP are one-half of a bin width away. If variable size
time bins are requested, then TIMEDEL will be a column instead of a keyword, but the above
expressions still hold.

Region-based filtering is done using standard region files (this uses the region filtering capability
built into CFITSIO). The user should supply both source and background regions. uvotevtle com-
putes the net rate (RATE) by subtracting the mean background level, derived from the background
region, from the source rate, derived from the source region. The background rate (RATE_BKG)
is reported in units of counts per second per square arcsec, and is scaled by the source region
size before subtraction. The source and background region sizes are stored in the REGAREA and
BREGAREA keywords, respectively (in units of square arcsec). The region areas are computed
empirically by testing how many UVOT pixels in the entire field of view successfully pass the
filtering criteria.

If the parameter 'uvotmag’ is set to YES, then UVOT count rates are converted to magnitudes
using the uvotcoincidence and uvotflux tasks.

uvotevtle makes several scratch data files. Users should have enough free space to accomodate
these files. The actual size of the scratch data varies depending on the size of the source and
background region, but should never be more than the size of the original event files (when they
are uncompressed).

PARAMETERS
infile [filename]
e The name of the input events file, or an @-file listing the event files to be entered.

outfile [filename]

Swift UVOT Software Guide 115

e The name of the output light curve file

srcreg [filename]

e The name of the source region file. Complex regions are permitted.
bkgreg [filename]

e The name of the background region file. Complex regions are permitted.
(gtifile = "NONE") [string]

e The name of a GTI file. When timebinalg="g’, this file should be a GTI which contains custom
time bins, one bin per good time interval. No matter what the time binning algorithm, gtifile
is always used for time filtering of the events.

(timedel = 0) [real]

e The time bin size in seconds if timebinalg="u’. A bin size of ”0” indicates the full dataset
should be summed.

7)

(timebinalg = 7g”) [string]

e The time binning algorithm. Either ”u” for uniform time binning (constant time bin size
specified by ’timedel’); and ”g” for custom time binning (specified by ’gtifile’).

(tstart = "INDEF”) [string]

e Optional global start time (MET seconds), or INDEF to use the input file’s start time.
(tstop = "INDEF”) [string]

e Optional global stop time (MET seconds), or INDEF to use the input file’s stop time.
(uvotmag = "YES”) [boolean]

e If YES, then run the 'uvotcoincidence’ and 'uvotflux’ tasks to compute calibrated magnitudes
for the light curve samples. The default/CALDB parameters are used in the calls to these
tasks, and deadtimecorr is set to "NO” (since the raw rates produced by uvotevtlc are not
corrected for deadtime).

(frametime = "DEFAULT) [string]

e UVOT frame time, in seconds, or DEFAULT. This parameter is used by uvotcoincidence to
estimate dead time and coincidence loss.

(uvotmag_params = "NONE”) [string]

116

e Any additional parameters to be used when calling the uvotmag task. This string must specify
only uvotmag hidden parameters, excluding ’deadtimecorr’, which is always set to NO.

(clobber = NO) [boolean]

e If the output file already exists, then setting ”clobber = yes” will cause it to be overwritten.

(chatter = 2) [integer, O - 5]

e Controls the amount of informative text written to standard output. Setting chatter = 1
produces a basic summary of the task actions; chatter = 2 (default) additionally prints a
summary of input parameters; chatter = 5 prints debugging information.

(history = YES) [boolean]

e If history = YES, then a set of HISTORY keywords will be written to the header of the
specified HDU in the output file to record the value of all the task parameters that were used
to produce the output file.

EXAMPLES

1. Creates a light curve using custom time bins specified by absolute.gti

e uvotevtle sw00176918992uvvpo_uf.evt event.lc src.reg bkg.reg gtifile=absolute.gti

SEE ALSO

batbinevt

LAST MODIFIED

July 2007

5.11 UVOTEXPCORR

NAME

uvotexpcorr — Swift/UVOT exposure time correction

USAGE

uvotexpcorr sequence=<string> dataloc=<string>

Swift UVOT Software Guide 117

DESCRIPTION

This tools is obsolete and no longer supported.

This script corrects the EXPOSURE keyword in Swift/UVOT files based on the data in the
UVOT Exposure Report. The CountRate * (1-Dataloss) from the Exposure Report (log/sw*uir.html|.gz])
is compared to the sum of the counts / EXPOSURE in each extension of each UVOT sw*sk.img[.gz]
and sw*rw.img[.gz] file found in the specified directory tree (under uvot/image). Extensions not
from image-mode data (ie, EXTNAME not ending in "I”) will be analyzed, but NO corrections
will be applied to the EXPOSURE keyword regardless of the value of the ”allowcorr” parameter.

If the tool encounters a previously corrected EXPOSURE keyword it will flag that in the output.

PARAMETERS

sequence [string]
e Sequence number of the data.
dataloc [string]
e Pathname to the Swift data directory (containing log/ and uvot/ subdirectories).
(threshold = 0.95) [real]
e Specifies the threshold ratio below which the EXPOSURE keyword will be corrected.
(allowcorr = no) [boolean]

e Allow the computed UVOT EXPOSURE correction (if any) to be applied. One might set
this to "no” to just run the tool in an informational mode. Even if ”yes”, corrections will
only be applied to extensions with images from image-mode data.

(chatter = 3) [integer]

e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task. A value
of zero (0) supresses all screen output. A value of one (1) will generally only report on
"interesting” cases. The default value of three (3) yields basic information on each extension.

(history = yes) [booleanr]

e Standard HEAdas history parameter. If "yes” then any extension which has a corrected
EXPOSURE keyword will contain a block of history keywords documenting the runtime
parameters for this tool.

NOTES

Any gzipped image file will be unzipped during execution and rezipped when the tool is finished
with it.

118

SEE ALSO
LAST MODIFIED

June 2005

5.12 UVOTEXPMAP
NAME

uvotexpmap - generate exposure maps for UVOT sky images

USAGE

uvotexpmap infile=<filename> outfile=<filename>

DESCRIPTION

This tool generates exposure maps given a UVOT level 2 sky image product. An exposure map is
created for each extension in the image file.

PARAMETERS

infile [filename]
e UVOT level 2 sky image file (see SSC UVOT Data Handbook).
badpixfile [filename]

e Bad pixel file. See the Data Handbook for the bad pixel file format. It has extension names
corresponding to those in the sky image file. The bad pixel file is created by uvotbadpix.

method [MEANFOV—SHIFTADD]

e Exposure map method. If method is MEANFOV, then the exposure map is based on a single
attitude (the attitude at the same time used when projecting the image onto the sky). If
method is SHIFTADD, then the processing follows the attitude changes during the exposure
as given by the aspect following packets and/or attitude data and the trackfile parameter
should be set.

attfile [filename]
e Attitude history file (in coordfits/ATTFILE format).
teldeffile [filename]

e Telescope definition file (coordfits/ TELDEF format).

Swift UVOT Software Guide 119

outfile [filename]

e Exposure map output file. One extension for each image extension in the input sky image
file. See Data Handbook for details.

maskfile [filename]

e Name of optional output mask file which can be used to screen out outer pixels to suppress
edge-effects. This maskfile can be passed as an input parameter to uvotimsum.

(masktrim = 0) [integer]

e Mask trimming control. This parameter is only used if maskfile is not NONE. A positive
value gives the number of pixels to be trimmed from the top/bottom/left /right or the mask.
A negative value trims the mask based on the attitude variation during the exposure. The
special value 0 is treated as -1 if method is MEANFOV, or 1 if method is SHIFTADD.

(trackfile = NONE) [filename]

e If method is SHIFTADD, this gives the name of the aspect following housekeeping file
(sw*uaf.hk).

(attdelta = 100) [real]

e Maximum change in attitude exposure map increments [arcsec].
(aberration = no) [boolean|

e Account for velocity aberration?

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter. A range of 0 to 5 is enforced by the min and max fields
in the parameter file.

(cleanup = yes) [boolean]

e (Clean up temporary files?

(clobber = no) [boolean]

e Standard HEAdas clobber parameter.
(history = yes) [boolean]

e Standard HEAdas history parameter.

120

EXAMPLES

The following examples illustrate running uvotexpmap

1. run uvotexpmap prompting for options
e uvotexpmap

2. run uvotexpmap in command line specifying sky image input, bad pixel and attitude files,
and create a mask that screens out edge-effects

e uvotexpmap infile=skyimages.fits badpixfile=badpixels.fits attfile=attitude.fits maskfile=mask.fits

SEE ALSO

expomap, uvotbadpix, uvotimsum

LAST MODIFIED

March 2008

5.13 UVOTFLATFIELD

NAME

uvotflatfield - performs flat-fielding on UVOT images

USAGE

uvotflatfield infile=<filename>

DESCRIPTION

This tool divides RAW images by the UVOT flat field calibration product.

