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Abstract. A stochastic spike train analysis technique is in-
troduced to reveal the correlation between the firing of the
next spike and the temporal integration period of two consec-
utive spikes (i.e., a doublet). Statistics of spike firing times
between neurons are established to obtain the conditional
probability of spike firing in relation to the integration pe-
riod. The existence of a temporal integration period is de-
duced from the time interval between two consecutive spikes
fired in a reference neuron as a precondition to the generation
of the next spike in a compared neuron. This analysis can
show whether the coupled spike firing in the compared neu-
ron is correlated with the last or the second-to-last spike in
the reference neuron. Analysis of simulated and experimen-
tally recorded biological spike trains shows that the effects of
excitatory and inhibitory temporal integration are extracted
by this method without relying on any subthreshold poten-
tial recordings. The analysis also shows that, with temporal
integration, a neuron driven by random firing patterns can
produce fairly regular firing patterns under appropriate con-
ditions. This regularity in firing can be enhanced by temporal
integration of spikes in a chain of polysynaptically connected
neurons. The bandpass filtering of spike firings by temporal
integration is discussed. The results also reveal that signal
transmission delays may be attributed not just to conduction
and synaptic delays, but also to the delay time needed for
temporal integration.

1 Introduction

Recently, multineuron recordings have been developed, such
as multiunit extracellular recording in vivo (Gerstein et al.
1982; Novak and Wheeler 1986; Nicolelis et al. 1993, 1995,
1997; Nicolelis and Chapin 1994), multiunit extracellular
recording in vitro (Droge et al. 1986; Gross 1994; Tam and
Gross 1994a), and multichannel optical recording (Cohen
and Lesher 1986; Nakahama et al. 1992), which are useful
in understanding the structure and function of a neuronal
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network. The relationship of the spike firing activities be-
tween two neurons detected by the multineuron recordings
was traditionally analyzed by cross-correlation techniques.
One of the most commonly used correlation analyses in
neurophysiology is the conventional cross-correlation anal-
ysis (Perkel et al. 1967a, b) and its derivative measures,
such as the scaled cross-coincidence histogram (Melssen
and Epping 1987), the cross-covariance histogram (Palm et
al. 1988), the joint peristimulus time histogram (Aertsen et
al. 1989), the cross-interspike interval histograms (Tam et
al. 1988), the preconditional cross-interval histogram (Gross
and Tam 1994), and the postconditional cross-interval his-
togram (Tam and Gross 1994b). However, there are some
difficulties with these cross-correlational methods (Yang and
Shamma 1990). They are focused on extracting the relation-
ship of one-to-one coupled spike firings in neurons. That is,
the coupling between two neurons is established by correlat-
ing a single-spikefiring of one neuron to the probability of
the next single-spike firing in another neuron. The contribu-
tion of multiple-spikefiring to single-spike coupled firing has
yet to be addressed. In particular, the phenomenon of tem-
poral summation in synaptic integration is an example of
a multiple-spike to single-spike coupled-firing relationship.
Although temporal integration is a well-known phenomenon,
its implications have not been fully studied until recently
(e.g., experimentally by Softky and Koch 1993, and theo-
retically by Kudela et al. 1997). Yet, most spike-train anal-
yses were not designed specifically to extract the temporal
summation of spike firing in a neuron. Conventional cross-
correlation techniques (or other similarly derived correlation
statistics) primarily correlate the single-spike to single-spike
firing relationship between neurons. Since temporal sum-
mation implies the integration of multiple spikes over time,
such a contribution to the spike firing can only be obtained if
the correlation spike-train analysis method also includes the
probability of firing based on not just one preceding spike,
but multiple spikes.

A spike-train analysis technique is introduced here to
address the relationship between the probability of a spike
generated in one neuron and the possible contribution of
integrating two consecutive spikes fired from another neu-
ron. In other words, the likelihood of spike generation that
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can be attributed to temporally integrating multiple spikes is
sought by correlating the next spike firing time of a ‘com-
pared’ neuron with the time interval between the previous
consecutive firings in a ‘reference’ neuron.

