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Abstract  A computational model of emotion is 
derived (using minimalistic assumptions) to quantify 
how emotions are evolved to estimate the accuracy of 
an internally generated brain model that predicts the 
external world. In this model, emotion is an emergent 
property serving as a self-derived feedback that 
monitors the accuracy of the internal model via the 
discrepancy (error measure) between the (internal) 
subjective reality and (external) objective reality—
reality-check subconsciously. Minimization of error 
(computed by the “gain” toward the desired outcome) 
will optimize congruency between internal and 
external worlds—resulting in happy emotion. Unhappy 
emotion is resulted from the discrepancy between 
internal and external worlds, which can serve as 
feedback for self-correction to minimize the “loss” 
(error) between desired and actual outcomes. 
Unhappiness provides the internal guide to self-
identify whether the cause of error is due to input 
(sensory perception) error, output (motor execution) 
error, or modeling (internal model) error. Experimental 
validation of the hypothesis using the ultimatum game 
paradigm confirmed the inverse proportional 
relationship of anger to perceived gain (or direct 
proportionality to loss) that estimates the discrepancy 
between what we want and what we get. It also 
characterizes specific emotional biases by shifting the 
emotional intensity curve quantitatively. 
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1 Introduction 
Toward the goal of understanding the 

computational function of emotion, I have developed a 
model of emotion that is derived from computational 
principles in neuro-engineering, such that 
computational roles of emotion can be assessed 
objectively with experiments. In order to assess the 
computational principles of emotion, I first derived a 
generalizable theoretical framework of emotion, with 
minimalistic assumptions, using a null hypothesis only 
(i.e., by not making any a priori assumptions about the 
purported roles of emotion or the existence of 
emotion). This reduces any subjective bias that may 
result from our introspective presumptions of what 
emotions are used for (the subjective qualia of 
emotion-related sensations, gut feelings, facial 
expressions, and their interpretations that may not be 
generalizable to other animals). In order to reduce any 
human-centric biases that may interject into the 
formulation of the computational functions needed for 
emotional processing, I derive the minimal 
requirements that are essential for an autonomous 
system to survive in the real world. Using these 
minimalistic building blocks, a model is derived using 
evolutionary principles, such that the universal 
requirements common for all autonomous beings 
(animals) can be captured by a theoretical framework. I 
then show that emotion emerges as one of the basic 
requirements for increasing survivability, which serves 
as a feedback for self-discovering any system errors, so 
that a more accurate estimate of the external world can 
be achieved. We then verify this hypothetical model 
with human experiments to confirm whether the 
hypothesis coincides with reality or reject it if it does 
not have any relevance in the real world. 
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2 Theoretical Derivations of the EMOTION 
Model 

2.1 Self-bootstrap Method for Increasing 
Survivability in the Evolution of Emotion by 
Minimizing Errors 

Using a self-bootstrap approach in neurobiological 
computation, I have identified the minimal 
requirements for a brain model that increase the chance 
of survival in animals in the EMOTION-I and 
EMOTION-II (acronym for “Emotional Model of The 
Interpretations of Neuroprocessing”) models [80, 81]. 
Essentially, an animal that functions successfully in the 
environment requires the ability to accurately predict 
outcomes in the real world by integrating their sensory 
signals. This task is essentially computed by the 
internal neural network model in the brain. Because 
real-world events occur probabilistically in nature, a 
successful brain model also requires probabilistic 
predictions. That is, the minimal requirement for an 
animal to survive successfully is the ability for the 
internal brain model to produce a probabilistic 
dynamical model of the external world that accurately 
predicts the actual reality. 

Note that we made no assumptions on the 
existence of emotion in the derivation at this point, i.e., 
we only posed the null hypothesis, without 
hypothesizing any existence or utility of emotions 
initially. The derivation merely introduces the 
condition (minimal requirement) for any brain model 
that survives successfully in the real world is the 
minimization of its model-prediction errors and other 
system errors. Whether emotion biases the world-view, 
or distorts the accurate perception of reality, will be 
addressed after the derivation of the existence of such 
emotional biases. It will become apparent later; after 
we have derived the existence of emotion, the 
emotional bias is resulted from either distortion or 
emphasis in the internal brain model, depending on 
whether such alteration is intentional or not. If the bias 
is unintentional, it can certainly introduce additional 
errors to model predictions, compounding the error-
correction problem even further. If it is intentionally 
generated within the system, then it is used to 
emphasize (or de-emphasize) the neural network (so as 
to pay attention) to the specific error condition to 
facilitate the error-recovery process. 

Note that error is an intrinsic property of any 
predictive system. It always exists in any real-world 
computational models (including robots and animals), 
independent of whether they (robots or animals) have 
emotions or whether their emotional biases cause 
additional errors. In other words, emotional bias of the 

world-view (distortion of reality) is not a pre-condition 
or assumption in the derivation of our model, but a side 
effect of the processing. It is caused by either faulty 
conditions in the internal neural network model (if it is 
unintentional) or attentional emphasis (if it is 
intentional), which we will derive in the following 
section and also demonstrate the existence of such 
biasing-effects in the experimental results. 

As a preview, we will derive below that emotion is 
a feedback signal monitoring the animal’s error 
conditions for subsequent corrective actions. 
Therefore, emotional bias essentially skews the 
feedback signal in its processing, which creates 
amplified error conditions in the feedback loop. 
Furthermore, as a corollary, emotion serves as a 
feedback not just for “self”-recognition, but also for 
other animal’s recognition (in social communication) 
to enlist them to assist in this error-corrective process. 
2.2 Minimalistic Model Using Minimal 

Assumptions 
The only assumption we made in our model is that 

the brain has the ability to integrate sensory 
information to produce motor output by an internal 
neural network that can learn from its environment. 
The neural network produces a dynamical time-varying 
many-to-many mapping function, which maps from the 
(sensory) input space to the (motor) output space by 
the following equation: 

€ 

y j (t) = Prk wijk (t)xik (t)
i

n

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k=1

m

∏ + a  (1) 

where 

€ 

Prk •[ ]  denotes a probabilistic nonlinear 
mapping function, 

€ 

y j (t)  represents the j-th output 
predicted by the internal model, 

€ 

xik (t) represents the i-
–th input of a neuron at the k-th layer , and 

€ 

wijk (t)  
represents the synaptic weight between 

€ 

i -th input and

€ 

j
-th output at the k-th network layer, for a neural 
network with m layers, and a is a constant.  Note that 
this mapping is a dynamical mapping that encapsulates 
the interactions between the animal and the 
environment.  The prediction of the neural network is 
not just a static map of the external world, but a 
prediction of the dynamical interactions between the 
animal and its environment (including other animals). 

The neural network acquires knowledge of the real 
world by exploratory action using the Hebbian learning 
rule [32], which is one of the basic neural mechanisms 
for learning in animals [7, 14, 15] and in computational 
neural network models [16, 41, 54–56]. Using such 
Hebbian associative learning mechanism, time-
dependent correlation between the sensory input and 
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motor output can be established by the correlation 
function coefficients embedded in the synaptic weights 
[78, 79]. Applying spike-timing-dependent plasticity 
rules to the network, the spatiotemporal correlation 
between sensory input and motor output can be 
established dynamically [13, 84], such that the model 
of the external world can be created/ acquired by the 
internal neural network model through iterative 
associative reinforcement learning [4, 5, 51, 74, 77]. 

In the real world, the actual output may not always 
correspond to the predicted output generated by the 
internal brain model. The discrepancy between the 
predicted and actual outcomes represents the error that 
the brain model needs to correct in order to avoid 
disastrous results if the animal were to successfully 
survive. That is, if the internal neural network model 
accurately predicts the outcomes in the external world, 
the chance of survival will increase for the animal. If 
the prediction is inaccurate, its interactions with the 
external world would become inappropriate and faulty, 
which often results in a decrease in survivability. 

Note that evolution principle tends to produce 
results that increase the “probability” of survival rather 
than the “absolute” survivability. Survivability is a 
measure of resiliency when subjected to the stress-test 
in competitive and hostile real-world environment. It is 
the basic principle in evolution – survival-of-the-fittest 
– where the fittest (most accurate) solution often 
increases the chance of survival in nature’s process of 
elimination. It never guarantees for survival in the 
absolute sense because of the unpredictability in 
nature. Therefore, a global measure of survivability is 
the increase in long-term survival probability rather 
than in short-term survival. For instance, sticking the 
head in the sand is a short-term survival strategy, but it 
often fails in long-term survival. Thus, ignoring reality 
(emotional bias or perceptual distortion) may provide a 
coping strategy for short-term survival, but it often 
fails in long-term survival or functioning, when reality 
is distorted (which is typical in most psychiatric/mental 
disorders, such as anxiety disorders that exaggerate 
fearful emotion and depression that exaggerates sad 
emotion). Thus, the emotional bias that serves as a 
short-term survival coping strategy does not contradict 
the premise of the present model, because such biasing 
can facilitate the error-corrective process by 
emphasizing a specific error condition. But distortion 
of reality can cumulate enough errors within the 
system such that it will lead to catastrophic system 
failure. These pathological conditions often occur in 
untreated mental illnesses, such as schizophrenia and 
post-traumatic stress disorder (PTSD). 

2.3 Conservative Bias Considerations 
Furthermore, an animal that opts for conservative bias 
to reduce risk in a high-risk environment is a short-
term survival strategy that would not contradict the 
above assertion in long-term survivability. That is 
because risk corresponds to uncertainty in predicting 
outcomes with respect to the animal’s partial 
knowledge (i.e., uncertainty in model prediction or 
reduced accuracy in model predictions). Adopting 
conservative bias to reduce risk does not necessarily 
imply improving accuracy in model prediction, 
because the external risk factors are identical (due to 
lack of predictive knowledge and/or insufficient 
sensory data)—independent of whether the animal 
decides to take any risk or not. The only difference is 
the animal’s decision choice to limit the behavior to a 
restricted repertoire that is predictable to improve its 
prediction accuracy within a confined environmental 
set. That is, it attempts to remain at a local minimum 
rather than venture out to explore the global minimum. 
This translates to the well-known optimization problem 
in the neural network that minimization of errors can 
arrive at either a local minimum or global minimum 
[64, 90]. Conservative bias is the skewing of a decision 
to stop at the local minimum over the decision to 
explore the possibility of achieving a better global 
minimum. The risk is not knowing whether a better 
global minimum exists if one ventures outside its local 
minimum. Yet, a global minimum often provides a 
more superior/stable solution than a local minimum 
[64, 90]. Similarly, long-term survival probability 
(global minimum) often provides a more stable state 
than short-term survival (local minimum). Thus, the 
scenario often corresponds to short-term gain, but 
long-term loss in the error-minimization process (or a 
decrease in probability of long-term survival). Such 
non-risk taking behavior will not pose any 
contradiction to the premise of the model that an 
increase in model-prediction accuracy (or reducing 
system errors) will lead to an increase in the likelihood 
of long-term survival. 
2.4 Accumulation of Internal Errors that Leads 

to Perceptual Distortion 
Note that each of the sensory input and 

interconnection, 

€ 

xik (t), at the k-th layer within the 
neural network can be erroneous, i.e., each contains an 
error term, 

€ 

Δxik
e (t) , such that: 

€ 

xik (t) = ʹ′ x ik (t) + Δxik
e (t)  (2) 

where 

€ 

ʹ′ x ik (t)  is the ideal accurate input signal.  
Similarly, the synaptic weights, 

€ 

wijk (t) , can be 
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erroneous, containing an error term, 

€ 

Δwijk
e (t), such 

that: 

€ 

wijk (t) = ʹ′ w ijk (t) + Δwijk
e (t) (3) 

By including the error terms, Eq. 1 (the output of the j-
th neuron at the k-th layer) becomes: 

€ 

y j (t) = Prk ʹ′ w ijk (t) + Δwijk
e (t)[ ] ʹ′ x ik (t) + Δxik

e (t)[ ]
i
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which cumulates all the errors from the previous 
network layers as 

€ 

Δy j
e (t) .  The sensory errors, 

€ 

Δxik
e (t)  

can lead to perceptual distortion when such errors 
accumulate throughout the network by multiplying the 
sensory errors,

€ 

Δxik
e (t) , with synaptic errors, 

€ 

Δwijk
e (t) 

in Eq. 4 to produce the cumulative output error, 

€ 

Δy j
e (t) . 
When errors occur within the processing of the 

internal neural network, they are extremely difficult to 
detect. That is because it requires self-examination of 
the internal processing, but it does not have direct 
access to the internal interconnects. Most importantly, 
the neural network would not have knowledge of such 
internal errors when its knowledge is dependent on the 
same (potentially faulty) interconnect computation. Yet 
the discovery of its own internal faults is not 
necessarily an intractable problem. The neural network 
can compare the discrepancy between its own 
prediction with the actual outcome and use it as an 
indicator to deduce an internal fault condition using 
this reality-check mechanism. 
2.5 Error-Discovery by the Discrepancy Signal 

between Predicted and Actual Outcomes 
Thus, self-discovery of internal fault can be 

inferred from the discrepancy signal between its own 
prediction and actual outcome: 

€ 

Δy j (t) = y j (t) − ʹ′ y j (t) (5) 

where 

€ 

y j (t)  represents the predicted outcome by the 
neural network (subjective reality), and 

€ 

ʹ′ y j (t)  
represents the actual outcome in the real world 
(objective reality).  A non-zero 

€ 

Δy j (t)  represents an 
inaccurate model, which can be used as an indicator in 
its self-examination for subsequent error-correction.   
By minimizing the sum of errors as a measure of the 
global error-condition, such that 

€ 

Δy j (t)
j

l

∑ →0 (6) 

for all 

€ 

l outputs, then an accurate model of the external 
world is achieved.  If not, the likelihood of survival 
decreases due to the cumulative errors in predicting the 
external outcomes accurately. 