PARAMETERS

infile [filename]

e Input image file. If no extension is specified, all extensions are processed; otherwise, only the
specified extension is processed.

outfile [filename]
e Output file name. See clobber parameter.

flatfile [filename]

Swift UVOT Software Guide 121

e [lat field calibration file or CALDB.

(clobber = no) [boolean]

e Overwrite output file if it exists?

(cleanup = yes) [boolean]

e Remove temporary files?

(history = yes) [boolean]

e Write parameter history?

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

The following example illustrates running uvotflatfield specifying the input and output file names
on the command line:

e uvotflatfield infile=images.fits outfile=flat.fits

SEE ALSO
LAST MODIFIED

June 2004

5.14 UVOTFLUX

NAME

uvotflux - converts source count rates to magnitudes and flux

USAGE

uvotflux infile=<filename> zerofile=<filename> filter=<string> syserr=<bool> ratecol=<string>
errcol=<string> history=<bool> chatter=<enumerated integer>

122

DESCRIPTION

Given a count rate in units of counts per second, and a 1-sigma error in the same units, uvotflux will
convert the rate into an instrumental magnitude (based on UVOTs own filter system) and fluxes
in units of erg/s/cm{}2/Angstrom. The count rate error is propagated through each calculation.
Magnitudes, m, are determined from: m = ZPT - 2.5 * log_10(C)

where C is a count rate and ZPT is a zero point, appropriate to a specific filter. The zero-
points have been calibrated from standard photometry fields and assume all sources have Vega-
like spectra. The zero points are stored as FITS keywords within the UVOT CALDB (see
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift /docs/uvot/ index.html). Fluxes, F_lam,
are calculated by a applying a straightforward multiplicative factor to the count rate:

F_lam = FCF * C

FCF is also filter specific and stored as CALDB keywords. It’s units are erg/ cm{A}2 /angstrom/count
and, again, the conversion factors assume a Vega-like spectrum.

The user is required to provide the filter through which the observations were obtained so that
the tool knows which zero point to extract from the CALDB.

I/0O is performed through a FITS table which must be prepared by the user. Requirements
are to provide a minimum of two columns with arbitrary names containing numeric values. One
column contains a count rate, the other contains the associated 1-sigma error. The table may
contain any number of rows or other columns, the task will perform the conversion on all data
rows. The output is written to the same FITS table. Four new columns are written:

e MAG — instrumental magnitude
MAG_ERR — 1-sigma error associated with MAG
FLUX - flux in units of erg/s/cm™**2/Angstrom
FLUX_ERR - 1-sigma error associated with FLUX in the same units

Each zero point comes with an associated measurement error which is also stored as a CALDB
keyword, e.g. ZPEV, ZPEWHITE and ZPEUVWI1. To perform absoltute photometry the zero
point error should be included in the calculation. However if one is interested in detecting relative
structure in time series photometry the zero point error would add an unwanted level of error to
each point along the curve. In such cases it is appropriate to ignore the zero point error in the
magnitude and flux calculations. Use the syserr argument to toggle between the two cases above.

There are prerequisites before running uvotflux. For a sensible conversion, any background or
other contaminants must have been removed from the source count rate. Also the extracted count
rates need to have been corrected for coincidence losses (see the ftool uvotcoincidence). Without
a coincidence correction, magnitudes and fluxes will be systematically underestimated. The zero-
points stored in the CALDB are consistent only for a specific extraction aperture size. Count
rates should either be obtained from an aperture of the same size, or corrected for aperture size
using e.g. a curve-of-growth point spread function correction using e.g. uvotapercorr. The relevant
aperture sizes are stored as keywords in the same CALDB product as the zero points, e.g. APTB,
APTWHITE and APTUVWI1. At the time of writing, all default apertures are circles with radius
of 10 unbinned detector pixels (approx. 5 arcsec). Finally the tool assumes that the deadtime
correction (a small fraction due to detector readout) has already been applied to the count rates.

uvotflux may be run as a stand-a-lone ftool, but was designed as a workhorse to be used
internally by UVOTs photometry tools uvotsource, uvotflux and uvotproduct. It will also perform
on source table created by the source detection tool uvotdetect.

Swift UVOT Software Guide 123

PARAMETERS

infile [filename]

e FITS input table containing at least two numeric columns, one containing count rates in
units of counts per second, the other containing 1-sigma measurement error in the same
units. Output data will be appended to the same table.

zerofile [filename]

e Name of file containing photometric zero points. The majority of application require the most
up-to-date data in the CALDB, and for these instannces simply providin zerofile=caldb will
allow the tool to locate and use the caldb data.

(filter = WHITE—U—B—V—UVW1—UVM2—UVW?2) [string]

e The UVOT filter through which the sources were observed. Alternatively, the user can specify
filter=default which will ask the tool to search for a keyword named 'FILTER’ in the header
items of infile. If a valid filter is found, it will be adopted.

(syserr = no) [string]

e This refers to the systematic error associated with the zero point calibration. Choose sy-
serr=yes if you want the absolute magnitude or flux of a source. Choose syserr=no if you are
interested in analyzing relative structure within time series photometry.

(ratecol = RATE) [string]

e Name of the table column in infile containing the count rates. Each row must contain a
numeric value.

(errcol = RATE_ERR) [string]

e Name of the table column in infile containing the 1-sigma count rate error. Each row must
contain a numeric value.

(history = yes) [boolean]

e If yes, a HISTORY keyword will be written to the header of infile containing the uvotflux
arguments.

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task. Setting 1 is
mute, while setting 5 is the most wordy.

124

EXAMPLES

The following examples illustrate running uvotflux

1. run uvotflux and wait to be prompted for all arguments.
e uvotflux

2. run uvotflux specifying source list and rate columns on the shell command line. countrates.fits
is a FITS file containing a table in HDU number 1. (note that the first extension in the file, often
an empty primary extension, is designated HDU number 0, by convention). The tool will look for
table columns names RATE (containing the source count rate) and RATE_ERR (the 1-sigma error
attached to RATE) to propogate through the magnitude and flux conversion.

e uvotflux infile=countrates.fits+1 ratecol=RATE errcol=RATE_ERR

3. run uvotflux specifying all arguments on the shell command line. Old or adapted zeropoint
CALDB files may be pointed to with the zerofile argument and specific filter zeropoints may be
requested using the filter argument.

e uvotflux infile=countrates.fits+1 ratecol=RATE errcol=RATE_ERR zerofile=/caldb/data/swift /uvota/bcf/
filter=UVW1 syserr=NO history=YES chatter=5

SEE ALSO

uvotdetect, uvotcoincidence, uvotsource, uvotmaghist, uvotproduct, uvotapercorr

LAST MODIFIED

August 21, 2007

5.15 UVOTIMAGE

NAME

uvotimage - creates UVOT level 2 images

USAGE

uvotimage infile=Q<filename>

DESCRIPTION

Make UVOT SKY images from RAW images and/or EVENTSs. One image is generated for every
UVOT exposure, regardless of the mode (image or event). For exposures taken in image mode,
uvotimage transforms raw images to sky coordinates using the attitude file and the appropriate
telescope definition/alignment (teldef) file. For exposures taken in event mode, sky images are
made directly from the event X, Y (RA and Dec) values in the event file. UVOTIMAGE is used
in the Swift pipeline to iterate over raw UVOT image and event files to create Level 2 image files.

Swift UVOT Software Guide 125

PARAMETERS

infile [filename]

e Name of input image or event file(s). This can be a comma-delimited list of file names or
@<file> where <file> contains the names of the files to process, one per line.

prefix [string]

e Prefix for output files.

attfile [filename]

e Input attitude file.

teldeffile [filename]

e Telescope definition calibration file or CALDB.
alignfile [filename]

e Alignment file or CALDB.

ra [real]

e Nominal R.A. (degrees)

dec [real]

e Nominal Dec. (degrees)

roll [real]

e Nominal roll. (degrees)

(catfile = NONE) [filename]

e UVOT exposure catalog or NONE.
(flatfield = no) [boolean]

e Perform flat fielding? Not implemented.
(mod8corr = no) [boolean]

e Perform modulo & noise correction?