We will derive the statistics of spike firing times in this
pair of neurons so that the conditional probability of spike
firing can be established in relation to the integration period.
The existence of a temporal ‘integration period’ is revealed
by the probability that the compared neurons will generate a
spike that is conditional to the prior firing of two consecutive
spikes in the reference neuron. A preconditional correlation
statistic is established to estimate the conditional probabil-
ity of spike firing in the compared neuron given that the
reference neuron has fired not just asingle spike, buttwo
sequential spikes. Thus, the focus of this analysis is to ad-
dress the likely contribution oftwo successive spikes (i.e., a
doublet) that may be summated to generate the next spike.
By correlating this doublet firing interval, the integration pe-
riod associated with either the excitation or the suppression
of spike firing in a neuron can be revealed with this analysis.

Alternatively, this analysis can be considered as corre-
lating the relationship between the time intervals of spike
firings. The time interval between spike firings of the same
neuron is called the interspike interval (ISI) and the time
interval between spike firings of a reference and a compared
neuron is called the cross-interval (CI) (see Fig. 1). The con-
ditional and joint probability of spike firing can be estimated
from these ISI and CI statistics to deduce the integration pe-
riod from the reference neuron’s ISI prior to the compared
neuron’s next spike firing. This happens if the ISI is cor-
related with the coupling latency, which is revealed by this
correlated CI.

2 Methods

2.1 Overview

We call this temporal integration of doublet spike train anal-
ysis the ‘pre-ISI/post-CI analysis,’ because it establishes the
relationship between the pre-ISI and post-CI by the condi-
tional (and joint) probability of spike firing between two
neurons. By examining the firing probability of the com-
pared neuron’s next spike relative to the reference neuron’s
ISI duration (whose relationship is shown by the thick ar-
rows in Fig. 1), the conditional probability can be established
in relation to the time interval in which two preceding spikes
may have been integrated (or summated) to produce this next
spike firing if these neurons are synaptically connected. As
in cross-correlation analysis, the firing probability of a spike
in a compared neuron is estimated by the statistics obtained
from the firing times of the compared and reference neurons.

2.2 Definitions

Given two spike trains obtained from two neurons, let one
of the spike trains be called the reference spike train,A, and
the other the compared spike train,B. Let us assume that
there is a total ofNA spikes in trainA, andNB spikes in
train B, then the spike trains can be represented by

Fig. 1. Schematic diagram of two spike trains showing the relationships
between the interspike intervals (ISI) and cross-intervals (CI) relative to a
reference spike. The timing relationship between the reference and com-
pared neurons’ firing (indicated by thethick single arrowrepresenting the
post-CI) can be correlated with the temporal integration period of a dou-
blet (indicated by thethick double arrowrepresenting the pre-ISI) by the
pre-ISI/post-CI analysis

xA (t) =
NA∑
n=1

δ (t − tn) (1)

and

xB (t) =
NB∑
m=1

δ
(
t − t′m

)
(2)

∀tn, t′m such thattn < tn+1 andt′m < t′m+1

where tn and t′m are the times of occurrence ofn-th and
m-th spikes in spike trainsA andB, respectively, andδ (t)
is a Dirac delta function denoting the occurrence of a spike
at timet. Note that we use the primed notation to denote the
times of spike occurrence in spike trainB and CIs between
the two spike trains.

The relationships between the ISIs and the CIs with re-
spect to the reference neuron is shown in Fig. 1. Note that
there are two ISIs defined with respect to a reference spike:
one before and one after. The pre-ISI relative to then-th
reference spike in trainA is defined as

τn = |tn−1 − tn| (3)

Similarly, there are two CIs defined with respect to a refer-
ence spike. The post-CI between the compared and reference
spike trains relative to then-th reference spike in spike train
A is defined as

τ ′
n,m+1 = |t′m+1 − tn| (4)

for t′m < tn ≤ t′m+1.
The probability that the next spike will fire at timeτ

after a reference spike has fired is described by the prob-
ability density function (pdf) of the next spike firing. The
probability that a compared neuron will fire the next spike
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at time τ ′
y after the reference neuron has fired two spikes

(one reference spike at time zero, and another at timeτx

prior to the reference spike) is described by the joint pdf.
This joint pdf is estimated from the following:

P
(
τx ∩ τ ′

y

)

=

∑NA

n=2 δ
(|tn−1 − tn| − τx

)
δ
(|t′m+1 − tn| − τ ′

y

)

NA − 1

=

∑NA

n=2 δ (τn − τx) δ
(
τ ′
n,m+1 − τ ′

y

)

NA − 1
(5)

∀tn, t′m such thatt′m < tn ≤ t′m+1 and tn−1 < tn whereτx

is the ‘lead time’ andτ ′
y the ‘lag time’ as defined in con-

ventional correlation terminology (Perkel et al. 1967a, b).
The correlation between the post-CI and the pre-ISI is cap-
tured by this joint pdf. In other words, the likelihood of the
compared neuron firing the next spike is correlated with the
previous two spikes fired by the reference neuron. Similarly,
the conditional pdf is estimated from the following:

P
(
τx|τ ′

y

)

=

∑NA

n=2 δ
(|tn−1 − tn| − τx

)
δ
(|t′m+1 − tn| − τ ′

y

)
∑NA

n=2 δ
(|t′m+1 − tn| − τ ′

y

)

=

∑NA

n=2 δ (τn − τx) δ
(
τ ′
n,m+1 − τ ′

y

)
∑NA

n=2 δ
(
τ ′
n,m+1 − τ ′

y

) (6)

Both the joint pdf and the conditional pdf can be repre-
sented graphically by a two-dimensional function displayed
in an xy-plot. Alternatively, a scatter plot with dots repre-
senting the coordinate

(
τx, τ ′

y

)
of individual points in the

numerator of (5) or (6) can be used to represent the non-
normalized joint distribution similar to the scatter plot tra-
ditionally used in the joint interspike interval (JISI) analysis
(Rodieck et al. 1962). Other similar methods include the ‘re-
turn map’ in nonlinear dynamics analysis (Selz and Mandell
1992; Smith 1992), the preconditional cross-interspike inter-
val analysis (Tam et al. 1988), and the postconditional cross-
interval analysis (Tam and Gross 1994b). In other words, a
pre-ISI vs post-CI scatter plot is produced by taking each
spike in the reference spike train as the reference spike and
plotting each corresponding point with the

(
τx, τ ′

y

)
coordi-

nate representing the pre-ISI and the post-CI pair on the
xy-plot. The

(
τx, τ ′

y

)
coordinate of a point in thisxy-plot

is given by
(|tn−1 − tn| , |t′m+1 − tn|) for then-th reference

spike.

2.3 Interpretations

When points are plotted on the pre-ISI vs the post-CI graph,
clusters and/or bands of points may appear when the same
firing pattern is repeated. Conversely, points missing in a cer-
tain region of the plot indicate patterns of suppressed spike
firing. Depending on a point’s location and orientation in the
graph, specific spike firing patterns between neurons can be
inferred. Clustering of points at coordinate

(
τx, τ ′

y

)
indicate

that the compared neuron is coupled with the previous firing
of two spikes in the reference neuron. This tight coupling

occurs only when the reference neuron fires a doublet at
exactlyτx ms apart.

Figure 2A shows how the different orientation of bands
of points can be interpreted with respect to the spike firing
patterns. Points aligned horizontally indicate that the post-
CIs are constant, i.e., there is a constant latency between the
firing of spikes in the two neurons given by

τ ′
y = c (7)

wherec, the lag time, is a constant (Fig. 2B). If points are
confined within a limited range of pre-ISIs< τ2 (such as
the pointsa, b, c, andd in Fig. 2B), then this indicates that
the compared neuron’s firing is coupled with the reference
neuron’s firing only when the reference neuron has fired two
spikes within this ISI ofτ2. This means that the integration
period associated with the next spike firing in the compared
neuron isτ2, because the compared neuron’s next spike fir-
ing happens at lag timec only when the reference neuron
fired two previous spikes within this period, not outside this
period. Note that the horizontal band of points is usually
delimited byτ1 and τ2 due to the fact that a second spike
cannot be fired within the refractory period,τ1, even though
the total integration time is stillτ2.