Note that Eq. 6 varies over time, which means 
error may be at a minimum at one particular time 
instance, but will not be a minimum at another time 
instance, when the animal moves to another 
environment (which produces entirely different set of 
environmental conditions for the minimization 
process). This means that minimization of error is a 
lifetime process—achieving a minimum global error at 
one time does not imply that the global error will 
continue to be a minimum, when the circumstances 
change at another instance. When we derive (in 
subsequent sections) that this global error is used as an 
emotional feedback, this implies that an animal will not 
stay in an emotional state forever, but the emotional 
state will change constantly depending on the 
environmental conditions. This is consistent with the 
explanation why happiness or unhappiness does not 
last forever; it changes over time when the 
circumstances change. 
2.6 Error-Discovery by Exploratory Self-

Examination 
In order to ensure survival, the animal has to assess 

the accuracy of its own model prediction because there 
is no presumed a priori knowledge of any unforeseen, 
unpredictable errors. Because there is no guarantee that 
its own model is an accurate model, it has to rely on 
self-derived clues to indicate any possibility of error. 
This self-derived indictor of error condition is the 
discrepancy measure of global error given by Eq. 6. 

Although potential errors are often unbeknownst to 
the animal, these errors can be uncovered using the 
principle of evolution, in which trial and error is used 
as an ad hoc procedure to sample the solution space by 
random exploration, i.e., statistical sampling of 
possible solutions using Monte Carlo simulation or 
simulated annealing [42, 90, 92]. By iterative 
exploration of the real world, dynamical prediction of 
the external world can be approximated by the model 
prediction as a probabilistic estimate. The accuracy of 
such a prediction is essential to the survival of the 
animal, because if the estimation is incorrect, the 
animal will be more likely to encounter disastrous 
outcomes when it fails to respond to environmental 
conditions appropriately. 
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2.7 Minimal Requirements for Ensuring 
Survivability: Self-Discovery and Self-
Correction of Internal Faults 

Given that the minimal survival requirement (for 
an internal network model) is the ability to self-detect 
and self-identify errors, then the accuracy of its model 
prediction can be assessed by the global-error signal. In 
other words, if an animal is able to self-identify and 
self-correct errors, then the internal brain model can 
refine a better estimate of the external world in its 
prediction. This would result in increasing the 
likelihood of survival. Therefore, the crucial link to 
survival is the ability to self-identify and self-correct 
any error that may exist. 
2.8 Autonomous Self-Identification of Error-

Sources 
Potential errors can come from three major 

sources: 
(a) sensory (input) error, 

€ 

Δxik
e (t) ; 

(b) execution (output) error, 

€ 

Δy j
e (t) ; and 

(c) internal (modeling) error, 

€ 

Δwijk
e (t). 

But the origin of these errors is often unknown and 
unpredictable, the animal has to rely on other clues to 
identify the existence of such errors in order to assess 
its accuracy. One of the self-derived autonomous 
schemes for identifying the existence of error is the 
comparison between model prediction and real world 
(Eq. 5). Such comparisons between actual reality and 
the subjective reality (estimated by the brain) can be 
done autonomously by the neural circuitry within the 
animal (without needing external assistance from other 
agents). The discrepancy between the objective reality 
and internally predicted estimates can serve as the 
signal for error detection. This provides an autonomous 
mechanism for self-identification of error for assessing 
the accuracy of the internal brain model. 
2.9 Emotion Hypothesized as Internal Feedback 

for Self-Discovery of Error-Conditions 
This self-derived error signal serves as a feedback 

to the animal that something is wrong, wherever the 
source of error may be. We hypothesize that this 
“error-indicator” coincidentally corresponds to what is 
commonly known as “emotion” [59]. That is, 
happiness is a feedback that signifies to the animal that 
everything is going right as predicted. Unhappiness 
serves as a feedback that indicates something went 
wrong, which motivates the animal to correct for such 
errors. This also corresponds to our intuition to ask 
what is wrong, when we see someone who is unhappy. 

2.10 Proportionality Hypothesis of Emotional-
intensity to Discrepancy Error Signal 

We also hypothesize that the bigger the 
discrepancy (error signal), the greater the emotional-
intensity will be. This intensifies the motivation to 
search for solutions to reduce the discrepancy between 
what it wants the world to be and what happens in 
actuality. When corrective solution results in the 
minimization of error, unhappy emotion is resolved. 
This results in a happy state, and happiness is 
experienced. Otherwise, the unhappy state remains as a 
reminding condition for the system to seek corrective 
solutions either to change the world or to change itself. 

Note that corrective action here means reducing 
system errors by addressing the source of processing 
errors (faults) within the neural network. The errors to 
be corrected are conceptual errors or perceptual errors, 
but not necessarily behavioral errors. Corrective action 
does not always need alteration of behavioral action, 
but rather correcting the erroneous processing in these 
three potential candidate error sources: 

(a) input error: faulty perception (for sensory 
correction), 

€ 

Δxik
e (t) , 

(b) output error: faulty execution (for decision 
correction), 

€ 

Δy j
e (t)  and/or 

(c) modeling error: faulty model-prediction (for 
belief-system correction), 

€ 

Δwijk
e (t). 

Although in introspection (based on human 
perspective), anger often motivates reactive action, and 
sadness immobilizes any behavioral action, they are 
not the corrective actions that are referred to in our 
model. The corrective actions are the changes in 
internal processing—the ways and means to resolve the 
unhappy emotions by discovering faults (finding out 
what is wrong), and correcting the error (fixing the 
perception/decision/belief system) to reach a happiness 
state (error-free condition). That is, corrective actions 
are conceptual changes of how the animal perceives 
the world differently once the false belief is 
discovered. 
2.11 Resolving Emotion by Resolving Faulty 

Assumptions 
Because emotion is an internal feedback in our 

model, it is often the correction in internal 
“assumptions” of how an animal perceives the world 
that resolves the emotion, i.e., changing the world-
view. For instance, when a stimulus is no longer 
perceived as a threat, fearfulness, or anger would be 
resolved almost instantly. Yet the external 
circumstances (stimulus conditions) are identical 
before and after the emotional resolution. The only 
difference is the internal processing that changed the 
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faulty perception from a threatening stimulus to non-
threatening, or from a faulty belief system believing 
the stimulus is dangerous to harmless, or from a faulty 
decision that determines/assesses the stimulus is 
aversive to benign. Unhappy emotion can be resolved 
without necessarily any behavioral action, because the 
corrections are the internal error corrections of the 
neural network processing in conceptual terms (a 
change in mind-set) rather than physical terms (even 
though behavioral changes often occur as a result of 
such change in belief system). 
2.12 Expectancy for the Desirables and 

Undesirables in Emotions 
Expectancy is the prediction generated by the 

brain. Such prediction may or may not have any 
behavioral outcome, so it should not be equated to 
behavioral action. For example, prediction/expectation 
of reward is an expectancy of pleasurable experience, 
and prediction of punishment is an expectancy that 
leads to fear and anxiety. Although these predictions 
may subsequently lead to seeking behavior (for 
reward) or avoidance behavior (from punishment), the 
model predictions are not behavioral actions. The 
prediction is the subjective reality (believing this is 
what will happen), and the actual outcome is the 
objective reality (what happens in actuality, 
independent of whether the animal believes it is 
happening or not and denies that it happened or not). 
Evidence for such internal prediction (in reward) is 
found in dopamine neurons in the ventral 
striatum/nucleus accumbens, which are known to 
encode not only the prediction of reward, but also 
prediction error [8, 62]. 
2.13 Expectancy Errors in Predicting the 

Desirables and Undesirables in Emotions 
There are two kinds of expectancy—predicting the 

desirable (such as reward and pleasure) and predicting 
the undesirable (such as punishment and pain). This 
results in two types of expectancy errors. It can evoke a 
disappointment emotion if the expectation falls short of 
what it wants or an excitement if it exceeds what it 
wants. On the other hand, it evokes a frightening 
emotion if the expected outcome exceeds what it does 
not want (such as danger, threat, harm, or death) or a 
reduction in anxiety if the expected outcome is less 
than the worst-case scenario. 

Evidence for such encoding of expectancy errors is 
numerous. Dopamine neurons in the mesolimbic 
system is known to be involved in reward-prediction-
expectancy, error detection, and prediction error and 
salience of such reward [8, 10, 37] with distributed 
processing in orbitofrontal, prefrontal cortex, and basal 

ganglia for encoding emotional reappraisal of expected 
value and prediction error [33, 68, 73]. Furthermore, 
prediction error is encoded as a linear function of 
reward probability [1], similar to the proportionality 
hypothesis proposed in our emotional model. 
2.14 Wants and Gets in Emotions 

When the prediction is what the animal wants (for 
goal-achievement), it is the “want.” When the 
prediction is what the animal does not want, it is the 
“unwanted.” These are the subjective reality. The “get” 
is the outcome of what the animal gets, independent of 
what it wants or does not want. This is the objective 
reality. The discrepancy error is the difference between 
the “wants” and “gets”—between the subjective and 
objective realities—between the prediction and 
outcome in the reality-check process. 
2.15 Difference between Wants-and-Gets and 

Expectations: the Desirables vs. Undesirables 
As described earlier, although expectation is the 

prediction by the model, such outcome prediction may 
or may not be desirable with respect to the survival of 
the animal. For instance, prediction of death (in danger 
assessment) is an undesirable outcome, unless the 
animal is suicidal. So accurate prediction of death 
(such as going over a cliff) would not increase 
survivability, unless such accurate prediction is used to 
correct the undesirable outcome (to avoid death by 
parachuting or bungee jumping). Thus, different 
emotional feedbacks are evolved to provide the internal 
tools to differentiate desirable versus undesirable 
outcome-assessments. For instance, prediction of 
danger or threat would evoke fear or anger emotion as 
a feedback to increase survival. Nonetheless, accurate 
prediction of such danger is essential for survival, 
because if such prediction is inaccurate, erroneous 
assessment would lead to inappropriate responses that 
could mislead the animal into a trap. That is, 
survivability depends on the accuracy of the prediction 
of getting the desirables (wants), and avoidance of 
getting the undesirable (unwanted). 
2.16 Survivability Exception: Suicide as a Solution 

to Resolve the Unresolved Errors 
Note that the above derivation is assuming that the 

system is not suicidal. If so, the desired goal is death; 
survivability will decrease instead. Nonetheless, this 
exception will not nullify the hypothesis of our model 
that unhappy emotion is an indicator for error 
conditions such that happy state is reached when error 
reduces. That is because an implicit assumption is 
made in the derivation that a solution is available to 
reduce system errors. In the real world, there may not 
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be any solution, or it gets stuck in finding a viable 
solution; so error reduction may not be possible. If no 
apparent solution can be found to reduce errors, then 
termination of the system could be an alternate solution 
to completely shut down the nagging unhappy error-
feedback signal, so it will never be reminded of the 
error conditions that it cannot solve. In this case, 
suicide is a solution to resolve the unresolved 
emotions, which is often the desired goal of suicidal 
patients who seek cessation of consciousness as a 
solution to terminate the unresolved [38, 40, 75]. This 
is consistent with our hypothesis that emotion serves as 
an error-feedback signal for the system to correct 
(assuming such correction is possible) and the process 
for resolving unhappy emotion is error reduction (error 
minimization in the optimization process). But if it is 
not possible to correct such error, termination of the 
entire system is a solution to terminate the error-
feedback signal, thus resolving the unresolved 
emotions in a radically unconventional manner. 
2.17 Happiness as a Congruency Measure between 

Wants and Gets 
Happy emotion serves as a congruency measure 

for the animal to identify that what it wants is 
congruent with the real world. When congruency is 
matched between the wants and gets, it represents a 
happy state in its internal feedback that the internal 
model is an accurate model without faults. The model 
does not need any correction, so it experiences 
happiness that everything is alright. Reality is exactly 
what the model predicts. Conversely, inaccurate 
predictions by the animal will be more likely to 
decrease its survivability due to faulty estimations. 
2.18 Desirability as an Additional Criterion to the 

Congruency Measure for Emotional 
Assessment 

If an animal gets what it wants (desirable), then 
happy state is experienced as a feedback for 
satisfaction. On the other hand, if it gets what it does 
not want (undesirable), then it would be unhappy 
instead. For instance, getting an undesirable disease 
would not be happy, even if such prediction is highly 
accurate in reality. Therefore, emotion assesses more 
than the “congruency,” but also the “desirability” with 
respect to survival according to this model. Thus, this 
survival criterion still fits with the premise of our 
model that survivability is the key minimal 
requirement for autonomous beings to function 
independently. Using self-discover error signal to self-
correct internal processing faults completes the 
feedback loop for autonomous recovery of errors. 