126

(cleanup = yes) [boolean]

e Remove intermediate files?
(history = yes) [boolean]

e Write history keywords?
(clobber = no) [boolean]

e Overwrite existing files?
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

The following examples illustrate running uvotimage

1. run uvotimage

e uvotimage infile=@Qfiles prefix=Q teldeffile=CALDB alignfile=CALDB

SEE ALSO
LAST MODIFIED

June 2007

5.16 UVOTIMGRISM

NAME

uvotimgrism - extract UVOT grism spectra

USAGE

uvotimgrism infile=<filename> outfile=<filename>

DESCRIPTION

This tool extracts the grism dispersed region including the Oth order from a V or UV grism image
and calculates a wavelength scale. The source extraction region is a rectangular box in a fixed
relationship to the source position. The background regions widths and offsets are controlled by
user parameters. The user must supply the sourcex and sourcey parameters giving the Oth order
position on the detector in FITS input image coordinates. The use of the ra and dec parameters is
not yet implemented, and these must be set to a negative number.

Swift UVOT Software Guide 127

PARAMETERS

infile [filename]
e UVOT V or UV grism detector image file (see SSC UVOT Data Handbook).
outfile [filename]
e Output file for source+background spectrum and extracted source region.
backfile [filename]
e Output file for background spectrum.
(areafile = CALDB) [filename]
e UVOT flux calibration (effective area) file (see SSC UVOT Data Handbook).
(wavefile = CALDB) [filename]
e UVOT grating equation calibration file (see SSC UVOT Data Handbook).
badpixfile = NONE [filename]

e Bad pixel file (as created by uvotbadpix). The special value NONE causes a bad pixel image
to be created with no bad pixels.

ra [reall

e Right ascension of source [degrees]. If negative, sourcex/y will be used. Currently sourcex/y
MUST be used as the RA/Dec interface is not yet implemented.

dec [real]
e Declination of source [degrees]. Not yet implemented.
(sourcex = 0) [real]

e X centroid of zeroth order in input FITS image [pix]. Note that sourcex/y are only used if
ra is negative.

(sourcey = 0) [real]

e Y centroid of zeroth order in input FITS image [pix]. Note that sourcex/y are only used if
ra is negative.

(ang = 206.7) [real]

128

e Angle (CCW) from X axis to 1st order grism [degrees]

(wavemin = 1600) [real]

e Minimum wavelength of wave scale [A]

(wavemax = 1600) [real]

e Maximum wavelength of wave scale [A]

(srewid = 30) [integer]

e Width of 1st order source extraction region [pixels]

(bkgwidl = 10) [integer]

e Width of lower background region [pixels]

(bkgoffl = 10) [integer]

e Separation of lower background region from source region [pixels]
(bkgwid2 = 10) [integer]

e Width of upper background region [pixels]

(bkgoff2 = 10) [integer]

e Separation of upper background region from source region [pixels]
(inreg = DEFAULT) [string]

e Name of region file to create to indicate extraction regions in infile image. The value DE-
FAULT causes a region file with the same base name as infile and a .reg extension to be
created. The value NONE causes no region file to be created. Otherwise, the value of inreg
is taken to be the name of the region file to create.

(nsigma = 5) [real]

e N sigma for determining outliers in background.
(history = yes) [boolean]

e Standard HEAdas history parameter.

(cleanup = yes) [boolean]

Swift UVOT Software Guide 129

e (Clean up temporary files?

(clobber = no) [boolean]

e Standard HEAdas clobber parameter.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

The following example illustrates running uvotimgrism

1. run uvotimgrism on a given level 2 grism image file

e uvotimgrism infile=sw123456789ugv fits

SEE ALSO

uvotevgrism

LAST MODIFIED

July 19, 2007

5.17 UVOTIMSUM

NAME

uvotimsum - sum UVOT sky images or exposure maps

USAGE

uvotimsum infile=<filename> outfile=<filename> method=<string> pixsize=<float> expmap=<filename>
exclude=<string> maskfile=<filename> weightfile=<filename> clobber=<boolean> history=<boolean>
cleanup=<boolean> chatter=<integer>

DESCRIPTION

t is sometimes desirable to sum UVOT exposures to improve the signal-to-noise, or to detect faint
sources. This tool simplifies summing a multiple extension FITS image file. It determines the
range on the sky of the input images, checks that the input image filters match and calculates time
related keywords.

The input exposures are assumed to be in SKY coordinates. No attempt is made to align
individual exposures to a common frame of reference. Use uvotskycorr to do this. The output
pixel size is set to ”pixsize” degrees. If "pixsize” is less than or equal to zero then the output pixel

130
size is equal to size of the largest input pixel. The user can exclude exposures using the ”exclude”
keyword.

Two rebinning methods are available. GRID assumes that all images are oriented in the same
direction. This means that image rotations are ignored during image rebinning. XIMAGE makes
no assumptions about image rotation. Both rotation and translation are performed during the
rebinning.

This tool will sum exposures with different frame times. If this happens the UVOT photometry
tools will not return accurate photometry of sources in the summed images

The primary output HDU contains keywords taken from the primary input HDU. The first
extension of the output contains the summed image.

PARAMETERS
infile [filename]
e FITS input image(s). The input extensions should have UVOT image keywords.
outfile [filename]
e Name of output file.
(method = XIMAGE—GRID) [string]
e Summing tool.
(pixsize = 0) [real, deg]

e Output pixel size. If no positive number is specified (the default), the largest input pixel size
is used.

(expmap = no) [boolean]

e Sum as exposure maps? Changing the size of pixels does not affect exposure times, but does
affect photon counts.

(exclude = DEFAULT) [string]

e Comma delimited list of HDU names or numbers (or numbered ranges) to exclude from the
sum. See the help file on filenames for a detailed description of specifying input extensions
(section B.2).

The special value ASPCORR: NONE can be used to exclude extensions that do not have the
ASPCORR keyword. The special value DUPEXPID can be used to exclude all but the largest of in-
put HDUs sharing the same EXPID- this avoids including IMAGE&EVENT mode exposures twice
in the sum. The special value DEFAULT is treated as exclude=ASPCORR: NONE,DUPEXPID.

(maskfile = NONE) [string]

Swift UVOT Software Guide 131

e A FITS file containing one mask per extension matching the extensions in the ”input” file.
The mask file can be created by running uvotexpmap with the "maskfile” parameter. The
mask uses ”1”s to indicate a pixel to be included in the summed image and ”0”s for pixels
to be excluded.

(clobber = no) [boolean]

e Overwrite existing output file?
(clobber = no) [boolean]

e Overwrite existing output file?
(history = yes) [boolean]

e Write parameters to history keywords?
(clobber = no) [boolean]

e Overwrite existing output file?
(cleanup = yes) [boolean]

e Remove temporary files?
(chatter = 3) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

1. Run uvotimsum specifying input file and output pixel size, overwriting the output file (which
will be prompted for) if necessary

e uvotimsum infile=swuv.img pixsize=0.0001 clobber=yes

2. Run uvotimsum excluding HDU 3, the HDU named RALPH, and HDUs 6-14 from the
output sum

e uvotimsum exclude=3,RALPH,6-14
3. Run uvotimsum to produce an exposure map corresponding to the output of example 2
e uvotimsum infile=swuv_ex.img expmap=yes exclude=3,RALPH,6-14

4. Run uvotimsum with a weightfile Say we have an image file with two extensions and want the
sum of 2.5 times the first extension and 0.5 times the second extension. Create the file weights.txt
with contents

e 1: 252: 0.5
and issue the command

e uvotimsum infile=swuv_ex.img weightfile=weights.txt

132

SEE ALSO

farith, performs simple arithmetic operations on two images
uvotexpmap, creates UVOT exposure maps and mask files
ximage, has the ability to interactively sum images

LAST MODIFIED

August 2007

5.18 UVOTLSS

NAME

uvotlss - calculate large scale sensitivity corrections

USAGE

uvotlss infile=<filename> Issfile=<filename> x=<float> y=<float> input=<string> history=<boolean>
chatter=<integer> DESCRIPTION

This tool calculates the large scale sensitivity correction (LSS) factor for a position, or updates
and applies the LSS correction factors in a table created by uvotsource.

PARAMETERS

Issfile [filename] Name of large scale sensitivity file or CALDB.
input [TABLE—RADEC—IMAGE—DET—MM]

e Input mode. This determines how the infile, x, and y parameters are processed.

infile [filename]

e If input=TABLE, infile must give a FITS table created by uvotsource with DETX, DETY,
AP_COI_SRC_RATE, AP_COI_.SRC_RATE_ERR columns. If input=RADEC or input=IMAGE,
infile must give a FITS sky image which contains WCS keywords for the sky coordinates and
WCS D keywords for detector coordinates.

If 1ssfile=CALDB, infile is used to parameterize the CALDB lookup.