Points lying along a vertical line indicate that the ISIs are
constant, independent of the post-CIs (Fig. 2C). This means
that the reference neuron is firing periodically, uncorrelated
with the compared neuron’s next firing, with the period

τx = c (8)

wherec is a constant. This means that the firing of the com-
pared neuron is uncoupled with, and independent of, the
reference neuron’s preceding doublet firing.

Points lying along an antidiagonal (−45◦) line can be
represented by the following relationship:

τx + τ ′
y = c (9)

wherec is a constant (Fig. 2D). This antidiagonal band of
points shows that the firing in the compared neuron is corre-
lated with the reference neuron’s second-to-last spike firing
rather than the last firing. If points are confined within the
lower triangle (shaded region in Fig. 2D, whereτx +τ ′

y < c),
then the firing of the next spike in the compared neurons is
correlated with the firing of a minimum of two spikes within
this integration period ofc.

2.4 The network of simulated neurons

A network of simulated neurons whose spike trains are gen-
erated by stochastic point processes is used in our analysis
below. In brief, neuronA is the driver neuron connected di-
rectly to neuronsB, C, E, andF , and indirectly to neuron
D via B. The connections are all excitatory except for neu-
ron F , which is inhibitory. The spike trains of driver neuron
A and driven neuronF are generated by a Poisson process,
simulating spontaneous random firing, while the other neu-
rons,B, C, D, andE, are driven without any spontaneous
firing.

A larger recurrent network could be used to illustrate
the capacity of this new analysis, but it would create com-
plications of ‘cause-and-effect’ interpretations in a mutually
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Fig. 2. Pre-ISI vs post-CI plot showingA various relationships between the pre-ISIs and post-CIs,B points lying along a horizontal line,C points lying
along a vertical line, andD points lying along an antidiagonal (−45◦) line that correspond to the spike firing patterns shown on theleft

reciprocally connected network because neurons are driven
by one another as well as being drivers themselves in such
situations. Furthermore, correlation is a necessary, but not
sufficient, condition to prove causality or anatomical con-
nectivity. Therefore, we will limit our simulations to de-
ducing functionalconnectivity using correlation analysis so
that the signal processing capability of a neural network can
be revealed based on the interactions of neurons within a
network.

3 Results

3.1 Uncovering the temporal integration period

Figure 3A shows the pre-ISI/post-CI scatter plot for neuron
A (used as the reference neuron) compared with neuronB,
which has a coupling probability of 100%, an integration
time of 10 ms, and a conduction delay of 2.5 ms. A horizontal
band of points at 2.5 ms post-CI latency is found within 4
and 10 ms pre-ISIs; this is congruent with the fact that the
firing of neuronB is completely coupled to neuronA when

the integration period is within 10 ms. Within this period
(pre-ISI < 10 ms), all points fall within the horizontal band
of 2.5 ms post-CIs. When the integration period is over (pre-
ISI > 10 ms), points are scattered at other post-CIs, which
indicates that the spike firing in neuronB is no longer time-
locked to the previous firing of the driver neuronA.

The characteristic distribution of points in the pre-ISI/
post-CI scatter plot of Fig. 3A can be explained by the var-
ious spike firing relationships for the two neurons depicted
in Fig. 3B that correspond to the regions in the pre-ISI/post-
CI scatter plot. Regiona represents the refractory period of
neuronA where no points are found. Regionb represents the
time-locked coupling between the firing in neuronB and the
preceding firings in neuronA. This occurs only when neuron
A fires two preceding spikes within the 10 ms correspond-
ing to the integration time window. No points are found in
region d because when the ISI between the two preceding
spikes exceeds the integration period (pre-ISI> 10 ms), neu-
ron B will not be driven to fire a spike by neuronA. Note
that the integration period is not revealed by the post-CI
histogram (or analogously cross-correlogram, which sums
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Fig. 3. A Pre-ISI vs post-CI scatter plot for neuronA as the reference neuron and neuronB as the compared neuron with 100% coupling probability
strength. Note the horizontal band of points at 2.5 ms post-CI between 4 and 10 ms pre-ISI that reveals the integration period of doublet firing in the
presynaptic neuronA. Note also the other horizontal band of points for pre-ISI> 10 ms and the corresponding multimodal distribution in the post-CI
histogram.B Schematic diagrams showing the temporal relationship of firing patterns corresponding to the regions depicted in the pre-ISI/post-CI scatter
plot and the post-CI histogram. Thelower spike trainsrepresent neuronA’s firing while the upper spike trainsrepresent neuronB’s firing. The arrow at
the peak of the post-CI histogram indicates that the peak is extended beyond the displayable region of the graph

all n-th order CI histograms), but revealed distinctly by the
pre-ISI/post-CI scatter plot.