2.19 Self-Discovery of Error-Condition as Another 
Criterion for Emotion 

This autonomous self-discovery of an internal fault 
condition is what distinguishes robots from animals. In 
fact, this ability for self-discovery of internal error can 
also be used as one of the criteria to distinguish 
animals that have emotions versus animals that do not 
through the subconscious reality-check process. 

Evidence for this cognitive emotion regulation by 
“reappraisal” (reality-check) is encoded in the ventral 
striatum [33, 72]. This reality-check is also analogous 
to the discrepancy measure for emotional feedback 
assessment between the predicted (subjective) reality 
and the actual outcome (objective reality) proposed in 
our model. Evidence for these goal-directed behaviors 
is found to rely on a network that involves the anterior 
cingulate and prefrontal cortex for error avoidance and 
reward, which suggests this network’s involvement in 
self-initiated behavioral adjustment, but not necessarily 
error detection or prediction. In contrast, insula and 
ventral striatum are more responsive to the high reward 
expectation [43] and prediction error [1, 62], while the 
amygdala is involved in re-evaluating the salience 
value [47] in conjunction with the orbitofrontal cortex 
to update such re-evaluation [48, 53] for a final 
decision in choice preference [49]. 
2.20 Unhappiness as a Discrepancy Measure 

between Wants and Gets 
Conversely, unhappy emotion serves as a 

discrepancy measure to identify that what it wants is 
not congruent with the real world. Correction is needed 
to restore congruency between subjective and objective 
realities. Furthermore, source of error needs to be 
identified, if such self-corrective action is effective. 
Various sub-emotions of unhappiness (such as anger, 
fear and sadness) coincidentally specifically identify 
the source of error and corrective action in response to 
the discrepancy signal. Different emotional reactions 
(angry, sad and fear) correspond to different coping 
strategies in the process for self-identification and self-
correction of errors. 

Once error conditions between the incongruent 
realities are recognized as not what one wants, then 
there are two ways to change it—change the world or 
change yourself. For instance, angry emotion often 
motivates the animal to change the world (when it does 
not accept the reality), instead of changing itself (by 
changing self-perception, world-view, belief system, or 
decision). Most often, anger is a failed attempt to 
change the world, because if such attempt were 
successful, it would no longer be angry when it finally 
gets what it wants. 
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2.21 Computational Role of Emotional States for 
Feedback Processing 

When an animal optimizes the system such that 
error minimization is achieved, it increases the chance 
of survival as a system. This happy state serves as 
feedback to the internal model that congruency with 
the real world is achieved. Otherwise, an unhappy state 
serves as a guide to indicate the existence of error that 
needs to be corrected, if happiness is to be achieved. 
Anger serves as an attempt to change the reality rather 
than correcting its internal errors in its feedback. 
Sadness serves as the recognition of loss. Fear serves 
as the realization that an undesirable prediction 
threatens its survival. These unhappy emotions identify 
the specific stages in the error-recognition and error-
recovery process via the gain (and loss) computation. 
2.22 Quantification of Emotion by Gain and Loss 

Measures between the Desired and Actual 
Outcomes 

In order to self-assess potential errors, the gain 
(and loss) measures can provide a quantitative 
assessment of the difference between expectancy of 
desirable (predicted reward estimates) and reality 
(actual outcomes). The gain (and loss) is an internal 
measure that computes the difference between what an 
animal (or human) wants and what it gets. If the 
computed difference between the wants and gets 
increases, it is a loss measure. If the computed 
difference decreases, it is a gain measure. Thus, 
emotional processing depends on the computation of 
these gain (and loss) measures in order to serve as a 
feedback to the animal to assess the error conditions. 
2.23 Proportionality Hypothesis of Emotion with 

Gain/Loss Signals 
We propose the hypothesis that the emotional 

intensity is proportional to the gain (and loss) signals 
computed between the wants (subjective reality) and 
gets (objective reality). That is, the bigger the gain (or 
loss), the greater the emotional intensity. The greater 
the emotional intensity, the greater the feedback 
conveying the state (or status) of the error conditions to 
the animal is. 
2.24 Neuroengineering Principles in Emotion 

Processing 
Using this neuroengineering scheme, we are able 

to derive a framework for emotional processing in 
which quantifiable internally generated variables (error 
feedback) can be used for emotional computation in 
order to self-correct any error that may exist in the 
brain model. This provides the derivation of an 
emotion model, using basic neurobiological principles, 

with minimal psychological assumptions about 
emotion and emotional processing, such that it can be 
tested by experimental hypotheses. 
2.25 Optimization Task in Emotion Processing: 

Maximization of Gain and Minimization of 
Loss 

The computational task for emotional processing 
essentially corresponds to an optimization problem that 
minimizes losses and maximizes gains. It requires self-
detection of error derived from the gain (and loss) 
signals. This results in two distinct classes of 
processing needed in emotional computation: 

(1) maximization of gain for the desirables in 
happy emotional processing and 

(2) minimization of loss (or reducing the 
undesirables) in unhappy emotional 
processing. 

2.26 Independence of the Maximization and 
Minimization Processes 

Note that the above are two independent processes 
for optimization even though they serve opposite goals 
in the computation. That is, the maximization process 
for happiness does not necessarily imply a 
minimization for unhappiness or vice versa. That is, 
one does not replace the other. This is analogous to the 
opposite effects of the accelerator and brake pedals 
used to move the car forward or stop it, but taking the 
foot off the accelerator does not make the car stop nor 
taking the foot off the brake would not make the car 
go. Their functions are independent of each other, even 
though their actions are opposite to each other. This is 
consistent with the fact that antidepressants are not 
happy pill, because lifting depression does not 
necessarily make a person happy. It merely brings a 
person from an unhappy state back to normal baseline, 
i.e., reducing the unwanted errors (the undesirables)—
minimizing the losses. To be happy, it requires 
bringing a person above this normal baseline to 
congruency with the desirables, i.e., maximizing the 
desirable gains. 
2.27 Emotional Bias for Amplifying or Attenuating 

Importance of Certain Error-Source 
The gain (and loss) measures are not necessarily 

objective measures to the internal brain model: 
(1) They can be biased by perceptual error (input 

error). 
(2) They can be skewed by execution or decision 

error (output error).  
(3) They can also be distorted by modeling error 

(internal prediction error). 
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Emotional biases can be introduced by scaling the error 
signal according to the preference of emphasis, i.e., 
either amplify or attenuate the error signal, as a “error-
salience” factor to emphasize/de-emphasize its 
importance. Thus, a scaling factor (weighing-
coefficient) can be applied to Eq. 5, such that Eq. 5 is 
changed to include the error-salience-bias: 

€ 

Δy j (t) = k y j (t) − ʹ′ y j (t)[ ]  (7) 

where 

€ 

k  denotes the error-salience weighing-factor or 
error-salience-bias (

€ 

k >1 for amplification; 

€ 

k <1 for 
attenuation).  This error-salience-bias may correspond 
to the valence of emotion or valence effect of 
prediction in the self-serving bias. 

The skewing of these gain/loss estimates 
essentially amplifies (or attenuates) the error-feedback 
signal such that emphasis (or de-emphasis) can be 
placed on these error-sources for further processing.  
That is, these errors are not treated equally, but are 
weighted according to the error-salience weighing-
coefficient (error-salience-bias) in the weighted-sum 
summation process.  This allows the computation to 
emphasize or de-emphasize certain error-source in the 
solution-exploration process.  This computational 
error-salience weighing-factor is an “intentional bias” 
in the model.  This bias factor is different from the 
“unintentional bias” introduced into the system by 
faulty signals in faulty perception, 

€ 

Δxik
e (t) , faulty 

execution, 

€ 

Δy j
e (t)  and faulty model-prediction, 

€ 

Δwijk
e (t).  Emotional bias is the sum of both 

intentional and unintentional bias, which compounds 
the problem of whether such bias is essential (or 
beneficial) to emotional processing or detrimental to 
the system. 

If intentional, emotional bias serves a 
computational role in selecting which error source is 
most important to address at the moment. That is 
because if simultaneous solutions to resolve all errors 
were not possible, then selecting a specific error may 
bring attention to the system to address the potential 
solution one at a time. Therefore, sub-emotions can be 
used to differentiate/emphasize different solution 
strategies in resolving error conditions in the emotional 
computation process. If unintentional, it can lead to 
pathological conditions. 
2.28 Difference between True Emotions in Animals 

and Error-Correction in Robots 
The difference between robots and animals is that 

true emotions are self-derived internally by 
autonomous assessment of error conditions without 
any pre-designed/ pre-programmed error-correction 
schemes. Most robots often lack this ability to self-

derive unknown/unforeseen errors without pre-
programming. Moreover, they often do not have the 
self-conscious awareness process to assess such error 
conditions. 
2.29 Animals with True Emotions vs. Reflexive 

Actions 
As a corollary, we also hypothesize that animals 

who possess true emotions are those that can self-
discover its error conditions for autonomous correction 
to resolve such errors. Animals who possess pre-
programmed error-correction scheme (such as 
withdrawal reflex from pain to increase survivability) 
without the ability to self-discover the unforeseen error 
conditions to change its own internal framework do not 
necessarily have true emotions, according to this 
model. That is, it requires self-awareness in the reality-
check assessment in emotional recognition to fully 
autonomously respond to the self-discovered error 
conditions. Such self-recognition of error conditions is 
the crucial part in emotional processing, even though 
this recognition process is subconscious. That is, the 
identifiable criteria are the ability for the animal to 
realize when something goes wrong to alert its 
attention, as well as the ability to recognize the 
conditions when things go well subconsciously. 
2.30 Time-Derivative as an Additional Emotional 

Measure in Error-Minimization Process to 
Indicate the Direction Whether Error 
Increased or Decreased 

Since the survival process is an error-minimization 
process, the system also needs to assess how well the 
optimization is proceeding. If the discrepancy error 
increases, the error minimization is heading the wrong 
direction. If it decreases, it signifies the error 
correction is proceeding well. Thus, the indicator for 
assessing the status of the error minimization process is 
the time derivative of the global error measure: 

€ 

d
dt

Δy j (t)
j

l
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⎡ 
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⎢ 
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⎦ 
⎥ 
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j

l

∑
⎡ 
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⎤ 

⎦ 
⎥ 
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 (8) 

which indicates whether the global error increases or 
decreases depending on the sign of this time-
derivative. 

This time derivative of emotion provides the 
transient response—surprise signal—such as 
excitement in happy emotion and shock in unhappy 
emotion, when the unexpected happens. This 
emotional derivative serves as a feedback signal to 
indicate whether the optimization process is homing in 
the correct direction. If the gain is not one expected 
(such as gaining a disease), then the emotional 
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feedback would be unhappy, which indicates that error 
becomes larger than expected, i.e., the optimization is 
heading in the wrong direction. 

Because Eq. 8 is a time-dependent (time-varying) 
measure for transient response, it becomes zero if 
nothing changes (i.e., if the error remains constant). 
This accounts for the phenomenon that transient 
excitement emotions often fade away as time passes. 
That is, ecstasy does not last forever, but satisfaction, 
or contented state of happiness, can last because the 
happy state is a state of the system corresponding to 
the global error, rather than a transient measure, which 
corresponds to the rate of change of error. 