X [real]

e This gives the X coordinate for the input mode. If input=RADEC, x is the source R.A. [deg].
If input=IMAGE, x is the X FITS coordinate in the infile sky image [pixel]. If input=MM,
x is the X coordinate in the UVOT TELDEF DET system [mm]|. If input=DET, x is the X
coordinate in the UVOT TELDEF DET system [pixel].

y [real]

Swift UVOT Software Guide 133

e This gives the Y coordinate for the input mode. See the x parameter for a description of the
coordinate system and units for each value of the input parameter.

(history = yes) [boolean]
e Write parameter history? The parameter history is only written for input=TABLE.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES
1. This example illustrates running uvotlss specifying the table extension to process:

e uvotlss input=TABLE infile=table.fits|2]

2. This example provides a sky image and specifies the source sky position on the command
line:

e uvotlss input=RADEC infile=sky.fits[vv1230912361] x=243.435 y=-23.54

SEE ALSO

uvotsource

LAST MODIFIED

October 2007

5.19 UVOTMAG

NAME

uvotmag - obsolete tool

USAGE

Do not use.

DESCRIPTION

uvotmag is obsolete. Its functionality has been reassigned to uvotcoincidence and uvotflux.

134

PARAMETERS
EXAMPLES
SEE ALSO

uvotcoincidence, uvotflux

LAST MODIFIED

May 31, 2007

5.20 UVOTMAGHIST

NAME

uvotmaghist - make a light curve from the exposures in a UVOT image file

USAGE

uvotmaghist infile=<filename> outfile=<filename> plotfile=<filename> zerofile=<filename> coinfile=<filename
psffile=<filename> syserr=<boolean> timezero=<float>: ra=<float> dec=<float> srcas=<float>
bkgas=<float> srcreg=<filename> bkgreg=<filename> exclude=<string> frametime=<float>
nsigma=<float> method=<string> logtime=<boolean> plotcol=<string> clobber=<boolean>
cleanup=<boolean> history=<boolean> chatter=<integer>

DESCRIPTION

This tool makes a history of one of the quantities computed by uvotmaghist (usually magnitude)
of a source versus time. It does this by doing photometry on a source in every exposure in the
input UVOT SKY image file (sw*.img). This software calls uvotsource to do photometry. The
output quantites are the same as for uvotsource. An optional plot is produced that shows the light
curve of the source. The ”plotcol” parameter controls which output column to plot as a function
of time. See the fhelp for uvotsource for details on how the photometry is done, on how to use the
photometry control keywords, and on the output information.

The ”timezero” parameter is used to specify the start time for output time column. If it is
set to 70” then the TRIGTIME keyword, if present in the input FITS file header, is used as the
start time. This option is intended to produce light curves relative to the BAT trigger time of a
gamma-ray burst. ”Timezero” is given in MET. The ”logtime” keyword controls whether or not
the time axis of the plot is in log or linear units.

The source and background regions can be specified as standard ftools or ds9 region files (via
the "srcreg” and ”bkgreg” parameters), or as coordinates (in decimal degrees)

Exposures can be excluded using the "exclude” keyword. See uvotimsum for details. The
errors in the magnitudes and the flux densities are the statistical errors based on Poisson errors
in the count rates. Systematic errors due to uncertainties in the photometric zero points and flux
conversion factors can be included by setting ”syserr” to "yes”.

Swift UVOT Software Guide 135

PARAMETERS

infile [filename]

e Input image file. All extensions (not the primary HDU) are analyzed, except those specifed
by the <exclude> keyword.

outfile [filename]

e Output magnitude history file name. See clobber parameter.
plotfile [filename]

e Output GIF plot of magnitude history or NONE.

zerofile [filename]

e Name of zero points file or CALDB.

coinfile [filename]

e Name of coincidence loss correction file or CALDB.

psffile [filename]

e Name of point-spread function file or CALDB.

(syserr = NO) [boolean]

e Set to YES to include systematic errors in the output error calculation.
(timezero = 0) [real]

e The time at the left edge of the horizontal (time) axis in the magnitude history plot. The
special value 0 results in the time being determined based on the input. If the input contains
the TRIGTIME keyword, its value is used, otherwise, the earliest start time of the processed
images is used.

(ra [real])

e Source RA [deg]. See the examples for specifying regions.
(dec [real])

e Source DEC [deg]. See the examples for specifying regions.

(srcas = 3) [real]

136

e Source region radius [arcsec]. See the examples for specifying regions.

(bkgas = 3) [real]

e Background region radius [arcsec]. See the examples for specifying regions.

(srcreg = NONE) [string]

e Source region file or NONE. See the examples for specifying regions.

(bkgreg = NONE) [string]

e Background region file or NONE. See the examples for specifying regions.

(timezero = 0) [real]

e The time at the left edge of the horizontal (time) axis in the magnitude history plot. The
special value 0 results in the time being determined based on the input. If the input contains

the TRIGTIME keyword, its value is used, otherwise, the earliest start time of the processed
images is used.

(exclude = NONE) [string]

e A comma-delimited list of HDUs to exclude from processing. Elements of the list can be
HDU names or (0-based) numbers.

(frametime = 0.0110329) [real]

e Frame time [s]. Used for calculating LOW_LIM_RATE and passed to uvotflux.
(nsigma = 3.0) [real]

e Required significance of faintest source.

(logtime = yes) [boolean]

e Whether to plot the time axis using log or linear scale.
(clobber = no) [boolean]

e Overwrite output file if it exists?

(cleanup = yes) [boolean]

e Remove temporary files?

(history = yes) [boolean]

e Write parameter history?

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

Swift UVOT Software Guide 137

EXAMPLES

1. This example illustrates running uvotmaghist specifying the input and output file names and
source position on the command line.

e uvotmaghist infile=images.fits outfile=maghist.fits ra=286.4 dec=-8.16

2. This example specifies source and background region files:

e uvotmaghist infile=images.fits srcreg=source.reg bkgreg=back.reg

3. This example specifies how to include systematic errors and exclude extension 3.

e uvotmaghist infile=images.fits srcreg=source.reg bkgreg=back.reg syserr=YES exclude=3

4. This example specifies how to produce a plot with a linear time axis starting at 2007-06-
14'T'12:34:56.

e uvotmaghist infile=images.fits plotfile=lightcurve.gif srcreg=source.reg bkgreg=back.reg timezero=203517297
logtime=NO

SEE ALSO

uvotflux, uvotapercorr, uvotcoincidence, uvotsource, uvotimsum, uvotdetect

LAST MODIFIED

August 3 2007

5.21 UVOTMODMAP

NAME

uvotmodmap - correct images for modulo-8 spatial fixed-pattern noise

USAGE

uvotmodmap infile badpixfile outfile

DESCRIPTION

This tool takes an image file and matching quality image (bad pixel map) in order to correct the
modulo-8 spatial fixed pattern noise. The tool outputs a corrected image file and optionally a map
of the corrections. The quality image is expected to match the image file in number of extensions
and dimensions of each image.

The final stage of the UVOT detector is a 256 by 256 pixel CCD. Individual events are centroided
to one eighth of a physical CCD detector pixel by the onboard electronics. However, the centroiding

138
algorithm distributes the photons unevenly within each physical CCD pixel, corresponding to 8 by
8 image pixels or a single mod-8 tile.

The tool first steps a box of size ncell across the image, and within the box a sigma clipping
algorithm is used to mask out sources more significant than nsig and any surrounding pixels affected
by coincidence loss. Then the average of all remaining mod-8 tiles within a sliding box of size ncell
is computed and used to produce the mod-8 map.

The algorithm resamples the image to give each image pixel equal area within a mod-8 tile. For
each mod-8 tile in the mod-8 map, the pixel x-boundaries are determined such that within each
row of pixels the counts/unit pixel area is the same for each pixel. This is then taken as the spatial
layout of the pixel x-boundaries in the same mod-8 tile in the science image and the science image
is resampled to a grid of evenly spaced pixels. Then the y-boundaries of each row are determined
such that each row has the same number of counts/unit pixel area. This is then taken as the spatial
layout of pixel y-boundaries in the same mod-8 tile in the science image, which is then resampled
to a grid of evenly spaced rows. The same procedure is then repeated with the order reversed
(remapping in y followed by remapping in x) and the final corrected science image is made from an
average of the two resamplings. This is to ensure that the redistribution of photons is performed
in an identical fashion in x and y.