3.2 Effects of tightly coupled firing

Points would be found in the incomplete coupled regionc if
the firing of the driven neuron is not tightly coupled to the
driver (with a coupled firing probability< 100%). In this
example, no points are found in this region because neuron
B’s firing is completely coupled with neuronA’s, whereas
for neuronD, to be discussed below (see Fig. 6), points are
found in regionc due to the dropout of the one-to-one spike-
following relationship.

When neuronB fails to follow neuronA’s firing, the
post-CI would be longer than 2.5 ms. This only happens

when the pre-ISI is longer than the 10 ms integration pe-
riod (regionsf andh). This failure in coupling is expected
due to the fact that neuronB cannot follow neuronA’s firing
when there is onlyonespike to integrate within the integra-
tion period. This shows that the pre-ISI/post-CI analysis can
reveal whether the coupled firing probability is 100% or not,
and when failure in spike-following occurs, the analysis fur-
ther reveals whether or not that failure is due to insufficient
spikes for temporal summation.

3.3 Effects of temporal integration time-delay

The coupled firings between the neuron pair can alternatively
be characterized by the post-CI histogram (left histogram of
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Fig. 3A). Note that the post-CI histogram shows an multi-
modal distribution rather than a unimodal distribution (peak-
ing at 2.5 ms latency) if neuronB does not integrate tempo-
rally. The sharp peak at 2.5 ms post-CI is expected since this
reflects the latency of the 2.5-ms time-locked firing between
the two neurons. The other distributions at longer latencies
(regionsf andh) are not correlated with the 10-ms temporal
integration period. These coupled firings at longer latencies
than 2.5 ms are the result of the correlation with the driver’s
second-to-last spike (or other previous spikes) as shown by
the firing relationshipsf and h depicted in Fig. 3B. These
long latency delays can be attributed to the additional time
that the driven neuron takes to integrate multiple spikes be-
fore it fires as depicted by the relationshipf in Fig. 3B.

3.4 Effects of temporal integration of random firing
on the driven neuron

The firing characteristics of the driven neuron, as revealed
by the ISI histogram, is distinctly different from that of the
driver neuron even though the neurons are tightly coupled.
This can be inferred from the ISI distribution of the driven
neuron,B, which is multimodal (Fig. 4A) and quite differ-
ent from the Poisson ISI distribution of the driver neuron,A
(bottom histogram of Fig. 3A). This difference in firing char-
acteristics is a seemingly unexpected consequence of tem-
poral integration of the driven neuron because the analysis
revealed that a randomly firing driver neuron can produce
rather regularly firing intervals in the driven neuron even
when they are tightly coupled. The regularity of the firing
of neuronB is revealed by the prominent peak (between 4
and 10 ms) in the ISI histogram (Fig. 4A).

The significance of this finding is that regularity in spike
firing can be driven by irregularly firing neurons in a net-
work by taking advantage of the temporal integrative prop-
erty of the ‘downstream’ (driven) neuron. The periodicity
of the driven neuron is a function of the temporal integra-
tion period of the driven neuron and the refractory period
of the driver neuron. The preferred firing ISIs of the driven
neuron is delimited by the refractory period of the driver
neuron (4 ms in this example) and the integration period of
the driven neuron (10 ms in this example). Therefore, this ex-
ample illustrates that random spike firing in a network does
not necessarily produce random firing in the driven neuron,
but fairly regular firing patterns. Furthermore, this example
demonstrates that the firing characteristics of the driven neu-
ron can be quite dissimilar from the driver neuron, even for
a neuron whose spike firing activity is completely dependent
on a single driver neuron.