To revive the transient response, new wants and 
gets are often needed. Thus, the system is always 
seeking improvements to get more and more of what it 
wants. This motivates the animal to seek and explore 
better and better solutions (to reach global minimum), 
if the current solution is at a local minimum. 
2.31 Second-Order Time-Derivative as Another 

Additional Emotional Measure in Error-
Minimization Process to Indicate Minimum, 
Maximum or Point-of-Inflection 

In order to assess whether it arrives at a minimum 
or maximum, second-order time derivative of Eq. 8 is 
needed: 
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 (9) 

This provides additional information on whether such 
error reached a minimum or a maximum, or point of 
inflection (a transient point), not just merely whether 
the error correction is heading the right direction. This 
allows the system to recognize whether it reached a 
stable point or an unstable point, in the optimization 
process. 

3 Experimental Confirmation of the EMOTION 
Model 

In order to verify the hypothesis in our EMOTION, 
we employed the ultimatum game (UG) paradigm to 
elicit potential emotions in human subjects so that we 
can assess the emotional response with respect to the 
desired gains and losses. UG is a classical paradigm 
widely used in behavioral economics for assessing 
decision making in neuroscience, psychology, social 
science, economics, and mathematical psychology [9, 
36, 70, 89]. It is an experimental paradigm in which an 
amount of money (such as $10) is divided between two 
persons (a proposer and a responder). If the responder 
accepts the offer, both keep the money. If the 

responder rejects it, both lose the money. Rather than 
addressing decision-making process as in most 
traditional UG analyses [17, 61, 66, 67, 71, 91], we use 
this paradigm to provide a means for subjects to self-
generate endogenous emotions. We can then evaluate 
the gain/loss disparity with respect to whatever 
emotional response the subjects produced. 
3.1 Experimental Null Hypothesis 

In order to verify our emotional response 
hypothesis, it is essential to test the null hypothesis in 
which no emotion responses are assumed in the 
experimental design; otherwise, it would fall trap into 
proving the self-fulfilling prophecy if we assume the 
subjects will respond to any specific emotion. 
Therefore, we specifically choose this UG paradigm 
(split-the-money game) because the stimulus condition 
is merely a neutral stimulus of monetary offer, without 
any emotional content. We do not manipulate any of 
the psychological conditions of the subjects or present 
any stimulus that would evoke any intentional or 
unintentional responses, other than the monetary offer 
to accept or reject. The subjects are free to feel any 
emotion (or no emotion) to the monetary offer, without 
any manipulation by the experimenter to skew their 
perception or responses. 
3.2 No Manipulation of Experimental Conditions 

By design, we do not want to control or influence 
any assumptions the subjects may make about who the 
proposer is. The experiment is done online via 
computer terminal without any hint of human versus 
computer (without any indication of whether the 
proposer is a human or computer), because it is known 
that subjects do respond differently to computer 
proposer compared with human proposer [61, 67] if 
such hints were made. No human interactions or 
suggestions (such as pictorial clues, facial expression, 
or gender of the proposer) were used. The survey 
questionnaire was presented completely in written text 
form (without any pictorial clues). The responders 
answer the questions by a mouse-click to the answers. 
3.3 Neutrality and Objectivity of Experimental 

Conditions 
It is imperative for us to present the experimental 

conditions as neutral as possible across subjects to 
prevent any procedural biases (without any hints or 
suggestions to the subjects that may influence their 
mind-set, decision or emotional responses). Any 
emotion experienced by the subjects would be entirely 
self-induced (rather than suggested/aroused by the 
experimenter), depending on the subject’s own 
perception of fairness or any other assumptions that the 
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subject may have in splitting the money. They are free 
to decide to accept or reject the offer by making any 
assumption about the offer they wish, without any 
coercion/ suggestion by the experimenter or 
experimental design. 
3.4 No Assumption of Any Specific Emotional 

Response 
Although it is widely known that decision to accept 

or reject the offer often depends on the emotional 
response to fairness, empathy, altruism, or social 
norms [6, 17, 27, 31, 44, 45, 60, 63, 66, 67], we choose 
not to make any of these assumptions in our 
experimental design to avoid experimenter bias. 

4 Methods 
4.1 Ultimatum Game Paradigm Splitting $10 

We collected data from 425 subjects (age ranging 
from 18 to 80, median = 21; 275 women, 150 men) 
from a pool of metadata from multiple experiments 
sharing the same UG design of splitting $10, which is 
used as the baseline control experiment for comparison 
to the various subsequent experiments, since splitting 
$10 is the most commonly used paradigm in most 
published UG studies. Randomized one-shot trial 
offers (without repeating) between $1 and $9 were 
proposed to the subjects. That is, the experiment trials 
consist of proposing 9 pseudo-random offers—ranging 
from $1 to $9—for the subjects to accept or reject (by 
clicking the accept or reject button in the computer 
screen with the mouse). By design, we use the same 
pseudo-random sequence uniformly for all subjects, so 
that we can compare the longitudinal practice effects 
and desensitization effects across subjects (Tam, in 
preparation). We also survey their emotional state 
before and after the experiment to verify the test–retest 
reliability, and to document how emotion changes over 
the course of experiment. 
4.2 Self-Reported Emotional Rating Scale for 

Cognitive Self-Assessment of Emotion 
Self-reported emotional ratings (?5 to -5 scale) are 

recorded for each trial after they accept (or reject) the 
offer (by clicking one of the buttons in the rating scale 
with the mouse). No time restrictions were imposed to 
complete the survey, nor did we record the timing 
information of their responses because we do not want 
to introduce any unintentional restrictions that may 
affect/perturb the subject’s response into making 
impulsive decision that could affect the emotional state 
because of frustration or time-pressure. Timing 
information is essential in fMRI studies (in our 
subsequent studies) for synchronizing between 
stimulus and emotional response in order to correlate 

the emotion with neural responses, but since we are not 
recording any neural or physiological responses in the 
current design, the timing parameters are non-essential 
in the present study. 

We use self-reported rating of emotion to assess 
the cognitive assessment of their own emotion because 
our objective is to measure their emotion cognition 
rather than the internal neural/physiological emotional 
states. This allows us to deduce the relationship 
between the cognitive response and hidden variables 
involved in emotional processing to verify our 
emotional-processing hypothesis before correlating 
them with neural responses using fMRI recordings 
later. Although the self-reported cognitive response is 
often filtered/biased by subjectivity, our goal is 
precisely measuring how such subjective biases are 
reported by the subjects, which will reveal the 
conditions under which emotions are skewed/altered 
using our analysis. Because the self-reported emotions 
are merely “cognitive assessment of the subject’s own 
emotion,” for brevity, we abbreviate this as “emotional 
response.” 
4.3 Multiple Emotions and Distractors as 

Controls 
In order not to skew the subject’s response into 

biasing their self-report favoring any particular 
emotion, we present the subject with a list of emotions 
(happy, sad, angry, and jealousy) to rate, in addition to 
a list of other distractors (by asking how important 
winning, money, and fairness is for them to rate, using 
the same ?5 to -5 scale; how fair the offer was; and 
whether they won that trial or not). This ensures the 
neutrality and objectivity of the questionnaire in the 
experimental design to minimize any unintentional side 
effects that may contaminate the subject’s perception 
or assumption of what they think the experimenter 
wants from them. 

The analysis in this paper focuses primarily on 
the angry emotion to be concise. The study was 
conducted with the university Institutional Review 
Board approval. Informed consents are provided to 
subjects prior to the experiments. 

5 Results 
5.1 Emotional-Intensity as an Inverse 

Proportional Relationship with Gain-Ratio 
Figure 1 displays the self-reported rating of angry 

emotion independent of whether they accept or reject 
the offer for the entire sampled population. The data 
approximate an inverse proportionality relationship 
with monetary gain ratios and anger (Fig. 1a), which is 
non-random (r2 = 0.872; p<0.001). They reported not-
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angry for all offers—although much less angry for 
generous offers than stingy offers. 

Note that the singleton point ($5:$5) deviates from 
the overall proportionality trend, indicating that 
subjects respond to the even-split ($5:$5) much 
different than the rest of the fair or hyper-fair offers. 
This singleton deviation is much more acute in our 
fairness analysis [88], in which subjects identify even-
split ($5:$5) as the fairest based on an objective frame 
of reference, while the other offer-ratios are perceived 
subjectively relative to their own frame of reference 
[83]. That is, they do identify and differentiate the 
difference between objective and subjective fairness. 
This objectivity also correlates with their reported 
objective emotional response to $5:$5 offer, which is 
different from subjective emotional response to the 
other offers. 
5.2 Emotional-Intensity Conditioned on Fairness 

(Generous Offers) vs. Unfairness (Stingy 
Offers) 

To reveal whether such proportionality exists 
depending on their perception of fairness, we subdivide 
the same data into two subsets in the curve-fitting 
algorithm (Fig. 1b)— the unfair trials (\$5:$5, left-half) 
versus the hyper-fair trials ([$5:$5, right-half). A 
distinctly different proportionality relationship is 
revealed, with a discrete change of emotional 
sensitivity from stingy (unfair) to generous (hyper-fair) 
offers and a singleton point in the middle fair offer 
(even-split of $5:$5, middle). That is, the emotional 
proportionality relationship is different for unfair 
versus hyper-fair trials, even though overall anger 
relationship is still proportional to the stinginess of the 
offer (monetary offer-ratio). It shows emotional-
intensity changes depending on whether they see the 
offer as fair or not. 

Note that in terms of monetary gain, generous 
offers ([$5:$5) are often considered as hyper-fair, 
while stingy offers (\$5:$5) are considered as unfair 
[66, 67]. However, fairness ratio is not always centered 
on $5:$5, but skewed toward stingy offer or generous 
offer, dependent on the subject’s subjective bias in 
their perception of fairness [28– 30, 83]. In order to 
simplify our analysis, ignoring the subjective fairness 
bias for a moment (assuming fairness is centered on 
$5:$5) and assuming money and fairness are the 
desired outcomes wanted by the subjects, and then 
unfair offers create the classical dilemma—getting 
only money or fairness, but not both. This allows us to 
differentiate the discrepancy between wants and gets in 
the gain/ loss measures with respect to money and/or 
fairness. We will focus our analysis on emotions 

generated by subjects in response to the amount of 
gain/loss, rather than analyze whether their decisions 
are rational or not [17, 39, 52]. 
5.3 Emotional-Intensity Conditioned on 

Acceptance Decision 
To identify the factors that may affect the 

emotional response, we separate the subject’s response 
conditioned on their acceptance (Fig. 2) versus 
rejection decisions (Fig. 3). The emotional baseline 
changes drastically, i.e., they get angrier when they 
reject the offers. Although the overall inverse 
proportionality relationship remains in both cases, the 
emotional-intensity curve of anger shifts upward from 
not-angry in acceptance trials (Fig. 2a) to angry in 
rejection trials (Fig. 3a). They reported not-angry for 
all monetary offers when they accept the offers (Fig. 
2), independent whether it is fair or not. That is, when 
they get (the money) they want, they are not-angry; 
which is consistent with our hypothesis of getting what 
one wants in happy emotion. 
5.4 Emotional-Intensity Conditioned on Rejection 

Decision 
When they rejected the offers (Fig. 3), they 

consciously acknowledged their anger (left-half of Fig. 
3a, b) when the offers are unfair, but self-reported not-
angry when the offers are hyper-fair (right-half of Fig. 
3a, b). Interestingly, subjects do not just reject unfair 
offers. They do reject hyper-fair offers also, for 
whatever reasons, but not out of anger, because they 
reported not-angry when they reject such generous 
offers. It is not a denial, because they do report angry 
when rejecting unfair offers. If they were in denial of 
anger, they would not have reported their emotional 
intensity of anger as a continuous function (straight 
line) proportional to the stinginess of the offer (or 
inversely proportional to the gain ratio) (Fig. 3a). That 
is, the rejection is only emotionally driven by their 
anger when the offer was stingy (unfair) and but not 
when the offer is generous (fair or hyper-fair). 