PARAMETERS

infile [filename]
e Input FITS file containing images to which modulo-8 correctioed will be applied.
badpixfile [filenamel]

e Quality image file (FITS) containing bad pixel maps corresponding to each of the images
found in infile. See uvotbadpix.

outfile [filename]

e Output image file name. The output file will have the same structure as the input file.
mod8file [filename]

e Mod8Map output image file name.

mod8product [boolean]

e If mod8product=yes, then write out Mod8Map. If mod8product=no, then do not write out
Mod8Map.

nsig [integer]
e Significance level for sigma clipping. Suggested value 3.

ncell [integer]

Swift UVOT Software Guide 139

e Size of sliding box in units of 8 pixels. Suggested value 16.
subimage [boolean|

e Apply correction to only part of the input image? The xmin/xmax/ymin/ymax parameters
are only prompted for if subimage=yes.

xmin [integer]
e Sub-image X min.
xmax [integer]
e Sub-image X max.
ymin [integer]
e Sub-image Y min.

ymax [integer] Sub-image Y max.

(clobber = no) [boolean]
e Control whether existing output files will be overwritten.
(history = yes) [boolean]

e If history=YES, then a set of HISTORY keywords will be written to the header of the output
file to record the task parameters.

(chatter = 1) [integer| <1-5>

e Standard HEAdas chatter parameter.

EXAMPLES

Here is a typical uvotmodmap run:
e uvotmodmap infile=input.fits badpixfile=quality.fits outfile=output.fits

Alternatively, you could just run uvotmodmap and be prompted for the inputs.

SEE ALSO

uvotbadpix

140

LAST MODIFIED

June 2007

5.22 UVOTPICT

NAME

uvotpict - create a finding chart image

USAGE

uvotpict

DESCRIPTION

uvotpict retrieves an image of a particular region of the sky then annotates it with information
from a source list.

The input source file must have the uvotstarid output source list format.

PARAMETERS

infile [filename]
e Name of the FITS file containing the source list.
outfile [filename]
e Name for output file.
ra [real, degrees|
e Right ascension at center of image.
dec [real, degrees]
e Declination at center of image.
(extname = SOURCES) [string]
e Name of the source list extension.
(outformat = png) [png—jpeg—Ifits—tiff—ppm]

e QOutput graphics format.

Swift UVOT Software Guide 141

(skyserver = skys.gsfc.nasa.gov) [string]

e Name of Skyview server.

(skysurvey = Digitized Sky Survey) [string]

e Name of Skyview survey.

showcat [boolean]

e Indicate catalog matches?

cleanup [boolean]

e Remove temporary files?

clobber [boolean]

e Overwrite existing output files?

(chatter = 1) [integer, O - 5]

e Standard HEAdas verbosity parameter.
EXAMPLES

1. Execute uvotpict providing the source list, and center for the image

e uvotpict infile=sources.fits ra=161.41 dec=-1.4

SEE ALSO

uvottfc. uvotstarid.

LAST MODIFIED

April 2004

5.23 UVOTPRODUCT

NAME

uvotproduct - create level III science products from Level II UVOT data.

USAGE

uvotproduct infile=<filename> outfile=<filename> plotfile=<filename> srcreg=<filename> bkgreg=<filename>
batpos=<string> xrtpos=<string> uvotpos=<string> groundpos=<string> reportfile=<filename>

142

DESCRIPTION

This tool creates level III science products from Level II sky image files. It is meant primarily for
use in the Swift pipeline, but could also be of some use for initial data inspection by, e.g., Swift
Burst Advocates. The batpos, xrtpos, uvotpos, and groundpos parameters all use the same scheme
for specifying a position/error circle. They can either be a region file containing a single included
fk5 circle, for example fk5;circle(280.32,-23.5,5”) or a string of the form ra+dec~error, for example
280.32-23.5~5 would specify the same error circle as the preceding region file.

PARAMETERS

infile [filename]

e A comma separated list of files or @filename to load the file names from a file containing one
file name per line.

outfile [filename]
e Name for output magnitude history.
plotfile [filename]

e Name for output magnitude history plot or NONE. The extension of plotfile can be used to
control the PGPLOT device.

srcreg [filename]

e Source region file.

bkgreg [filename]

e Background region file.

batpos [string]

e A region file name or a string ra-+dec~error giving the BAT position/error circle.
xrtpos [string]

e A region file name or a string ra-+dec~error giving the XRT position/error circle.
uvotpos [string]

e A region file name or a string ra-+dec~error giving the UVOT position/error circle.

groundpos [string]

Swift UVOT Software Guide 143

e A region file name or a string ra+dec~error giving a ground position/error circle.
reportfile [filename]

e Name for output report or NONE.

(plotmag = yes) [boolean]

e If true, plotfile will use magnitudes; otherwise rates.

(feprefix = NONE) [boolean]

e Finding chart prefix or NONE. If this parameter is not NONE, then two jpg images will be
produced starting with fcprefix. One will be an image from a DSS server. The other will be
based on the earliest available V or WHITE exposure. The size of these images will depend
on what positions are available. If only a BAT position is available, they will be 6’ square;
otherwise they will be 2’ square.

(clobber = no) [boolean]

e Standard HEAdas clobber parameter; controls whether the output files are permitted to
overwrite existing files.

(chatter = 1) [enumerated integer]
e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task.

EXAMPLES

The following examples illustrate running uvotproduct

1. run uvotproduct prompting for all mandatory options:
e uvotproduct
2. run uvotproduct specifying filenames and source positions on command line:

e uvotproduct infile=Q@img.lis outfile=maghist.fits plotfile=maghist.cps batpos=23.33-41.83~120
xrtpos=23.334-41.839~5.0 uvotpos=23.334743-41.839381~1.0 reportfile=summary.txt chat-
ter=>5

SEE ALSO

uvotmag, uvotmaghist

LAST MODIFIED

November 1, 2007

144
5.24 UVOTRMFGEN

NAME

uvotrmfgen - create a UVOT response matrix

USAGE

uvotrmfgen spectrum=<filename> areafile=<filename> outfile=<filename>

DESCRIPTION

This tool creates a UVOT response matrix given an input spectrum and effective area file. The
output response matrix is OGIP compliant and appropriate for use with XSpec.

PARAMETERS

spectrum [filename]
e Wavelength scale extension (of uvotimgrism output).
(areafile=CALDB) [string]
e Effective area calibration file.
(Isffile = CALDB) [string]
e Line Spread Function calibration file.
outfile [filename]
e UVOT redistribution matrix (RMF) file.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter. A range of 0 to 5 is enforced by the min and max fields
in the parameter file.

(clobber = no) [boolean]

e Standard HEAdas clobber parameter.

EXAMPLES

The following example illustrates running uvotrmfgen

1. rrun uvotrmfgen specifying spectrum and output files on the command line

e uvotrmfgen spectrum=uvotimgrism.pha outfile=rmf.fits

Swift UVOT Software Guide 145

SEE ALSO

uvotimgrism

LAST MODIFIED

July 2007

5.25 UVOTSCREEN
NAME

uvotscreen - filter a UVOT event list

USAGE

uvotscreen infile=<filename> attorbfile=<filename> outfile=<filename> aoexpr=<filtering expression>

DESCRIPTION

This tool screens UVOT level 1 event files. It has an optional preprocessing step that sets the
QUALITY flags for intrinsically bad pixels. The output file contains the filtered events table and
GTT extensions corresponding to each input GTT extension intersected with the GTTs of the filtering
expression applied to the orbital/attitude quantities.

PARAMETERS

infile [filename]
e UVOT level 1 events file (see SSC UVOT Data Handbook).
outfile [filename]
e UVOT level 2 events file (see SSC UVOT Data Handbook).
attorbfile [filename]
e Orbit and attitude quantities. This file is produced by prefilter.
badpixfile [filename or NONE]

e Bad pixel list or NONE. If not NONE, used to update the QUALITY flags for hot, cold,
dead, flickering bad pixels.

aoexpr [string]

e Orbit/attitude filtering expression. Passed to maketime.

146

evexpr [string]

e Event filtering expression. Applied to EVENT table.
(cleanup = yes) [boolean]

e (Clean up temporary files?

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter. A range of 0 to 5 is enforced by the min and max fields
in the parameter file.

(clobber = no) [boolean]
e Standard HEAdas clobber parameter.
(history = yes) [boolean]

e Standard HEAdas history parameter.

EXAMPLES

The following example illustrates running uvotscreen

1. run uvotscreen specifying input and output event files, orbit/attitude file, and filtering
expression on command line

e uvotscreen infile=unfiltered.fits attorbfile=prefilter.fits \

— outfile=filtered.fits aoexpr=SAA FLAG.eq.0.and.SUN_ANGLE.gt.15

SEE ALSO

prefilter, maketime, extractor

LAST MODIFIED

May 2004

5.26 UVOTSEQUENCE

NAME

uvotsequence - List and visualize UVOT observing sequences

Swift UVOT Software Guide 147

USAGE

uvotsequence imglist=<filename> attfile=<filename> trigtime=<float> plotseq=<boolean> chatter=<enumerate
integer>

DESCRIPTION

Given an ascii list of the full or relative paths and names of a series of UVOT FITS image files,
and a suitable attitude file, this tool will determine the times of each Swift snapshot and map each
image to to a particular snapshot. Results are provided as standard output. Optionally, the results
may be plotted.