3.5 Effects of the coupling relationship
with the last or second-to-last spike firing

Figure 5 shows the pre-ISI/post-CI scatter plot for neuron
A used as reference neuron in relation to neuronC. The
firing characteristic of neuronC is similar to that of neuron
B, except that the conduction delay between neuronsA and
C is 15 ms rather than 2.5 ms as in neuronB. The pre-
ISI/post-CI scatter plot in Fig. 5 shows additional features of

Fig. 4. Interspike interval histograms of the driven neurons showing: fairly
regular firing for the monosynaptically driven neuronB A, very regular fir-
ing for the polysynaptically driven neuronD B, irregular firing for neurons
E with gradual integration periodC, and irregular firing for the inhibited
neuronF D

an antidiagonal (−45◦) band of points and a lower triangular
distribution of points when compared with Fig. 3A.

The antidiagonal band of points indicates that the spike
firing in neuronC is time-locked to thesecond-to-lastspike
firing in neuronA rather than thelast (see also interpreta-
tions in Sect. 2.3 and Fig. 2D). This is due to the fact that
since the latency is rather long (15 ms), there are often in-
tervening spikes being fired in neuronA during this latency
period. As a result of the intervening spikes firing during
the latency period, the correlation between the time of oc-
currence of the next cross-spike with the preceding firing in
the reference neuron may be interrupted by these interven-
ing spikes. This results in the artifact of correlating spike
firings with the second (or earlier) preceding spike instead
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Fig. 5. Pre-ISI vs post-CI scatter plot for neuronA as the refer-
ence neuron and neuronC as the compared neuron with 100%
coupling probability strength similar to neuronB except for
the longer latency. Also, note the similarity between this figure
and Fig. 4, except for the anti-diagonal band of points at the
lower left triangle due to the longer latency of spike-following,
which results in a correlation between the second-to-last preced-
ing spike instead of the immediately preceding spike in neuronA

of the first preceding spike. This resulting artifact is actually
another advantage of using this pre-ISI/post-CI analysis to
detect the correlation of spike firing with thesecondpre-
ceding spike, which other correlation analyses, such as CI
histogram or cross-correlogram, may not reveal so distinctly.

The post-CI histogram (left histogram of Fig. 5) reveals a
multimodal distribution. The sharp peak at the 15 ms latency
reveals the tightly coupled spike-following of neuronC, but
does not distinguish whether such time-locked coupling is
correlated with the first or second preceding spike firing, nor
does it reveal the fact that the coupling is correlated with the
temporal summation of two preceding spikes as extracted by
the pre-ISI/post-CI scatter plot. Upon examining the corre-
sponding antidiagonal band of points in the pre-ISI/post-CI
scatter plot, the conclusion can be made that the coupling is
related to the previous reference spike instead of the current
reference spike (see also interpretations in Sect. 2.3). These
results illustrate the advantage of using the pre-ISI/post-CI
analysis, which distinguishes whether the time-locked spike
firing in the compared neuron is (1) correlated with asingle
preceding spike, (2) correlated withtwo preceding spikes in
the reference neuron, or (3) correlated with anintegration
time windowdelimited by the two previous reference spike
firing times.

3.6 Effects of polysynaptic coupling
with temporal integration

To show the effects of polysynaptic coupling on a network,
we analyzed the firing pattern of neuronD, which is driven

by neuronA indirectly via neuronB. NeuronsB andD are
identical with respect to their temporal integration period and
conduction latency. The 10 ms integration period can be re-
vealed by the distinct horizontal band in the pre-ISI/post-CI
plot (Fig. 6), similar to the previous neurons (cf. Figs. 3A and
5). The difference between monosynaptically and polysynap-
tically coupled temporal integrations can clearly be revealed
by this new analysis (by comparing Figs. 3A and 6). Whereas
temporal integration for neuronB is coupled to the 2.5 ms
conduction latency with the driver neuronA (revealed by a
band of points at 2.5 ms post-CI), temporal integration for
neuronD is coupled to a much wider range of latencies
between 5 ms (= 2.5 + 2.5) and 15 ms (= 2.5 + 2.5 + 10).
That is, the latency is not just the sum of the two 2.5 ms
polysynaptic conduction latencies, but also the addition of
the 10 ms integration period of neuronB. This additional
delay is due to the integration time taken for neuronB to
fire a spike. This illustrates that temporal integration can add
a significant delay to the transmission of spikes in a polysy-
naptic pathway when the latency in transmission is a sum of
conduction delay and temporal integration time.