Their decision to reject offers is not necessarily 
emotionally driven by anger (as most UG studies 
assumed), as subjects reported not-angry when they 
turn down generous offers (probably because money is 
not what they want, they are not starving for a few 
dollars, or if they regard the offer as bribery or 
sweetening deal for them). In fact, they reject more on 
hyper-fair offers than $5:$5 even-split perfectly-fair 
offer, which suggests that they may be suspicious of 
the ulterior motive of the proposer to offer such 
generous offer, and reject it due to mistrust, don’t need 
or want any money, if they were rich, or other 
legitimate reasons rather than reject it out of anger or 
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irrationally. This is consistent with our hypothesis that 
they would not be unhappy (or angry) if money is not 
what they want, when rejecting the generous offers 
(Fig. 3a, b, right-half). In other words, if they see it as 
dirty money, they would be happy to reject it, even if 
the offer is extremely generous [86]. They are unhappy 
only when they do not get what they want (losing both 
money and fairness when they rejected unfair offers), 
which is exactly the emotion they reported in rejecting 
the stingy offer (Fig. 3a, b, left-half). This is consistent 
with the negativity bias that people tend to attribute 
proportional losses (misfortunes) to intentional agent 
subjectively, but objectively neutral to gains (fortunes) 
[46]. Last but not least, they probably reject the offer 
because of their bias in fairness perception, when they 
actually self-reported perceiving hyper-fair offers as 
unfair, shifting the fairness-curve down to unfair [88]. 

Thus, the decision to reject monetary offer can be 
very rational and is consistent with our emotional 
hypothesis for reducing the discrepancy between wants 
and gets. If no such discrepancy exists, they would not 
experience unhappiness, which is what they reported in 
rejecting the generous offer. 
5.5 Non-Randomness of Emotional Responses 

This also shows that subjects took the experiment 
seriously, and did not reject the monetary offers 
randomly, or out of no good reasons. It also shows that 
subjects did not deny the emotions in their self-report, 
or left their emotion unreported, when they accurately 
reported angry when rejected unfair offers, but not-
angry when they rejected hyper-fair offers or when 
they accepted offers of any monetary amount. When 
the offers were proposed in random order, they would 
not have consciously reported the proportional 
emotional intensity in a sequential manner according to 
the descrambled monetary gain ratio as plotted in the 
graphs. Most importantly, these graphs represent the 
average response from the entire sampled population 
such that even if individual subjects respond differently 
and feel differently emotionally (which they do), as a 
whole, they do respond proportionally to the gain ratio 
in a consistent manner. Regardless of individual 
variability, the graphs reveal the proportional 
relationship in the analysis. 
5.6 Persistence of Proportionality Relationship 

Conditioned on Decision 
Independent of the rationale behind responder’s 

decision, the data demonstrated the proportionality of 
emotional intensity associates with the perceived 
gain/loss, regardless of their decision to accept or reject 
the offers (Fig. 1a). If their decisions were taken into 
account, the proportionality relationship still remains 

(Figs. 2a, 3a). This demonstrates the robustness of the 
proportionality relationship in our emotional-intensity 
hypothesis. 

If decisions were taken into account, the baseline 
of the emotional-intensity curve up shifts upward from 
not-angry to angry—in the decision process from 
accepting to rejecting the offer, regardless of whether 
the offer is fair or not, stingy or generous (Figs. 2a, 3a). 
That is, the intercept moves up. This corresponds to the 
baseline emotion changes from not-angry to angry by 
2.5 points in a 5-point scale (i.e., 50% of the angry-
scale or not-angry-scale). Whether emotion alters the 
decision, or decision alters the emotion, is yet to be 
determined. Nonetheless, a correlation between 
decision and emotion is quantified by the emotional-
intensity curves here. 

Interestingly, this drastic shift in baseline emotion 
according to their decision is independent of their 
fairness perception. That is, the emotional baseline 
changes by half-of-its-max-intensity if the decision is 
changed from accepting to rejecting, for both hyper-
fair and unfair trials, but there is only an emotional 
sensitivity change from hyper-fair and unfair. In other 
words, the emotional baseline is dependent on decision 
more than fairness. This is consistent with the finding 
that anger, spite or revenge is a bigger factor than 
fairness perception in their decision to reject [58]. 
5.7 Emotional-Intensity Conditioned on Fairness 

(Generous Offers) vs. Unfairness (Stingy 
Offers) 

In order to identify the condition in which fairness 
may affect their emotion, we separate the curve-fitting 
into hyper-fair and unfair groups (Figs. 1b, 2b, 3b). 
When fairness (offer-ratio) is taken into account, it 
reveals a change in the slope of the emotional-intensity 
curves—a change in emotional sensitivity. That is, 
each increment of $1 is perceived differently 
emotionally, depending on whether it is fair or not. 
This sensitivity change is different for acceptance 
versus rejection decision (Figs. 2b, 3b). In other words, 
the emotional intensity to fairness is interrelated to 
decision, rather than independent of decision. More 
specifically, when they decide to accept the money, the 
emotional intensity is rather constant for unfair offers 
(Fig. 2b, left-half). This suggests as long as they got 
the money, they are rather indifferent to the amount of 
unfairness, i.e., the exact amount of unfairness does not 
change their emotion by much. The emotion does 
change proportionally when it is a hyper-fair offer (Fig. 
2b, right-half). On the other hand, when they decide to 
reject the money, the opposite is true. Their emotional 
intensity is indifferent to hyper-fairness; that is, they do 
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not care how generous the offer is, it will not change 
their heart when they decided to reject it. But if the 
offer is unfair, and if they decide to reject it, then their 
anger increases with the stinginess of the money-offer 
ratio. 
5.8 Shifting of Emotional-Intensity Curve 

Upward from Acceptance to Rejection 
Decision 

Taken the above two dependence factors together, 
the emotional-intensity curve is shifted/altered more by 
decision than fairness consideration. In other words, 
decision is a bigger hidden factor that biases angry 
emotion to a different level than the fairness hidden 
factor, or that anger is a bigger factor than fairness in 
biasing their decision. On the other hand, fairness 
affects the emotional sensitivity on the perception of 
disparity in the gain ratio. Although the present 
experimental design does not allow us to differentiate 
whether decision actually biases emotion or emotion 
biases decision, (or whether fairness biases emotion or 
emotion biases fairness perception), our results did 
reveal the hidden factor that affects (correlates with) 
emotional bias is greater for decision than fairness. 

The finding that decision has a much greater effect 
on emotion than fairness is very much consistent with 
our discrepancy hypothesis of emotion measuring the 
outcomes to assess congruency with reality. It is the 
decision that creates the outcome of reality whether the 
responder actually gets the money or not. Without such 
decision, no reality-check be possible. Only after a 
decision is made, will the reality-check be possible to 
compare the difference between the predicted and 
actuality. This provides the emotional feedback to 
assess whether such decision is a wise decision to 
resolve the discrepancy between what they want and 
get and whether it actually reduced the discrepancy. In 
case of rejecting the money, it failed to resolve the 
discrepancy (when they realize they lost the money); 
thus, it amplifies the emotion further for getting 
nothing. 
5.9 Proportional Continuum of Emotional-

Intensity from Acceptance to Rejection 
One of the most unexpected results from the 

analysis is that when Fig. 2a is combined with Fig. 3a 
side-by-side (by appending Fig. 2a to the right of Fig. 
3a), a continuous straight line can be connected from 
rejection trials to acceptance trials (Fig. 4). This 
suggests that the decision to accept or reject is highly 
correlated with the emotional intensity in a continuum. 
As anger intensity decreases from angry to not-angry, 
the decision changes from rejection to acceptance. The 
cutoff point for this switch in decision (from rejection 

to acceptance) is not centered on the neutral point of 
anger (zero angry-intensity rating at $5:$5 offer-ratio 
in Fig. 3a), but at the -1.5 angry-intensity (at $10:$0 for 
rejection and $0:$10 for acceptance, center of Fig. 4). 
That is, for those who rejected the offer, if the proposer 
had offered them all $10, they will change their mind 
and accept it. For those who accepted the offer, if the 
proposer had offered them no money ($0), they would 
reject it instead of accept it. This suggests they may 
have already made up their mind before the offer was 
given. 
5.10 Emotional Bias in Shifting Baseline Emotional 

Threshold for Switching Decision 
This shows the decision to accept or reject is a 

continuous function of emotional intensity. The 
switching condition to change from rejection to 
acceptance is not pivoted at neutral (zero) anger 
threshold level, but shifted by -1.5 point (30% of 5-
point scale) in the emotional-intensity scale. That is, 
small amount of happiness (not-angry) would not 
change their mind. It takes a minimum threshold of 
30% happiness (30% not-angry) to accept the offer; or 
that it takes 100% of the monetary offer-ratio to 
convince those who reject to accept the offer, or 0% of 
the offer-ratio to convince those who accept to reject 
the offer. This shows the emotional bias in the 
threshold shift in emotional baseline for switching their 
decision. 

Because we cannot differentiate whether emotional 
response leads to decision or decision leads to 
emotional response using this paradigm, what we can 
deduce is that decision and emotions are highly 
correlated in a continuum, in spite of the various 
hidden factors (such as fairness) that slightly alter such 
continuity into step-functions (Fig. 5) rather than a 
straight line (Fig. 4). That is, the underlying 
predominant factor correlated with decision is 
emotional level, while fairness merely alters the 
sensitivity factor at a particular emotional level. This is 
consistent with the earlier report that anger is a bigger 
contributing factor than fairness in rejection decision 
[58] and extends the earlier finding beyond anger into 
non-anger in rejecting hyper-fair offer because of the 
downward shift in baseline angry-emotional threshold 
for decision to switch. Most importantly, Fig. 5 shows 
anger emotional intensity is not only a function of 
offer-ratio (monetary gain-ratio), but also depending on 
whether the offer-ratio is greater than one ([1) or less 
than one (\1). The brain somehow computes the gain-
ratio differently with different bias (skewing effect) to 
produce different reported emotional level. 
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5.11 Cognitive Emotional Response After the 
Decision 

Note that the emotion they reported are recorded 
after the decision had made, in which the reported 
emotion is more likely to be a resolved emotion as a 
consequence of their decision than a transient emotion 
in response to the offer prior to their decision. Due to 
the limitations of the experimental design, we cannot 
differentiate which emotion they are reporting to. 

Nonetheless, this shows their desire for fairness 
and their desire for monetary gain can influence on 
their emotional response from angry (if they want both, 
but end up getting none, when they rejected the 
money)—to not-angry (if they want one or the other, 
and end up getting some, when they accept the money). 
This is consistent with our hypothesis that emotion 
resolution is a process for optimizing the system by 
error reduction (reducing the discrepancy between 
wants and gets, by checking with reality). Such 
discrepancy can be reduced by minimizing the wants 
(wanting less) or maximizing the gets (getting more), 
which is consistent with the report that satisficers (who 
opt for fewer choices) are happier than maximizers 
(who opt for more choices) [20]. 

The discrepancy is biggest—when they want (both 
money and fairness), but get none (no money nor 
fairness)—which is reflected in their reported anger 
(Fig. 3, left-half). The discrepancy is the least—when 
they want less (choose money or fairness, but not 
both), but getting more (at least getting some 
money)—which is reflected in their reported happiness 
[86] and not-angry (Fig. 2). 

Whether such decision is rational or not is not an 
issue here, as far as the emotional feedback is 
concerned. The feedback exactly indicates they got 
nothing in reality, a big discrepancy from what they 
want in their expectation. Even though we did not 
measure (or would not know in any way, given the 
experimental design) exactly what they want in their 
mind, it can be deduced from the analysis that this is 
one of the likely scenarios. Similarly, whether the 
motive for their anger is revenge or altruistic 
punishment in rejecting falls into the theory-of-mind 
([76], [91]) in social reciprocity that our experimental 
design did not address, nor is it part of our current 
emotion model or hypothesis to verify. 

Nonetheless, if revenge were a motive for 
rejection, it would be consistent with our anger 
hypothesis that it is a failed attempt to change the 
world rather than correcting its own error. Such failed 
attempt would appear as irrational because it did not 
accomplish the intended goal to regain fairness by 

rejecting the free money. The finding that altruistic 
punishment is more associated with anger than 
unfairness [69] is consistent with our model that anger 
motivates behavior directed externally to others (rather 
than internally) in the attempt to resolve the 
unexpected difference between what one wants and 
gets. 