PARAMETERS
imglist [filename]

e An ascii list containing paths and names of UVOT FITS image files, e.g.:

/Volumes/datal/00111529000/sw00111529000ubb_sk.img
/Volumes/datal /00111529000/sw00111529000um2_sk.img
/Volumes/datal/00111529000/sw00111529000uuu_sk.img
/Volumes/datal/00111529000/sw00111529000uvv_sk.img
/Volumes/datal/00111529000/sw00111529000uw1_sk.img
/Volumes/datal/00111529000/sw00111529000uw?2_sk.img

attfile [filename]
e Name of the corrsponding swift atttitue FITS table.
trigtime [float]

e Time of the BAT trigger in Mission Elapsed Time (MET). This is seconds since 2001 Jan 1,
00:00 UT, and can be obtained directly from BAT products.

(plotseq = yes) [boolean]
e Whether or not to plot results.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task.

EXAMPLES

The following examples illustrate running uvotsequence

1. run uvotsequence prompting for all mandatory options:

148

e uvotsource
2. run uvotsequence specifying all arguments:

e uvotsource imglist=img.lis attfile=auxil/sw00111529000sat.fits trigtime=132853476.48 plot-
seq=yes chatter=1

SEE ALSO
LAST MODIFIED

April 13, 2005

5.27 UVOTSHIFTPHA

NAME

uvotshiftpha - shift a UVOT PHA in time assuming a power-law decay

USAGE

uvotshiftpha infile=<filename> intime=<float> outfile=<filename> outtime=<float> alpha=<float>

DESCRIPTION

In order to construct spectral energy distributions for use in xspec the .pha files for each UVOT
filter must be adjusted to a common time. This routine adjusts the source count rate in a .pha file
from ”intime” to ”outtime”. It assumes that the count rate from the source is changing as a power
law

o £(t) = £(t0)*(t/t0){}alpha.

The count rate from the source is shifted to ”outime” while the background count rate remains
the same. "Intime” and ”outtime” are specified in arbitrary units, but both times must be in
the same units. The times are relative to some arbitrary reference time.

The routine works for .pha files with count rates and .pha files with total counts.

Be aware that this routine assumes a particular form for the light curve (i.e., a power law) and
will produce invalid results if the light curve does not behave in this way.

PARAMETERS

infile [filename]
e Input .pha file for some UVOT lenticular filter.

intime [real]

Swift UVOT Software Guide 149

e Time since BAT trigger of input file.
outfile [filename]

e Output .pha file.

outtime [real]

e Time since BAT trigger to shift to.
alpha [real]

e Power-law index alpha for the formula f(t) = £(t0)*(t /tO){A}alpha
(cleanup = yes) [boolean]

e Remove intermediate files?

(history = yes) [boolean]

e Write history keywords?

(clobber = no) [boolean]

e Overwrite existing files?

(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

The following examples illustrate running uvotshiftpha 1. Run uvotshiftpha to shift the PHA from
1234 s after the BAT trigger to 2345 s after the bat trigger assuming a power law light curve with
a slope of -1.

e uvotshiftpha infile=v.pha intime=1234 outfile=vshift.pha outtime=2345 alpha=-1.

SEE ALSO

uvot2pha, xspec

LAST MODIFIED

February 2007

150
5.28 UVOTSKYCORR

NAME

uvotskycorr - attempt to aspect correct UVOT sky images

USAGE

uvotskycorr skyfile=<filename>

DESCRIPTION

This tool iterates over UVOT image files attempting to determine or applying aspect corrections.
PARAMETERS
what [string] (ID—SKY)

e Whether to find corrections (what=ID) or apply corrections (what=SKY).

skyfile [filename]

e Name of input image file(s). This can be a comma-delimited list of file names or @<file>
where <file> contains the names of the files to process, one per line.

corrfile [filename]

e Input corrections file for what=SKY.

attfile [filename]

e Input attitude file.

outfile [filename]

e Output file name. For what=ID, the aspect corrections will be written to this file.
(starid = NONE) [string]

e Parameters to pass to star identification.

(catspec = usnobl.spec) [filename]

e Catalog descriptor file(s). A comma-delimited list allows specifying multiple catalog descrip-
tors which will be used left to right.

(cleanup = yes) [boolean]

Swift UVOT Software Guide 151

e Remove intermediate files?
(history = yes) [boolean]

e Write history keywords?
(clobber = no) [boolean]

e Overwrite existing files?
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter.

EXAMPLES

The following examples illustrate running uvotskycorr 1. run uvotskycorr to find corrections

e uvotskycorr what=ID infile=usk.img

SEE ALSO

tristarid aspcorr catspec

LAST MODIFIED

November 2005

5.29 UVOTSOURCE

NAME

uvotsource - Instrumental source magnitude derived from image

USAGE

uvotsource image=<filename> srcreg=<filename> bkgreg=<filename> sigma=<float> zerofile=<filename>
coinfile=<filename> psffile=<filename> Issfile=<filename> syserr=<boolean> frametime=<float>
apercorr=<string> output=<string> outfile=<filename> cleanup=<boolean> clobber=<boolean>
chatter=<integer>

DESCRIPTION

This tool performs aperture photometry on a single source in a UVOT SKY exposure (sw*.img+extension).
It returns information about the count rate from the source, the source’s magnitude, and flux den-
sity information.

152

The user specifies the source extraction region and background region using region files that
are in the standard ftool or ds9 format. Region files must use the fk5 coordinate system. The RA
and Dec coordinates can be specified in either decimal degrees or in sexagisemal format.

If ”srcreg” is set to NONE then the tool will compute the ”sigma’-sigma limiting magnitude
for the exposure. The ”sigma” parameter tells the tool what level of significance to use to compute
the background limit. Photometric and coincidence loss calibration data are read from the files
specified by ”zerofile” and ” coinfile” respectively. If a large-scale sensitivity map is available it can
be specified using "lssfile” If ”apercorr” is set to CURVEOFGROWTH the PSF data is read from
"psffile”. The ”psfhile” is not used if "apercorr=NONE” The special value CALDB tells the tool
to obtain calibration data from the Swift/UVOT calibration database. The user must have the
$CALDB environment variable correctly set to use this option. If ”frametime” is set to DEFAULT
the frame time is read from the image header. In some cases this keyword may not be present in
the FITS file, so a value can be specified by the user.

There is currently one option for doing photometry. The tool does simple aperture photometry.
All of the counts in the ”srcreg” region are summed and divided by the exposure time to produce
a count rate. The background count rate is subtracted and the magnitude is computed from the
coincidence-corrected net count rate. Photometry is done as follows.

Extract the raw counts in three apertures. The user-supplied source region, "srcreg”. The
source aperture may be any size or shape that can be described in a valid region file. The source
region should be selected to maximize the science return. In general faint point sources should
use circular apertures with a radius that maximizes the signal-to-noise ratio in the aperture. This
is typically about 3 arcsec. For bright sources the standard photometric aperture (defined in
"zerofile”) is usually preferred. The source aperture should be chosen to minimize contamination
from other sources.

The user-supplied background region, "bkgreg”. The background region may be any size or
shape that can be described in a valid region file. It should be chosen to have the same background
properties as the source region. It should be free of contaminating sources and large enough so
that the mean pixel value is not biased by Poisson statistics. The background value is computed
by taking the mean of the pixel values in the background region.

A coincidence-loss correction aperture, defined in ”coinfile” This region is a circular aperture
with an radius defined by the COIAPT column in the COINCIDENCE extension of the ”coinfile”
file. It is centred on the centre of the "srcreg” region. This is the region that is used to compute
the coincidence loss correction factor.

Counts are extracted from the input exposure by the XImage ”counts” command. See the
XImage User’s Guide for details on how counts are extracted.

Calculate the coincidence loss correction factor from the count rate in the coincidence-loss cor-
rection aperture. See the fhelp for uvotcoincidence for details about coincidence-loss corrections.\

Apply the coincidence-loss factor to the raw count rate in the source aperture.

Scale the background count rate to the area of the coincidence-loss aperture and then apply the
coincidence loss factor.