Note that although both neuronsB andD are tightly cou-
pled, polysynaptic temporal integration produces less than
complete spike-to-spike coupling as revealed by the appear-
ance of points above 15 ms post-CIs during the integra-
tion period (i.e., pre-ISI< 10 ms) in Fig. 6 (cf. regionc
of Fig. 3A). Yet, neuronD fires with more regularity than
neuronB as revealed by a single primary peak (between 4
and 10 ms) in the ISI histogram (Fig. 4B) and the disappear-
ance of the secondary peak (> 10 ms ISI) when compared
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Fig. 6. Pre-ISI vs post-CI scatter plot for neuronA as
the reference neuron and the polysynaptically driven
neuronD as the compared neuron. Note that the cou-
pling probability is less than 100% during the integra-
tion period, as revealed by the points in regionc (cf.
Fig. 3A)

with that of neuronB (see Fig. 4A). This shows that reg-
ularity in firing can be enhanced by polysynaptic temporal
integration.

3.7 Effects of incomplete coupling
during the integration period

The above examples are illustrated with tightly coupled neu-
rons having a finite integration period that ends abruptly.
Although nonphysiological, these examples serve the pur-
pose of revealing essential firing features by the pre-ISI/post-
CI analyses. We will illustrate the next example with a
more physiological integration period. The excitatory cou-
pling probability between the neurons during the integration
period of neuronE gradually decreases from 100% at the
first 10 ms to 0% at the end of 30 ms. The complete 100%
coupling probability at the first 10 ms can be deduced from
the fact that no points are found to lie above the horizontal
band during the first 10 ms pre-ISI (Fig. 7). Points are found
to be gradually scattered above this horizontal band as the
pre-ISI increases from 10 ms to 30 ms, reflecting the gradual
decrease in coupling strength during the latter phase of the
integration period. Thus, this example illustrates the effects
of complete and incomplete coupling between neurons dur-
ing the integration period. The firing pattern of this driven
neuron (revealed by the ISI histogram of Fig. 4C) resulting
from temporal integration is not as regular in this example as
in the previous one (see Fig. 4A) due to the gradual decrease
of coupling probability within the integration period.

3.8 Effects of inhibitory temporal integration

To show the effects of temporal integration of inhibition on
the firing of a driven neuron, neuronF ’s firing is simulated
with a Poisson process, while inhibited by neuronA (with a
suppression period that lasts for 4 ms, and a conduction de-
lay of 1 ms). The pre-ISI/post-CI plot of Fig. 8 reveals this
4 ms inhibition as lack of points in the horizontal band be-
tween 1 and 5 ms post-CIs. The integration period of neuron
F is similar to that of neuronE with a gradual decrease in
coupling probability. This integration period is reflected in
the horizontal band where no points are found in the first
10 ms pre-ISI, and points are found to be gradually increas-
ing to its background level at 30 ms. The post-CI histogram
(left histogram of Fig. 8) also shows the suppression of fir-
ing by neuronA (between 1 and 5 ms), but again, it does
not reveal any information about whether this inhibition is
correlated with the integration period or not. In contrast, the
pre-ISI/post-CI analysis clearly reveals the temporal integra-
tion that is associated with the suppression of the firing in
a neuron. Not only does this analysis extract thesuppres-
sion period (= 4 ms) from the post-CI axis (i.e., between
1 and 5 ms post-CI), but also the inhibitory temporalin-
tegration period(= 30 ms) from the pre-ISI axis (i.e., the
complete lacking of points in the horizontal band between
4 and 10 ms, and the gradual appearance of points between
10 and 30 ms pre-ISIs).