We will address such emotional feedback for 
social communication in our next EMOTION-III social 
interaction model (Tam, in preparation). This next 
model will be the natural progression from the 
evolution of emotional “feel” in sensation (i.e., 
pleasant/unpleasant sensation) in the EMOTION-I 
model as the building block to the evolution of 
emotional error-discovery feedback in EMOTION-II 
model. It will extend these two prior “self”-recognition 
models to “others”-recognition model to provide error 
feedback for social interaction in real-world 
environment with other autonomous agents (animals 
and humans) to involve them in the error-correction 
process. 
5.12 Footnote on Regression Coefficient 

As a footnote, the regression coefficient r2 value is 
dependent on (1) the slope, (2) residual errors, and (3) 
the range of x, the correlating variable.  That is, r2 
increases as the slope increases – which represents the 
hypothesis that the variables x and y are related.  If the 
slope is zero, r2 = 0 also, which means the putative 
variables x and y are not related, and they are 
independent of each other.  But r2 also decreases as the 
residual error increases in the curve-fitting.  Therefore, 
caution has to be taken to interpret small r2 values – it 
could mean a shallow slope or the range of x is small, 
but not necessarily large residual error (poor goodness-
of-fit).  To account for the difference in r2 values in 
Panel A vs. Panel B, let us consider the above 3 factors 
that affect r2 one by one: 

(1) the reduction in r2 values is due to smaller 
range of x used: 
(a) in Panel A: a range of 9 (from $1:$9 to 

$9:$1) 
(b) in Panel B: a range of only 4 (from $1:$9 

to $4:$6) for left-half, a range of only 4 
(from $6:$4 to $9:$1) for right-half; 

(2) the reduction in r2 values is due to shallower 
slope (independent relationship between x and 
y); 

(3) the reduction in r2 values is due to an increase 
in residual error, which is caused by the 
reduction in statistical power and variability in 
smaller sample size (n).  This is evidenced by 
the large standard-error-of-mean (SEM) in 
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right-half of Fig. 3 (which represents only a 
small number of subjects rejected hyper-fair 
offer), when compared to the small SEM in 
right-half of Fig. 2 (which represents large 
number of people who accepted hyper-fair 
offers). 

6 Discussion 
The results are consistent with our hypothesis that 

unhappy (angry, in this case) emotional intensity is 
directly proportional to loss of desirables (or inversely 
proportional to the desired gains). The proportionality 
relationships can change, depending on the perceived 
fairness and acceptance/rejection decisions. That is, 
based on the graphs, the emotional curves are shifted 
according to the subjective biases by the subjects. The 
intercept of the emotional-intensity curve (baseline 
emotion) changes depending on decision, whereas the 
slope of the emotional-intensity curve (emotional 
sensitivity) changes depending on the perceived 
fairness. Note that there is a discrete shift from the 
hyper-fair trials to the unfair trials, indicating the 
sudden change in anger response when encountered 
with fair versus unfair offers, but that shift is not as 
great as the difference between acceptance and 
rejection decisions. 
6.1 Empirical Emotional-Intensity Curve 

Established 
The subjective emotional biases can be accounted 

for by two objective parameters (slope, w, and 
intercept, b) in the emotional curves by the empirical 
emotional-intensity equation, similar to the happy 
emotional curve [86] and jealousy emotional curve 
[87], except for the difference in proportionality 
relationship: 

€ 

E = wG + b  (10) 

where 

€ 

E  denotes emotional-intensity, 

€ 

G denotes the 
(monetary) gain (

€ 

G > 0, represents gain, and 

€ 

G < 0 
represents loss), 

€ 

w  represents the weighing-factor for 
scaling the emotional sensitivity (slope in the graph), 
and 

€ 

b corresponds to the residual baseline emotion 
(intercept in the graph).  The weighing-factor 

€ 

w  alters 
the emotional sensitivity to a particular gain/loss, i.e., 
the difference in emotional response for each $1-
increment loss.  It corresponds to the amplification of 
emotion bias to increase its sensitivity for selecting 
which of the error-measures would be optimized first, 
as described in our model earlier.  The residual 
emotion 

€ 

b represents the baseline emotion. 
Note that Eq. 10 is an empirical equation derived 

from the experimental data rather than derived from 

our theoretical model earlier. This is why we did not 
introduce this equation in the theoretical derivation 
section because this equation is derived from the data 
analysis rather than from the model. This shows the 
convergence of evidence on the quantification of 
emotional bias based on independent derivation from 
two separate approaches—different computational and 
experimental methodologies. Yet they both arrive at 
the same conclusion demonstrating the congruency of 
our emotional bias hypothesis theoretically and 
experimentally. 

This residual term, b, in Eq. 10 can further be 
generalized to include the sum of all other gains (or 
losses), not just monetary gain/loss G, but also other 
factors, such as fairness, decision, gender [85], and any 
other unaccounted hidden factors. Therefore, the 
residual emotions, b, can be represented by: 

€ 

b = w1X1 + w2X2 + w3X3 + ...+ c  (11) 

where 

€ 

wi represents the weighing-factor for scaling 
emotional sensitivity for each gain factors 

€ 

X1, 

€ 

X2, 

€ 

X3 , 
etc. and 

€ 

c  represents the constant corresponding to the 
intrinsic (innate) baseline emotion.  Generalizing 

€ 

G as 
one of the generalized variables 

€ 

X1  (i.e., 

€ 

G = X1), Eq. 
10 becomes: 

€ 

E = wiXi
i=1

n

∑ + c  (12) 

This generalized emotional-intensity equation, E, can 
be represented by a multi-dimensional function where 
X1, X2, …, Xn are the independent variables in a n-
dimensional graph.  In this UG experimental example, 
X1, represents the monetary gain, X2 represents the gain 
in fairness, and X3 represents the decision. 
6.2 Quantification of Emotional Biases by 

Shifting of the Emotional-Intensity Curve 
The cognitive self-reported emotional intensity is 

skewed (biased) by shifting the emotional-intensity 
curve (up or down, left or right), or changing the slope 
or intercept, or the shape of the proportionality 
relationship. In other words, emotional bias can be 
quantitatively by: 

(a) lifting/depressing the emotion – shifting curve 
up/down, 

(b) biasing the perception (perceived gains/losses) 
– shifting curve left/right, 

(c) altering the emotional sensitivity – changing 
the slope, and/or 
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(d) exaggerating the emotion—changing from a 
linear proportionality (Figs. 2a, 3a, 4) to other 
non-linear functions (Figs. 2b, 3b, 5). 

There are many other hidden factors, which are 
known to contribute to the rejection and emotional 
response in other UG studies. Ventromedial prefrontal 
cortex (vmPFC) damage can cause an increase in 
rejection rate to unfair offers in UG [39]. Testosterone 
level in men can increase the rejection rate in UG [12], 
yet, in the contrary, testosterone in women can actually 
increase prosocial cooperative fair bargaining behavior 
and reduce conflicts compared to placebo in UG [23]. 
Low level of serum serotonin can also increase 
rejection rate in UG [18, 19, 24] Low level of serum 
omega-3 fatty acids, which is linked to impulsivity and 
hostility, can also increase rejection rate in UG [25]. 
Even sadness induced by watching a sad movie can 
bias the UG decision [31]. However, it is not known 
how these hidden factors affect the emotional-intensity 
level in UG, or they merely affect/impair the decision 
judgment unrelated to emotions. 
6.3 Skewing in Emotional Processing 

Thus, emotional processing involves not only 
computation of the gain/loss signals, but also the 
skewing effect of such computation via shifting of the 
emotional-intensity curve. The shifting of emotional-
intensity curve captures the subjective biases of 
emotion graphically by the mathematical function in 
Eq. 12. The equation provides an intuitive assessment 
of the richness of emotional response simply by 
shifting the emotional-intensity curve representing the 
qualitative distortion (subjective bias) of emotion by 
humans. 

Given that emotional bias can enhance emotional 
processing by selecting specific error signal for error 
reduction, small emotional bias can be advantageous to 
survival. But if such emotional bias becomes too 
exaggerated, it could lead to distortion of reality, 
resulting in pathological conditions, such as affective 
disorders and other psychiatric dysfunctions, caused by 
distortion of emotional perception or exaggerated 
emotional responses. With a theoretical framework for 
emotion established, systematic quantification of 
emotion can be done experimentally to identify the 
various hidden factors that affect such emotional 
processing.  
6.4 Rationality in Rejecting Monetary Offers in 

Ultimatum Game 
It may not be a paradox or irrationality when a 

person rejects monetary offers in UG. Just because it is 
“free” money, they do not have to accept it, if money is 
not what they want. The rational monetary 

maximization assumption (as reported in most UG 
studies) presumes if they were rational, they would 
always accept any offer because it is free money, and 
irrational if they reject it. This assumption does not 
always hold true, not just in UG settings, but also in 
other real-life scenarios where no rational human (or 
animal) would always accept sex offer just because it is 
free. They have to want it to accept it. In fact, it is very 
repulsive to accept unwanted sex, which would lead to 
an unhappy state, as predicted in our model, when a 
person gets something that he/she does not want. It is 
very rational to reject unwanted offers. 

This paradox is analogous to the cultural legend 
that “you can bring a horse to the water, but you cannot 
make him drink.” The horse needs to be thirsty before 
he will want to drink. To assume the horse will accept 
any water, just because we offer them free water, is 
just an irrationality of human assumption that we 
imposed onto the horse in this cultural myth, rather 
than the irrationality or the stubbornness of the horse 
when he refuses it. This is because of the biological 
evidence that animal behavior is often driven by 
physiological needs, and by extension, psycho-
physiological wants. It is a simplistic assumption to 
assume any rational human will accept any free money 
handed out to them, without consideration of other 
factors. Decision always requires selection of choices, 
conditioned on the circumstances. If the choice is fixed 
regardless of the circumstances, it is a reflex rather 
than a decision. 

The rationality for decisions to reject (or accept) is 
also consistent with Nash equilibrium in behavioral 
economics [9, 50] where the optimizing variable 
includes not just money, but other variables, such as 
reward and punishment [70], fairness [52], and social 
reciprocity, such as altruism [65] and vengeance [58], 
intentional choice of proposer [26], and other cost-
functions of value [82]. The rational decision to reject 
monetary offer is similar to the decision in behavioral 
economics to pay a higher price for a product (rather 
than the cheapest price), when the optimizing variable 
is not just price, but also quality of the product. 

Furthermore, the above emotional responses 
reported by the subjects are consistent with the 
“Maximization Paradox” in “Paradox of Choice.” 
“Maximizers” who opt for more choices often end up 
feeling less satisfied (when they get less than what they 
want) while “satisficers” who opt for less choices often 
end up feeling more satisfied (when they get exactly 
what they want) [20]. 

In addition, the “reinforcer devaluation effect” 
could also have played a role here; when a person (or 
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animal) is satisfied with the reward, subsequent 
identical rewards are devaluated, i.e., they worth less 
once they are satisfied [2, 3, 21], in which basolateral 
amygdala is crucial in the expression of reinforcer 
devaluation [35]. 

The conjecture that any true rational responder 
should accept any non-zero amount of money, 
according to rational maximization of payoff, is often 
an assumption based on self-interest of monetary gain 
only, but even a simple mathematical models (with 
minimalist assumptions without any reasoning or 
intelligence capacity) predicts fairness can be evolved 
out of interactions in UG to reject unfair offers rather 
than accepting any free money merely for monetary 
gains [22, 57] by reaching a dynamical equilibrium at 
the fairness point (by computing the differential cost-
functions) without needing any intelligence or 
reasoning ability. In fact, the report that chimpanzees 
were rational maximizers in UG when they did not to 
reject offers [34] was due to the delayed reinforcement 
in their experimental protocol rather than their inability 
to evaluate fairness. When humans were asked to delay 
their rejection response from 1 min to 5 min, humans 
too acted like the reported chimpanzees as rational 
maximizers of payoff not to reject any offers due to the 
cost of delayed reinforcement to forgo the rejection 
and accept the offers [67]. Furthermore, capuchin 
monkeys were shown to reject unequal pay using an 
alternate experimental paradigm [11]. 