Scale the coincidence-corrected background rate to the area of the user-supplied source aperture
and subtract this from the coincidence-corrected rate in the source aperture to get the coincidence-
corrected net count rate from the source.

Apply the photometric calibrations from ”zerofile” to the coincidence-corrected net count rate
from the source to obtain the magnitude and flux density information described below. Note that
the photometric calibrations assume that the source region is the same as the standard photometric

Swift UVOT Software Guide 153

aperture, so the values returned will not be on the standard UVOT photometric system if some
other aperture region is used. See the description of the CURVEOFGROWTH aperture correction
for details on how to correct for this.

If apercorr=NONE” then no aperture corrections are performed. In order to perform aper-
ture corrections to convert the measured magnitude to the standard UVOT system use ”aper-
corr=CURVEOFGROWTH”. This does aperture photometry with one additional step. Uvot-
source will only return magnitudes and flux densities that are on the standard UVOT photometric
system if the source region is the same as the standard photometric aperture defined in ”zerofile”.
To bring these magnitudes onto the standard system use ”apercorr=CURVEOFGROWTH”, which
computes an aperture correction to the coincidence-loss corrected net count rate from the source.
See the fthelp for uvotapercorr for details on aperture corrections and how they are applied. Be
aware that ”apercorr=CURVEOFGROWTH” assumes that the source is a point source.

The aperture correction applied by CURVEOFGROWTH is approximate and is intended for
preliminary data analysis. It does not take into account changes in the PSF due to tempera-
ture or count rate variations (see the uvotapercorr fhelp). For high-precision photometry ”aper-
corr=NONE”should be used, and aperture corrections that take these factors into account should
be performed by the user.

After the optional aperture correction has been applied there is an optional correction for
variations in the large-scale sensitivity of the detector. This is not done if ”lssfile=NONE”. See
the fhelp page for uvotlss for more details.

Uvotsource returns the following information:

Source Information

e The position is the position specified in the "srcreg” region file. The exposure time is the
value of the EXPOSURE keyword.

Magnitude Information

e The magnitude of the source, its one-sigma statistical error, and the significance of the de-
tection. Background is the magnitude of the sky. Background-limit is the ”sigma”-sigma
limiting magnitude of the exposure. Coincidence-limit is the magnitude corresponding to a
count rate of one count per frame time.

Flux Information

e The flux density information is given in cgs units of flux per Angstrom unit. Flux densities
are computed from flux conversion factors in ”zerofile” assuming a mean GRB spectrum.
They do not reflect the actual spectrum of the source.

Coincidence Corrected Rate Information

e This is the count rate of the source after all corrections have been applied. This includes aper-
ture corrections if the "apercorr=CURVEOFGROWTH” was used and large-scale sensitivity
corrections if a large-scale sensitivity map was specified.

Raw Rate Information

154

e This is the raw count rate from the source after subtracting the background count rate, but
before applying coincidence, aperture, or large-scale sensitivity corrections.

Flux mJy

e The flux density information is given in milliJansky. Flux densities are computed from flux
conversion factors in ”zerofile” assuming a mean GRB spectrum. They do not reflect the
actual spectrum of the source.

The output FITS file contains the following columns.
MET

e The mission elapsed time (MET), in seconds since the reference time, of the observation.
The point in the exposure that MET refers to is specified by the TIMEPIXR keyword in the
header of ”outfile”

EXTNAME

e The name of the FITS extension that this source is in.
TSTART

e The MET start time of the exposure

TSTOP

e The MET stop time of the exposure.

EXPOSURE Please see <http://swift/gsfc.nasa.gov/docs/swift /analysis/uvot_digest.html> for
details about how the UVOT exposure time keywords are used. The EXPOSURE column contains
the total exposure time with the following corrections applied.

The time that the filter wheel was in BLOCKED is subtracted.

The time lost due to the on-board shift-and-add algorithm is subtracted.

The time lost because the DPU stalled due to high count rates is subtracted.

The dead time is corrected for.

EXPOSURE represents the actual time that the detector was was detecting photons.
TELAPSE

TSTOP - START

SRC_AREA

e The area of the user-supplied source extraction region in square arcseconds.
BKG_AREA

e The area of the user-supplied background region in square arcseconds.

Swift UVOT Software Guide 155

PLATE_SCALE

e The plate scale, in arcsec per pixel, of the image.
RAW_TOT_CNTS

e The total measured counts in the source region.
RAW_TOT_CNTS_ERR

e The one-sigma error in RAW_TOT_CNTS. This error is calculated using binomial statistics
since the number of counts that can be measured is limited by the number of frames in the
exposure. The binomial error approaches the Poisson error in the limit of small count rates.

RAW_BKG_CNTS
e The total measured counts in the background region.

RAW_BKG_CNTS_ERR

e The one-sigma error in RAW_BKG_CNTS. This error is calculated using binomial statistics
since the number of counts that can be measured is limited by the number of frames in the
exposure. The binomial error approaches the Poisson error in the limit of small count rates.

RAW_STD_CNTS
e The total measured counts in the coincidence loss region.

RAW_STD_CNTS_ERR

e The one-sigma error in RAW_STD_CNTS. This error is calculated using binomial statistics
since the number of counts that can be measured is limited by the number of frames in the
exposure. The binomial error approaches the Poisson error in the limit of small count rates.

RAW_TOT_RATE
e The total measured count rate in the source region.
RAW_TOT_RATE_ERR

e The one-sigma error in RAW_TOT_RATE. RAW_TOT_RATE_ERR = RAW_TOT_CNTS_ERR
/ EXPOSURE.

RAW_BKG_RATE

e The total measured count rate in the background region.

156

RAW_BKG_RATE_ERR

e The one-sigma error in RAW_BKG_RATE. RAW_BKG_RATE_ERR = RAW_BKG_CNTS_ERR
/ EXPOSURE.

RAW_STD_RATE
e The total measured count rate in the coincidence loss region.
RAW_STD_RATE_ERR

e The one-sigma error in RAW_STD_RATE. RAW_STD_RATE_ERR = RAW_STD_CNTS_ERR
/ EXPOSURE.

COLSTD_FACTOR

e The coincidence-loss correction factor for the coincidence-loss region. This value is the mul-
tiplicative correction that is applied to raw count rate (after correcting to the STD_AREA)
to get the coincidence-corrected count rate.

COISTD_FACTOR_ERR
e The one-sigma error in COI_.STD_FACTOR.
COI_. BKG_FACTOR

e The coincidence-loss correction factor for the background region. This value is the multi-
plicative correction that is applied to the background count rate (after correcting to the
STD_AREA) to get the coincidence-corrected background count rate.

COI.LBKG_FACTOR_ERR

e The one-sigma error in COI_. BKG_FACTOR.

COLTOT_RATE

e The coincidence-loss correction count rate in the source region.
COIL.TOT_RATE_ERR

e The one-sigma error in COLL.TOT_RATE. COI.TOT_RATE_ERR = COI.STD_FACTOR *
RAW_TOT_RATE_ERR.

COI.LBKG_RATE

e The coincidence-loss correction count rate in the background region.

Swift UVOT Software Guide 157

COI.LBKG_RATE_ERR

e The one-sigma error in COI. BKG_RATE. COI.BKG_RATE_ERR = COLSTD_FACTOR *
RAW_BKG_RATE_ERR.

COISRC_RATE
e The coincidence-loss correction count rate from just the source.
COI_SRC_RATE_ERR

o The one-sigma error in COI.SRC_RATE. COL.TOT_RATE_ERR = sqrt(COL.TOT_RATE_ERR**2
- (COL.BKG_RATE_ERR*SRC_AREA)**2).

AP_FACTOR

e The aperture correction factor to be multiplied by COI.SRC_RATE. AP_FACTOR = 1.0 if
"apercorr=NONE” was selected.

AP_FACTOR_ERR

e The one-sigma error in AP_FACTOR. AP_.FACTOR_ERR = AP_.COI.SRC_RATE_ERR /
COISRC_RATE_ERR.

AP_COISRC_RATE
e The source count rate with coincidence-loss corrections and aperture corrections applied.
AP_COISRC_RATE_ERR

e The one-sigma error in AP_COI_.SRC_RATE. This error is computed as the quadratic sum
of COI.SRC_RATE_ERR and the systematic error in the shape of the point-spread function.
The systematic error in the shape of the point-spread function is currently assumed to be 5%.

LSS_FACTOR

e The large-scale sensitivity factor to be multiplied by AP_.COI_.SRC_RATE. LSS_FACTOR =
1.0 if no large-scale sensitivity map was specified.

LSS_RATE

e The source count rate with coincidence-loss corrections, aperture corrections, and large-scale
sensitivity corrections applied.

