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A multi-unit spike train analysis for quantifying
phase relationships of near-synchrony "rings
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Abstract

A multiple single-unit spike train analysis technique is introduced to quantify the phase
relationships of spike "rings in a subset of three neurons within a neural network. Synchronized
"rings in neurons had been implicated in neural processing, yet the phase relationships between
"ring of neurons may also be important for processing. A phase-plane plot is used to determine
the phase-locking and phase-shifting characteristics of neural "rings among this set of three
simultaneously recorded neurons. The trajectories of points in the three-neuron phase-plane
provide a signature of the phase-shift characteristics in these neurons participating in synchro-
nized "ring. � 2001 Published by Elsevier Science B.V.
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1. Introduction

Recently, there have been increasing interests in neuroscience to apply spike train
analysis to detect the relationship of spike "rings among neurons. A number of novel
spike train analyses have been introduced recently to detect the spike "ring patterns
[2,7,8].
Synchronized "ring had been implicated in the processing of neural signals within

a network. Yet the phase relationship among the "rings of di!erent neurons may also
be important in the neural processing, since synchronized "rings are often referred to
near synchrony within a small "nite time-window rather than absolute simultaneity of
"rings within a millisecond.
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The spike train analysis technique introduced in this paper is developed to address
the speci"c phase relationship of spike "rings that may be characteristic of a particular
synchronized "ring pattern. A two-dimensional phase-plane plot is used to quantify
the phase relationships among three simultaneously recorded neurons. The trajectory
of the points in this three-neuron phase-plot will be used to characterize how the
phase relationship among these neuron changes in time, thus providing a signature of
the coupled-"ring relationships among them.

2. Overview of the spike train analysis

In summary, this three-neuron spike train analysis is a graphical quantitative
measure based on the phase di!erences of spike "rings among these three neurons. Let
us assume that we select three neurons from a pool of neurons within a network for
analysis "rst, and then apply the same analysis for all neurons within the network
systematically. Let the three selected neurons be A, B and C. The time stamp of each
spike is recorded for each neuron.
The phase di!erence between the spike "rings of neurons A and B can be quanti-
"ed as the lead time or lag time depending on sign of the time di!erence between
neuron A and neuron B's "ring. [For simplicity of terminology, we will use the term
`phase di!erencea to represent the `time di!erencea between the neurons' "rings, even
though technically speaking phase di!erence refers to the phase angle of the "ring
cycle rather than the time, in accordance with the usage of the intuitive term phase
plot rather than time plot.] This time di!erence is plotted on the x-axis of the
phase plot.
Similarly, the lead time and lag time between the spike "rings of neurons A and

C can be quanti"ed and plotted on the y-axis of the phase plot. Thus, the lead time
and lag time between the spike "rings of neurons B and C with respect to neuron
A can be graphically represented in a two-dimensional plot rather than a three-
dimensional plot.
This phase-plane analysis is di!erent from the `snow-#ake diagrama of Perkel

et al. [3] since it requires two axes rather than the three-axis snow-#ake representa-
tion. It is di!erent from the joint-peri-stimulus time histogram (JPSTH) of Aertsen
et al. [1] since it does not require any external stimulus to the network, and the
origin of the plot does not represent the onset of the stimulus as in the JPSTH. It is
di!erent from the generalized cross-correlogram in that only the time relationships of
the succeeding spikes among neurons are plotted to quantify the near synchrony of
spike "rings only, whereas the generalized cross-correlogram correlates all spike
occurrences. It is di!erent from the joint-interspike (JISI) analysis of Rodieck et al. [4]
or the nonlinear analysis return map [5,6] since JISI and return-map analyses
describe the timing relationship of a single neuron rather than three-neuron within the
phase plot.
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3. Theoretical methods

Let there be three spike trains, a(t), b(t), and c(t), recorded simultaneously. Let a(t) be
the reference spike train with a total of N spikes represented by
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and the compared spike trains, b(t) and c(t) with a total of ¸ and M spikes, respec-
tively, be represented by
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where t
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are the occurrence times of nth, lth and mth spikes in spike trains

a(t), b(t) and c(t), respectively, and �(t) is a delta function denoting the occurrence of
a spike at time t.
The cross-interval, CI, between two neurons can be de"ned as the time interval

between spikes in these two spike trains. Let us also de"ne the `pre-cross-intervala as
the CI before the reference spike, and the `post-cross-intervala as the CI after the
reference spike. Then, the kth order pre-cross-intervals relative to the nth reference
spike in the reference spike train, a(t), with respect to spike trains b(t) and c(t) are
de"ned as
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respectively. These joint pair of number will be plotted as the coordinate in the
two-dimensional phase plot. The post-cross-intervals can similarly be de"ned.
Let the probability density function (pdf ), of the kth order pre-CI between the

compared train, b(t), and the nth spike in the reference train a(t) be de"ned as
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taking all spikes into account, and the pdf of the kth order pre-CI between the
compared train, c(t), and the nth spike in the reference train a(t) is similarly de"ned as
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) dt ∀n. (5)

4. Theoretical interpretations

The relationship between how the sequential near-synchronous "rings in the
compared neurons b and c can be characterized by the trajectories of points in the
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two-dimensional phase plot. Clustering of points indicates that the neurons are
phase-locked together at a speci"c lag-time (or lead-time) as revealed by the coordi-
nate of the points.
Vertical band of points indicates tight coupling between neurons a and b but not

with neuron c . Horizontal band of points indicates tight coupling between neurons
a and c but not with neuron b. Thus, the near-synchrony relationship can be
characterized based on the time di!erences between spike "rings in these neurons.
If the points are found to follow a cyclic trajectory in the phase plot, it indicates that

the three neurons are changing their "ring relationships in a coordinated fashion that
is dynamical with time. This may represent speci"c neural processings that are time
varying rather than constant.

5. Results

The results of the phase-plot analysis as described above can be used to deduce the
dynamical "ring relationship among a three-neuron group. The signature of the phase
relationship (or the time di!erences in the lead time and/or lag time) can be character-
ized uniquely in the phase plot based on the trajectory of the points. Thus, the
intriguing "ne detail of "ring times in near-synchronous "rings may represent more
speci"c and precise neural processing than formerly recognized. The three-dimen-
sional pdf 's (representing the density of points) in the phase plot provide the condi-
tional "ring probability at those lead times and lag times.

6. Summary

A phase-plot analysis is introduced to describe the "ring relationships among three
neurons. The mathematical descriptions of the multiple single-unit spike train analysis
are given. The phase-plane analysis provides a graphical representation of the correla-
tion of spike "rings among three neurons as characterized by the clustering of points
in the graph representing the pdf 's.
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