This shows humans and other animals do 
incorporate other cost factors (including reinforcing 
rate, consideration of others and fairness) in their 
decision, which can override the monetary gain or the 
cost of loss in their decision. Furthermore, the rejection 
rate in UG changes depending on the knowledge of the 
availability of alternate offers for the proposer to offer 
to the responder ([26], [29]), which suggests the 
responder incorporates the intention of the proposer as 
well as outcomes in their decision. 
6.5 Rejection of Null Hypotheses 

Although impulsivity may play a role in shaping 
the decision to reject remunerative, but unfair, offers, 
our current experimental paradigm is not designed to 
address the reasons why they make such decision (as in 
most other UG studies), but rather the emotional 
correlates with the gain/loss measures to prove our 
emotion hypothesis. In fact, as stated in our null 
hypothesis, we do not want to assume any 
preconceived notions of what emotions are used for or 
how emotions bias decisions to prevent proving a self-
fulfilling prophecy. As a corollary, we apply similar 
null hypothesis for the decision-making process, i.e., 

by assuming the decision is random, rather than 
determined by some preconceived factors, such as 
anger or impulsivity. That is why our experimental 
design specifically avoids coercing the subjects to 
make their decision in a certain way, timing their 
response to force them to make an impulsive decision, 
or coaxing them to feel any particular emotion. This 
allows us to reveal the consistency of our results 
demonstrating a proportionality relationship, in spite of 
the potential random variability introduced by the 
uncontrolled and unaccounted hidden variables if the 
null hypothesis were true. Thus, we can reject the null 
hypothesis that emotional intensity is unrelated to 
gain/loss, and the null hypothesis that their decision is 
random and unrelated to emotion and fairness is 
unrelated to emotion, when consistent and non-random 
results are correlated with the putative variables in our 
hypothesis. 
6.6 Consistency of Gain-Ratios with the 

Emotional Correlates 
Specifically, the proportionality relationship 

emerges when gain ratio is correlated with the angry 
emotion variable (Fig. 1a), regardless of the hidden 
variables of fairness and decision. When fairness 
hidden variable is taken into account alone (Fig. 1b), 
the proportionality relationship persists for both hyper-
fair and unfair conditions, albeit slightly different 
proportionality. When decision hidden variable is taken 
into account alone (Figs. 2a, 3a), the proportionality 
also remains for both acceptance and rejection 
conditions, although shifted upward. When both 
decision and fairness hidden-variables are taken into 
account simultaneously (Figs. 2b, 3b), the 
proportionality still exists, but changes into a step-
function. That is, no matter how many hidden variables 
we included in the analysis, the emotional-intensity 
proportionality relationship with gain ratio exists in all 
cases, in addition to further revealing how such these 
hidden variables alter the proportionality relationships. 
Most strikingly in our analysis is that the emotional-
intensity relationship is a continuum that spans across 
decision choices (Fig. 4), which changes into a step-
function if fairness is taken into account (Fig. 5). 

Furthermore, similar proportionality relationships 
were demonstrated quantitatively for other emotions—
happy emotion [86], jealousy emotion [87], sad 
emotion (Tam, in preparation), and fairness [83, 88]). 
These proportionality relationships also exist when 
gender is taken into account, when other monetary 
values ($10-split vs. $10 million-split) are taken into 
account and when other quality values (money vs. 
love) are taken into account [85]; in preparation). The 
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linearity relationship is also consistent with the finding 
that similar prediction error is encoded as a linear 
function of reward probability by neural recordings of 
the mesolimbic neurons [1]. 

The robustness of the relationship between 
emotional intensity and the gain/loss ratio is consistent 
across all hidden variables that we had examined that it 
is sufficiently convincing to reject the null hypothesis 
and accept the hypothesis that the putative variable of 
discrepancy error is indeed an emotion-related variable 
in the emotional processing loop. 
6.7 Experimental Caveats 

Note that due to the design of the experimental 
survey, the emotional responses reported by the 
subjects were arrived at the time after they made the 
decision to the proposal, rather than before or during 
their decision was made. This means the emotion they 
reported could be an emotional resolution after the 
decision rather than the transient emotion during their 
emotional processing prior to the decision. As 
discussed in the theoretical derivation section, the 
transient emotions are different from the resulting 
emotional states. Although no timing constraints were 
imposed on the subjects, most subjects made the 
decision and reported their emotions within seconds 
after the proposal was offer. So the reported emotional 
response can represent a mix of transient emotions and 
stabilized emotional state of resolution. Regardless of 
this variability and uncertainty of what stage the 
emotional processing they are reporting, the results did 
show consistent pattern among a large population of 
subjects. 

In order to delineate the exact neural emotional 
processing, time-sequence of transient emotional 
response before, during, and after the decision from the 
time of proposal offer will be recorded using 
simultaneous fMRI and EEG recordings in subsequent 
studies. This will allow us to determine whether such 
proportionality relationship is preserved at the neural 
coding level and how it varies with the emotional 
processing stages. 

Furthermore, the results reported here are the 
emotional states reported through the psychological 
filters of the subjects, including the possibility that they 
could be in emotional denial. If they were in denial, the 
results would not be expected as consistent as revealed 
in our analysis. Nonetheless, brain imaging and 
electrophysiological recordings of neural firings will 
provide direct measures of whether such filtering, 
biasing or denial may have occurred that are 
undetectable due to the limitations of the present 
experimental methodology. 

7 Conclusions 
The experimental data collected from human 

subjects confirmed the hypothesis of the EMOTION 
models that unhappy emotion is inversely proportional 
to the gain between desired and actual outcomes. The 
data also quantified the skewing (biasing) effect of 
other hidden factors (such as perceived fairness and 
decision and other cognitive and subconscious factors) 
by changing the slope and intercept of the empirical 
emotional-intensity curve. The data show that decision 
shifts the emotional-intensity baseline up/down (by 
changing the intercept), while fairness changes the 
emotional sensitivity (by changing the slope). It shows 
that decision is a much bigger factor on biasing 
emotional level than fairness, or vice versa. 

Most interestingly, emotional intensity can be 
shown to be a continuum from acceptance to rejection 
decision. It is a straight-line linear function if fairness 
is not taken into account. If fairness is taken into 
account, this linear function changes into a step 
function. That is, anger emotional intensity level is 
computed not only based on the gain-ratio, but also 
skewed depending on whether gain-ratio is greater than 
one (>1) or less than one (<1), confirming the 
dependence of emotional intensity on gain/loss 
measure as predicted by our model. 

This demonstrates that emotions are quantifiable 
measures used for computation within the brain to 
process error conditions in the optimization process to 
minimize self-discovered errors by a subconscious 
reality-checking process, as predicted by the theoretical 
model. By establishing a comprehensive theoretical 
framework addressing the computation of emotions, it 
will facilitate the design of future experiments to reveal 
how emotion is biased by hidden variables associated 
with emotional processing in both normal cognitive 
functions and pathological dysfunctions in affective 
disorders. 

Acknowledgments  I appreciate the comments and 
suggestions by the anonymous reviewers. I also thank 
Richelle Trube and Krista Smith for proofreading the 
manuscript. 

References 
1. Abler B, Walter H, Erk S, Kammerer H, Spitzer M. 

Prediction error as a linear function of reward 
probability is coded in human nucleus accumbens. 
Neuroimage. 2006;31:790–5. 

2. Adams CD. Variations in the sensitivity of instrumental 
responding to reinforcer devaluation. Q J Exp Psychol. 
1982;34B:77–98. 



(Preprint prior to published in Cognitive Computation, OnlineFirst™ 12 March 2011) 
http://dx.doi.org/10.1007/s12559-011-9095-2 
 

 20 

3. Adams CD, Dickinson A. Instrumental responding 
following reinforcer devaluation. Q J Exp Psychol. 
1981;33B:109–21. 

4. Barto AG, Sutton RS. Landmark learning: an 
illustration of associative search. Biol Cybern. 
1981;42:1–8. 

5. Barto AG, Anderson CW, Sutton RS. Synthesis of non-
linear control surfaces by a layered associative search 
network. Biol Cybern. 1982;43:175–85. 

6. Bechara A. The role of emotion in decision-making: 
evidence from neurological patients with orbitofrontal 
damage. Brain Cogn. 2004;55:30–40. 

7. Bender VA, Feldman DE. A dynamic spatial gradient of 
Hebbian learning in dendrites. Neuron. 2006;51:153–5. 

8. Berridge KC. The debate over dopamine’s role in 
reward: the case for incentive salience. 
Psychopharmacology (Berl). 2007;191:391–431. 

9. Braun DA, Ortega PA, Wolpert DM. Nash equilibria in 
multi-agent motor interactions. PLoS Comput Biol. 
2009;5:e1000468. 

10. Bray S, O’Doherty J. Neural coding of reward-
prediction error signals during classical conditioning 
with attractive faces. J Neurophysiol. 2007;97:3036–45. 

11. Brosnan SF, De Waal FB. Monkeys reject unequal pay. 
Nature. 2003;425:297–9. 

12. Burnham TC. High-testosterone men reject low 
ultimatum game offers. Proc Biol Sci. 2007;274:2327–
30. 

13. Bush D, Philippides A, Husbands P, O’Shea M. Spike-
timing dependent plasticity and the cognitive map. Front 
Comput Neurosci. 2010;15:142. 

14. Butz M, Wörgötter F, van Ooyen A. Activity-dependent 
structural plasticity. Brain Res Rev. 2009;60:287–305. 

15. Caporale N, Dan Y. Spike timing-dependent plasticity: 
a Hebbian learning rule. Annu Rev Neurosci. 
2008;31:25–46. 

16. Chauvin Y. Principal component analysis by gradient 
descent on a constrained linear Hebbian cell. In: 
Proceedings of IJCNN, Washington, vol. I. 1989. p. 
373–80. 

17. Civai C, Corradi-Dell’Acqua C, Gamer M, Rumiati RI. 
Are irrational reactions to unfairness truly emotionally-
driven? Dissociated behavioural and emotional 
responses in the Ultimatum Game task. Cognition. 
2010;114:89–95. 

18. Crockett MJ. The neurochemistry of fairness: clarifying 
the link between serotonin and prosocial behavior. Ann 
NY Acad Sci. 2009;1167:76–86. 

19. Crockett MJ, Clark L, Tabibnia G, Lieberman MD, 
Robbins TW. Serotonin modulates behavioral reactions 
to unfairness. Science. 2008;320:1739. 

20. Dar-Nimrod I, Rawn CD, Lehman DR, Schwartz B. The 
maximization paradox: the costs of seeking alternatives. 
Pers Individ Differ. 2009;46:631–5. 

21. Dickinson A, Nicholas DJ, Adams CD. The effect of 
instrumental training contingency on susceptibility to 

reinforcer devaluation. Q J Exp Psychol. 1983;35B:35–
51. 

22. Duan WQ, Stanley HE. Fairness emergence from zero-
intelligence agents. Phys Rev E Stat Nonlinear Soft 
Matter Phys. 2010;81:026104. 

23. Eisenegger C, Naef M, Snozzi R, Heinrichs M, Fehr E. 
Prejudice and truth about the effect of testosterone on 
human bargaining behaviour. Nature. 2010;463:356–9. 

24. Emanuele E, Brondino N, Bertona M, Re S, Geroldi D. 
Relationship between platelet serotonin content and 
rejections of unfair offers in the ultimatum game. 
Neurosci Lett. 2008;437:158–61. 

25. Emanuele E, Brondino N, Re S, Bertona M, Geroldi D. 
Serum omega-3 fatty acids are associated with 
ultimatum bargaining behavior. Physiol Behav. 
2009;96:180–3. 

26. Falk A, Fehr E, Fuschbacher U. On the nature of fair 
behavior. Econ Inquiry. 2003;41:20–6. 

27. Greene JD, Nystrom LE, Engell AD, Darley JM, Cohen 
JD. The neural bases of cognitive conflict and control in 
moral judgment. Neuron. 2004;44:389–400. 

28. Güroğlu B, van den Bos W, Rombouts SA, Crone EA. 
Unfair? It depends: neural correlates of fairness in social 
context. Soc Cogn Affect Neurosci. 2010 (Advance 
Access published March 28, 2010). 

29. Güroğlu B, van den Bos W, Crone EA. Fairness 
considerations: increasing understanding of 
intentionality during adolescence. J Exp Child Psychol. 
2009;104:398–409. 

30. Halko ML, Hlushchuk Y, Hari R, Schu ̈rmann M. 
Competing with peers: mentalizing-related brain 
activity reflects what is at stake. Neuroimage. 
2009;46:542–8. 

31. Harlé KM, Sanfey AG. Incidental sadness biases social 
economic decisions in the Ultimatum Game. Emotion. 
2007;7:876–81. 

32. Hebb DO. The organization of behavior. New York: 
Wiley; 1949. 

33. Herwig U, Baumgartner T, Kaffenberger T, Brühl A, 
Kottlow M, Schreiter-Gasser U, Abler B, JänckeL, 
Rufer M. Modulation of anticipatory emotion and 
perception processing by cognitive control. 
Neuroimage. 2007;37:652–62. 

34. Jensen K, Call J, Tomasselo M. Chimpanzees are 
rational maximizers in an ultimatum game. Nature. 
2007;318:107–9. 

35. Johnson AW, Gallagher M, Holland PC. The basolateral 
amygdala is critical to the expression of Pavlovian and 
instrumental outcome-specific reinforcer devaluation 
effects. J Neurosci. 2009;29:696–704. 

36. Kagel JH, Roth AE. The handbook of experimental 
economics. Princeton: Princeton Univ Press; 1995. 

37. Khamassi M, Mulder AB, Tabuchi E, Douchamps V, 
Wiener SI. Anticipatory reward signals in ventral 
striatal neurons of behaving rats. Eur J Neurosci. 
2008;28:1849–66. 