LSS_RATE_ERR

e The one-sigma error in LSS_RATE. This is computed by dividing AP_COI_.SRC_RATE_ERR
by LSS_FACTOR.

158

MAG

e The magnitude of the source in the UVOT system.
MAG_ERR

e The one-sigma error in MAG.

MAG_BKG

e The sky magnitude in the UVOT system.
MAG_BKG_ERR

e The one-sigma error in MAG_BKG

MAG_LIM

e The "sigma”-sigma limiting magnitude in the UVOT system.
MAG_LIM_SIG

e "sigma” for MAG_LIM.

MAG_COI_LIM

e The magnitude where the count rate is the inverse of the frame time.
FLUX_AA

e The flux density in erg/s/ cm{A}2 /Angstrom.
FLUX_AA_ERR

e The one-sigma error in FLUX_AA.

FLUX_AA_BKG

e The flux density of the sky in erg/s/ cm{A}2 /Angstrom.
FLUX_AA_BKG_ERR

e The one-sigma error in FLUX_AA_BKG.

FLUX_AA_LIM

Swift UVOT Software Guide 159

e The "sigma”-sigma limiting flux density in erg/s/ cm{A}Q /Angstrom.
FLUX_AA_COI_LIM

e The flux density where the count rate is the inverse of the frame time.
FLUX_HZ

e The flux density in milliJansky.

FLUX_HZ_ERR

e The one-sigma error in FLUX_HZ.

FLUX_HZ_BKG

e The flux density of the sky in milliJansky.

FLUX_HZ BKG_ERR

e The one-sigma error in FLUX_HZ_BKG.

FLUX_HZ_LIM

e The "sigma”-sigma limiting flux density in milliJansky.

FLUX_HZ_COI_LIM The flux density where the count rate is the inverse of the frame time.
The errors in the computed quantities are the 1-sigma statistical errors based on binomial statistics
in the count rates. The computed quantities are appended to the FITS file specified by ”outfile”.
If ”syserr=YES” then the systematic errors in the calibration are added in quadrature to the
statistical errors.

PARAMETERS
image [filename]
e Name of a FITS image (filename + extension).
srcreg [filename]
e Name of an ASCII source region file. Set to NONE to compute a limiting magnitude.
bkgreg [filename]
e Name of an ASCII background region file.

sigma [float]

160

e Level of detection significance over the mean background.

(zerofile = CALDB) [string]

e Zero points file. The special value CALDB indicates to read from the calibration data base.
(coinfile = CALDB) [string]

e Coincidence loss correction file. The special value CALDB indicates to read from the cali-
bration data base.

(Issfile = CALDB) [string]

e Large-scale sensitivity correction file. The special value CALDB indicates to read from the
calibration data base.

(psffile = CALDB) [string]

e Radial encircled energy function (PSF) file. This is only used if CURVEOFGROWTH is
specified. The special value CALDB indicates to read from the calibration data base.

(syserr = no) [boolean]
e Are systematic errors in the photometric calibration to be used in the error calculations. If

set to YES then systematic errors are added in quadrature to the statistical errors. If set to
NO then only statistical errors are returned.

(output = magnitude—flux—rate—raw—fluxj—ALL) [string]
e Output units. The options are instrumental filter magnitude, flux density in erg/s/ cm{A}Q /Angstrom,

corrected count rate in counts/s, raw count rate in counts/s, flux density in milliJanskys. ALL
indicate that all sets of units are output.

(frametime = DEFAULT) [float]

e The frame time, in seconds, for the exposure. If DEFAULT is specified then ”frametime” is
read from the image header.

(apercorr = NONE) [string]

e Aperture correction calculation algorithm. NONE or CURVEOFGROWTH. CURVEOF-
GROWN assumes a point source.

(output = magnitude—flux—rate—raw—fluxj—ALL) [string]

e Output units. The options are instrumental filter magnitude (mag), flux density in
erg/s/cm{A}Q/Angstrom (flux), corrected count rate in counts/s (rate), raw count rate in
counts/s (raw), flux density in milliJanskys (fluxj). The special value ALL indicate that all
sets of units are output.

Swift UVOT Software Guide 161

outfile [string]

e Output FITS file to append results to. Uvotsource will create a new file if the specified file
does not exist. The special value NONE indicates to not create an output file.

(cleanup = yes) [boolean]

e Standard HEAdas cleanup parameter; controls whether temporary files are removed at the
end of processing.

(clobber = no) [boolean]
e Standard HEAdas clobber parameter; controls whether to overwrite pre-existing output files.
(chatter = 1) [enumerated integer]

e Standard HEAdas chatter parameter (1-5) controlling the verbosity of the task.

EXAMPLES

The following examples illustrate running uvotsource

1. run uvotsource prompting for all mandatory options:

e uvotsource

2. run uvotsource specifying all arguments:

e uvotsource image=sky.img.gz+1 srcreg=src.reg bkgreg=bkg.reg sigma=5 zerofile=CALDB
coinfile=CALDB psffile=CALDB lIssfile=CALDB syserr=NO frametime=DEFAULT aper-
corr=NONE output=ALL outfile=sources.fits cleanup=YES clobber=NO chatter=1

3. run uvotsource with the curve of growth method and include systematic errors:

e uvotsource image=sky.img.gz+1 srcreg=src.reg bkgreg=bkg.reg sigma=>5 syserr=YES aper-
corr=CURVEOFGROWTH outfile=sources.fits

SEE ALSO

uvotflux, uvotmaghist, uvotapercorr, uvotcoincidence, uvotdetect

LAST MODIFIED

February 19, 2008

5.30 UVOTTFC

NAME

uvottfc - Swift UVOT TDRSS finding chart processing

162

USAGE

uvottfc infile=<swufc.fits>

DESCRIPTION

uvottfc reads a FITS-ified Swift UVOT TDRSS finding chart packet and generates a source list
and a sparse image.

PARAMETERS

infile [filename]
e Name of the input FITS TDRSS finding chart packet.
outfile [filename]
e Name of the output source list file.
sparsefile [filename]
e Name of the output sparse image of NONE.
teldeffile [filename]
e Name of the UVOT telescope definition file or CALDB.
badpixlist [filename]
e Name of the UVOT bad pixel list or CALDB.
(smooth = yes) [boolean]
e Whether or not to smooth the sparse image.
(exposure = DEFAULT) [string]

e Exposure duration estimate [s] or DEFAULT. The user can also override the default scale for
rate errors with exposure~scale. For example, 200~1 indicates no increase in rate errors (a
scale factor of 1) due to exposure uncertainty. The special string DEFAULT indicates to look
up the exposure duration in a table- the finding chart exposure duration has changed during
the mission.

(chatter = 1) [integer, 0 - 10]

e Controls the amount of informative text written to standard output. chatter values above 5
are probably only useful for testing.

Swift UVOT Software Guide 163

EXAMPLES

1. Execute uvottfc prompting the user for parameter values.

e uvottfc

2. Execute uvottfc overriding the default exposure time.

e uvottfc infile=swufc.fits exposure=300

SEE ALSO
LAST MODIFIED

October 2005

164

Chapter 6

Glossary

Provided below are list of common acronyms used in this document.

Table 4.1: List of acronyms

Acronym Big words

BAT Burst Alert Telescope

CALDB Calibration Database

FITS Flexible Image Transport System
GSFC Goddard Space Flight Center

HEASARC | High Energy Astrophysics Science Archive and Research Center

HEASoft High Energy Astrophysics Software

HK Housekeeping

NASA National Aeronautics and Space Administration
OGIP Office of Guest Investigator Programs

SDC Swift Data Center

SSC Swift Science Center

UuvoT Ultraviolet and Optical Telescope

XRT X-ray Telescope

165

166

Chapter 7

References

ds9: http://hea-www.harvard.edu/RD/ds9

HEAdas: http://heasarc.gsfc.nasa.gov/docs/software /lheasoft /headas/developers_guide
HEASARC: http://heasarc.gsfc.nasa.gov

HEASoft: http://heasarc.gsfc.nasa.gov/docs/software/lheasoft

sextractor: http://terapix.iap.fr/rubrique.php?id_rubrique=91

SDC: http://swift.gsfc.nasa.gov/sdc

SSC: http://swift.gsfc.nasa.gov

XIMAGE: http://heasarc.gsfc.nasa.gov/docs/software/lheasoft /xanadu/ximage/ximage.html
XRONOS: http://heasarc.gsfc.nasa.gov/docs/software/lheasoft /xanadu/xronos/xronos.html
XSPEC: http://heasarc.gsfc.nasa.gov/docs/software/lheasoft /xanadu/xspec/index.html

167

