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Real-time estimation of predictive #ring rate
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Abstract

Population vector analysis of multi-unit #ring code in the motor cortex provides a real-time
estimate of the desired voluntary movement direction and trajectory used in neuroprosthesis
for assisting paralyzed patients. Accurate estimation of instantaneous #ring rate in each epoch
used in the population vector calculation is crucial. Yet real-time instantaneous #ring rate is
often unknown until the next spike has #red. We have developed statistical based estimator for
predicting the waiting time for the next spike to #re. Instantaneous #ring rate is computed based
on the conditional probability density function (pdf), providing a better estimate of the intended
movement trajectory.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Population vector analysis of multi-unit #ring code in motor cortical neurons is a
measure developed by Georgopoulos et al. [1–4] to estimate movement direction and
trajectory based on a vector sum of the weighted-average #ring rate with respect to
the “preferred movement direction” of each individual neuron in the ensemble. This
measure is a powerful means to predict the movement trajectory to the intended target.
In other words, the spike-#ring rate of the motor cortical neurons can be decoded to
represent the intended voluntary arm movement using the population vector analysis.

Simultaneous recording of spike trains recorded from 64-channel electrodes implanted
in the motor cortex provided a means for real-time prediction of arm movement tra-
jectory [5]. This real-time prediction of arm movements based on population vector
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Fig. 1. Diagram showing the knowledge of boundary-delimiting spikes needed to compute the mean #ring
rate. The waiting-time for the future spike is unknown in real-time when the mean #ring rate is computed
for the current epoch.

analysis of multiple spike trains will be implemented as a neuroprosthesis so that a
robotic arm can be moved by “mental eEorts” of the patient implanted with
64-electrodes in the motor cortex.

One of the challenges in obtaining the #ring rate of the spike train in real-time is
due to the typically low #ring rate in motor cortical neurons. Because of the low #ring
rate, or the “sparse code,” accurate estimate of the true #ring rate of each individual
neuron is important so that the population vector sum can be computed accurately.
This challenge is usually a non-issue when the population vector is computed oE-line,
based on a posteriori information of the spike #rings, since the instantaneous #ring
rate can always be computed within a given spike train.

But when real-time estimate of the population vector is needed, the instantaneous
#ring rate for each neuron is required. Traditionally, the population vector is computed
incrementally for each epoch of #x time-interval, such as every 30 ms. The mean #ring
rate for each neuron is then computed for each epoch, and the population vector based
on the preferred direction of each neuron is computed using this mean #ring rate for
each epoch.

Using this method, estimation errors exist at the boundary of the epoch because
spikes do not often fall on the epoch boundary. The true instantaneous #ring rate can be
computed if the two boundary-delimiting spikes exist (see Fig. 1). In oE-line analysis,
the boundary-delimiting spikes are known; thus, there would not be any ambiguous
estimation of the mean #ring rate for the epoch.

But in real-time analysis, the future delimiting spike is unknown for the current
epoch calculation of mean #ring rate (see Fig. 1). Thus, it necessitates the estimation
of the waiting time for the next spike to occur. The accuracy of this estimation will
inIuence on the estimate of the mean #ring rate for the current epoch used in the
population vector calculation. Since the overall #ring rate is low, which is typically
found in motor cortex, the error in estimating the waiting-time for the unknown future
spike can be large.

There are many existing methods for resolving this ambiguity. One of them is to
use a Gaussian #lter to convert the spike #rings into #ring rate, which is eEectively a
smoothing function for the discrete spike rate. This method is highly dependent on the
parameter used for the Gaussian #lter, thus it is user-dependent.
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Another method commonly used is to extrapolate the next #ring interval based on
the previous #ring rate (or #ring interval). This is often a good estimate since it is
dependent on the neuron’s own #ring rate rather than an arbitrary parameter.

The current paper proposes an alternate predictor of the waiting-time for the unknown
future spike so that the instantaneous #ring rate of the neuron during the current epoch
can be better estimated.

2. Theoretical methods—adaptive statistical estimation

One of the better predictors of future events is based on the history of past events.
In other words, since we are recording on-going spikes from the neuron in real-time,
we can collect the #ring statistics of the neuron. The interspike-interval (ISI) statistic
characterizes the probability of #ring of a next spike based on the #ring of a current
(reference) spike. Normalizing the ISI by the number of spike gives the probability
density function (pdf) for the neuron, which will be used as the predictive function for
the waiting-time for the next spike #ring.

Let the spike train be, a(t), recorded from the neuron with a total of N spikes be
represented by

a(t) =
n=N∑
n=1

�(t − tn); (1)

where tn is the occurrence times of nth spikes in spike train a(t), and �(t) is a delta
function denoting the occurrence of a spike at time t.

The ISI, �n, is de#ned as the time-interval between two adjacent spikes in the spike
train:

�n = tn − tn−1: (2)

Then, the probability density function (pdf) of the #rst-order ISI is de#ned as:

p(�) =
1
N

N∑
n=1

�(�n − �) (3)

and the probability distribution function, PDF, which is given by

P(�) =
∫ �

0
p(t) dt: (4)

Since the spike train is recorded in real-time, the total number of spikes, N , increases
with time. Thus, the pdf function also changes with time, with a better approximation
when the sampling size, N , increases with time.

3. Statistical estimation

Given that the #ring pdf for the neuron is known, the probability of the next spike
#ring can be estimated for the future spikes. We also have additional information
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of the #ring probability, since we are predicting the next spike #ring at the boundary-
delimiting conditions. Because the delimiting condition is that a spike did not #re at
the end of the epoch-window period, the probability of next spike #ring becomes the
conditional probability given that a waiting-time, �′, has elapsed since the last spike
and a spike #red at the next time increment, �′ + Mt. In other words, the probability
given that a spike had not #red for �′ is essentially 1 − P(�).

4. Comparison between current method and other traditional methods

There are many other alternate methods for computing the mean #ring rate. One
of the most common methods is simply compute the mean #ring rate (number of
spikes #red within the epoch-window divided by the window-length) truncating the
extra time between spikes at both ends of the epoch-window. This always results
in over-estimating the #ring rate since the extra times at the boundary condition are
ignored.

Another traditional method is to use the averaged #ring rate during the epoch as the
predictor to extrapolate the future #ring rate for the next spike. In other words, it uses
the mean #ring rate as predicted #ring rate for the next spike. This method is better
than the truncated #ring rate method above since it uses the past averaged #ring rate
as the predictor for the future spike rate.

In comparison, the present method provides a better estimate of the future spike rate
since it takes advantage of the instantaneous #ring rate for the prediction rather than the
mean #ring rate. The current method provides a means to increase the statistical signif-
icance as N (total number of spikes in the sample size) increases with real-time on-line
recording session. Furthermore, the predicted estimated rate is operator-independent and
self-adaptive. The future #ring rate is estimated entirely based on how long a spike
had not occurred at the end-boundary.

Given these advantages, real-time estimate of the #ring rate at each epoch can be
performed with higher accuracy. With the improved accuracy of estimated instantaneous
#ring rate for each individual neuron, the vector sum of the population ensemble can
be more accurately represented. With a better representation of the population vector,
the intended movement trajectory can be predicted more accurately for sparse-code
encoding in the cortex.
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