(Preprint prior to published in Cognitive Computation, OnlineFirst™ 12 March 2011) 
http://dx.doi.org/10.1007/s12559-011-9095-2 
 

 21 

38. Kienhorst IC, De Wilde EJ, Diekstra RF, Wolters WH. 
Adolescents’ image of their suicide attempt. J Am Acad 
Child Adolesc Psychiatry. 1995;34:623–8. 

39. Koenigs M, Tranel D. Irrational economic decision-
making after ventromedial prefrontal damage: evidence 
from the Ultimatum Game. J Neurosci. 2007;27:951–6. 

40. Kraft TL, Jobes DA, Lineberry TW, Conrad A, Kung S. 
Brief report: why suicide? Perceptions of suicidal 
inpatients and reflections of clinical researchers. Arch 
Suicide Res. 2010;14:375–82. 

41. Krogh A, Hertz J. Hebbian learning of principal 
components. In: Eckmiller R, Hartmann G, Hauske G, 
editors. Parallel processing in neural systems and 
computers. Amsterdam: Elsevier; 1990. p. 183–6. 

42. Ma W, Yu C, Zhang W. Monte Carlo simulation of 
early molecular evolution in the RNA World. 
Biosystems. 2007;90:28–39. 

43. Magno E, Simo ̃es-Franklin C, Robertson IH, Garavan 
H. The role of the dorsal anterior cingulate in evaluating 
behavior for achieving gains and avoiding losses. J 
Cogn Neurosci. 2009;21:2328–42. 

44. McClure SM, Laibson DI, Loewenstein G, Cohen JD. 
Separate neural systems value immediate and delayed 
monetary rewards. Science. 2004;306:503–7. 

45. Miller E, Cohen J. An integrative theory of prefrontal 
cortex function. Annu Rev Neurosci. 2001;24:167–202. 

46. Morewedge CK. Negativity bias in attribution of 
external agency. J Exp Psychol Gen. 2009;138:535–
545. 

47. Morrison SE, Salzman CD. Re-valuing the amygdala. 
Curr Opin Neurobiol. 2010;20:221–30. 

48. Murray EA, Izquierdo A. Orbitofrontal cortex and 
amygdala contributions to affect and action in primates. 
Ann NY Acad Sci. 2007;1121:273–96. 

49. Murray EA, Wise SP. Interactions between orbital 
prefrontal cortex and amygdala: advanced cognition, 
learned responses and instinctive behaviors. Curr Opin 
Neurobiol. 2010;20:212–20. 

50. Nash J. Essays on game theory. Cheltenham: Elgar; 
1996. 

51. Niv Y. Reinforcement learning in the brain. J Math 
Psychol. 2009;53:139–54. 

52. Nowak MA, Page KM, Sigmund K. Fairness versus 
reason in the ultimatum game. Science. 2000;289:1773–
5. 

53. O’Doherty JP. Lights, camembert, action! The role of 
human orbitofrontal cortex in encoding stimuli, rewards, 
and choices. Ann NY Acad Sci. 2007;1121:254–72. 

54. Oja E. A simplified neuron model as a principal 
components analyzer. J Math Biol. 1982;15:267–73. 

55. Oja E. Principal components, minor components, and 
linear neural networks. Neural Netw. 1992;5:927–36. 

56. Oja E, Ogawa H, Wangviwattana J. Learning in non-
linear constrained Hebbian networks. In: Kohonen T, 
Mikisara K, Simula O, Kangas J, editors. Artificial 
neural networks. Amsterdam: North-Holland; 1991. p. 
385–90. 

57. Page KM, Nowak MA. A generalized adaptive 
dynamics framework can describe the evolutionary 
Ultimatum Game. J Theor Biol. 2001;209:173–9. 

58. Pillutla MM, Murnighan JK. Unfairness, anger, and 
spite: emotional rejections of ultimatum offers. Organ 
Behav Hum Decis Process. 1996;68:208–24. 

59. Plato. The republic (trans: Jowett B). 360B.C.E. 
http://www.gutenberg.org/ebooks/1497. 

60. Quirk GJ, Beer JS. Prefrontal involvement in the 
regulation of emotion: convergence of rat and human 
studies. Curr Opin Neurobiol. 2006;16:723–7. 

61. Rilling JK, Sanfey AG, Aronson JA, Nystrom LE, 
Cohen JD. The neural correlates of theory of mind 
within interpersonal interactions. Neuroimage. 
2004;22(4):1694–703. 

62. Rodriguez PF, Aron AR, Poldrack RA. Ventral-
striatal/nucleus-accumbens sensitivity to prediction 
errors during classification learning. Hum Brain Mapp. 
2006;27:306–13. 

63. Rolls ET. Brain mechanisms of emotion and decision-
making. Int Congr Ser. 2006;1291:3–13. 

64. Rumelhart DE, McClelland JL, The PDP Research 
Group. Parallel distributed processing—vol 1, 
Foundations. Cambridge: MIT Press; 1986. 

65. Sánchez A, Cuesta JA. Altruism may arise from 
individual selection. J Theor Biol. 2005;235:233–40. 

66. Sanfey AG, Loewenstein G, McClure SM, Cohen JD. 
Neuroeconomics: cross-currents in research on 
decision-making. Trends Cogn Sci. 2006;10:108–16. 

67. Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, 
Cohen JD. The neural basis of economic decision-
making in the Ultimatum Game. Science. 
2003;300:1755–8. 

68. Schultz W, Tremblay L, Hollerman JR. Reward 
processing in primate orbitofrontal cortex and basal 
ganglia. Cereb Cortex. 2000;10:272–84. 

69. Seip EC, van Dijk WW, Rotteveel M. On hotheads and 
Dirty Harries: the primacy of anger in altruistic 
punishment. Ann N Y Acad Sci. 2009;1167:190–6. 

70. Sigmund K, Hauert C, Nowak MA. Reward and 
punishment. PNAS. 2001;98:10757–62. 

71. Smith P, Silberberg A. Rational maximizing by humans 
(Homo sapiens) in an ultimatum game. Anim Cogn. 
2010;13:671–7. 

72. Staudinger MR, Erk S, Abler B, Walter H. Cognitive 
reappraisal modulates expected value and prediction 
error encoding in the ventral striatum. Neuroimage. 
2009;47:713–21. 

73. Stefani MR, Moghaddam B. Rule learning and reward 
contingency are associated with dissociable patterns of 
dopamine activation in the rat prefrontal cortex, nucleus 
accumbens, and dorsal striatum. J Neurosci. 
2006;26:8810–9918. 

74. Sutton RS, Barto AG. Toward a modern theory of 
adaptive networks: expectation and prediction. Psychol 
Rev. 1981;88:135–70. 



(Preprint prior to published in Cognitive Computation, OnlineFirst™ 12 March 2011) 
http://dx.doi.org/10.1007/s12559-011-9095-2 
 

 22 

75. Szanto K, Gildengers A, Mulsant BH, Brown G, 
Alexopoulos GS, Reynolds CF III. Identification of 
suicidal ideation and prevention of suicidal behaviour in 
the elderly. Drugs Aging. 2002;19:11–24. 

76. Takagishi H, Kameshima S, Schug J, Koizumi M, 
Yamagishi T. Theory of mind enhances preference for 
fairness. J Exp Child Psychol. 2009;105:130–7. 

77. Tam DC. A positive/negative reinforcement learning 
model for associative search network. In: Shirazi B, 
editor. Proceedings of the 1st annual IEEE symposium 
on parallel and distributed processing. 1989. p. 300–7. 

78. Tam DC. Computation of cross-correlation function by 
a time-delayed neural network. In: Dagli CH, Burke LI, 
Ferna ́ndez BR, Ghosh J, editors. Intelligent 
engineering systems through artificial neural networks, 
vol. 3. New York: American Society of Mechanical 
Engineers Press; 1993. p. 51–5. 

79. Tam D. Theoretical analysis of cross-correlation of 
time-series signals computed by a time-delayed Hebbian 
associative learning neural network. Open Cybern Syst 
J. 2007;1:1–4. 

80. Tam D. EMOTION-I model: a biologically-based 
theoretical framework for deriving emotional context of 
sensation in autonomous control systems. Open Cybern 
Syst J. 2007;1:28–46. 

81. Tam D. EMOTION-II model: a theoretical framework 
for happy emotion as a self-assessment measure 
indicating the degree-of-fit (congruency) between the 
expectancy in subjective and objective realities in 
autonomous control systems. Open Cybern Syst J. 
2007;1:47–60. 

82. Tam D. A theoretical model of emotion processing for 
optimizing the cost function of discrepancy errors 
between wants and gets. BMC Neuroscience. 
2009;10(Suppl 1):P11. 

83. Tam D. Variables governing emotion and decision-
making: human objectivity underlying its subjective 
perception. BMC Neurosci. 2010;11(Suppl 1):P96. 

84. Tam D. Temporal associative memory (TAM) by spike-
timing dependent plasticity. BMC Neurosci. 
2010;11(Suppl 1):P105. 

85. Tam D. Gender difference in emotional perception of 
love in a decision-making task. Program No. 307.19. 
Neuroscience Meeting Planner. San Diego: Society for 
Neuroscience; 2010c (online). 

86. Tam D. Cognitive perception of happy emotion: 
proportionality relationships with gains and losses when 
getting what one wants; 2011 (submitted). 

87. Tam D. Cognitive computation of jealousy emotion: 
inverse proportionality relationships with gains/losses 
when one wants something that one cannot get; 2011 
(submitted). 

88. Tam D. Objectivity in subjective perception of fairness: 
relativity in proportionality relationship with equity by 
switching frame of reference –- a fairness-equity model; 
2011 (submitted). 

89. Von Neumann J, Morgenstern O. Theory of games and 
economic behavior. Princeton: Princeton University 
Press; 1953. 

90. Wu S, Chow TW. Self-organizing and self-evolving 
neurons: a new neural network for optimization. IEEE 
Trans Neural Netw. 2007;18:385–96. 

91. Yamagishi T, Horita Y, Takagishi H, Shinada M, 
Tanida S, Cook KS. The private rejection of unfair 
offers and emotional commitment. Proc Natl Acad Sci. 
2009;106:11520–3. 

92. Zhang SQ, Ching WK, Ng MK, Akutsu T. Simulation 
study in Probabilistic Boolean Network models for 
genetic regulatory networks. Int J Data Min Bioinform. 
2007;1:217–40. 

 
 

 



(Preprint prior to published in Cognitive Computation, OnlineFirst™ 12 March 2011) 
http://dx.doi.org/10.1007/s12559-011-9095-2 
 

 23 

Fig. 1  Average response of entire population (n = 425) for self-reported emotional rating of angry emotion with respect to 
monetary offer-ratio (regardless of acceptance or rejection decision). a Curve-fitting to the entire sample shows a linear 
inverse proportional relationship between anger and monetary gain (or direct proportional to loss). b It shows same data as in 
a except the curve-fitting is conditioned on hyper-fair (generous) versus unfair (stingy) trials. Different inverse 
proportionality relationships appear depending on the perceived fairness (or unfairness) of the offers (Error bar represents 
SEM) 
 

 
Fig. 2 Average emotional angry response to the monetary offer conditioned on acceptance trials only. a Curve-fitting to 
acceptance trials shows a linear inverse proportional relationship. b Curve-fitting conditioned on hyper-fair (generous) and 
unfair (stingy) trials shows different proportionality relationship, represented by different slopes. It shows anger is inversely 
proportional to monetary gain (or proportional to loss), for both hyper-fair and unfair trials, even though there is a discrete 
change in emotional sensitivity from unfair to hyper-fair trials. The subjects reported not-angry in both hyper-fair and unfair 
trials when they get either money and/or fairness 
 

 
Fig. 3 Average emotional angry response to the monetary offer conditioned on rejection trials only. a Curve-fitting to 
rejection trials shows a similar linear inverse proportional relationship with much higher emotional intensity than Fig. 2, 
shifting from not-angry to angry. b Curve-fitting conditioned on unfair (stingy) offers and hyper-fair (generous) offers shows 
different proportionality relationships than those in the acceptance trials. The subjects reported angry to unfair offers (losing 
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both money and fairness), but not-angry to hyper-fair offers (losing money only but not fairness) when they decided to reject 
the offers (Note that the standard error bars are large in the right-half of the figure because of the smaller sample size, i.e., a 
small number of subjects rejected hyper-fair offer) 
 

 
Fig. 4 Graph re-plotted by combining Figs. 2a with 3a to show the continuum in emotional intensity from rejection to 
acceptance decision 
 

 
Fig. 5 Graph re-plotted by combining Figs. 2b with 3b to show the step functions in emotional intensity from rejection to 
acceptance decision 