In contrast to the regularity of spike firing as a result of
excitatory temporal integration, inhibitory temporal integra-
tion does not produce regularity or periodicity in spike firing.
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Fig. 7. Pre-ISI vs post-CI scatter plot for neuronA as the refer-
ence neuron and neuronE as the compared neuron with gradu-
ally decreasing coupling probability strength. The gradual inte-
gration period of doublet firing is revealed by the tapering hor-
izontal band of points at 2.5 ms post-CI and the appearance of
points above the horizontal band between 10 and 30 ms pre-ISI

Fig. 8. Pre-ISI vs post-CI scatter plot for neuronA as the ref-
erence neuron and neuronF as the compared neuron with in-
hibitory connection with neuronA. Note the tapering reduction
of points along the horizontal band of points at 2.5 ms post-CI
reveals the gradual integration period of inhibition due to dou-
blet firing in the presynaptic neuronA
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Fig. 9. Pre-ISI vs post-CI scatter plot for biological neuronX
as the reference neuron and neuronY as the compared neuron
showing the temporal integration of a doublet firing in neuron
X that is coupled with the suppression of firing in neuronY

This can be deduced from the ISI histogram of Fig. 4D that
shows a Poisson-like distribution.

3.9 Effects of temporal integration in biological neurons

Finally, let us apply the analysis to the spike trains recorded
from cultured spinal cord neurons. Networks of neurons
were cultured on plates with an array of 64-channel pho-
toetched microelectrodes according to the methodology of
Gross et al. (1977), similar to that of previous analyses
(Gross and Tam 1994; Tam and Gross 1994b). The pre-
ISI/post-CI plot for a neuron pair shows two bands of points
parallel to thex and y axes as well as a central cluster of
points. The ISI histogram (bottom histogram of Fig. 9) re-
veals that neuronX fired with a doublet (∼ 1 ms ISI) alter-
nating with a longer ISI (peaking at∼ 25 ms). The firing of
neuronY is found to be coupled with neuronX only when
X did not fire a doublet. That is, points are found along the
horizontal band at 1 ms post-CI only when neuronX fired
at longer ISIs (15∼ 35 ms); but when neuronX fired a
doublet (1 ms ISI), just a few points are found at coordinate
(1, 1). Alternatively, when neuronX fired a doublet, neuron
Y rarely fired at 1 ms latency [as indicated by just a few
points at coordinate (1, 1)], but most often fired at longer
lag times (i.e., post-CI> 10 ms). This shows that inhibitory
temporal integration of the doublet in biological neurons is
revealed by this analysis.

4 Discussion

A temporal integration analysis technique is introduced to
reveal the likelihood of a spike being generated from the

temporal summation of two consecutive spikes by estimating
the conditional probability of firing a spike relative to this
consecutive firing period needed for temporal integration.
This pre-ISI/post-CI analysis provides a statistical measure
for estimating the conditional probability of spike firing in a
compared neuron in relation to the period of doublet firing
in a reference neuron. Alternatively, information theoretics
can be used to describe the statistics of neuronal interactions,
such as the establishment of the statistical significance of a
cross-correlation (Palm 1981), the detection of the synap-
tic connectivity between neurons (Yamada et al. 1993), and
the estimation of the order of a Markov process of neu-
rons (Tsukada et al. 1975; Nakahama et al. 1983). This pa-
per adopts a traditional statistical approach in the analysis
rather than the information theoretic approach so that the
conditional probability of firing can be obtained to reveal
the integration period based on the derived statistics.

Using this analysis, the temporal integration period can
be extracted statistically. Simulation examples of different
integration periods and latencies are used to illustrate the
different effects of temporal integration on the firing charac-
teristics of neurons. The existence and the duration of tem-
poral integration can be deduced from the pre-ISI/post-CI
plot as demonstrated in the simulations.

The results clearly show that the pre-ISI/post-CI plot can
reveal the duration of temporal integration that is associ-
ated with spike generation. Excitatory temporal summation
of two spikes is revealed by a horizontal band of points in
the pre-ISI/post-CI scatter plot that is limited in duration.
In contrast, for inhibitory coupled neurons, the integration
period is revealed by the absence of points in a horizontal
band with a limited duration.
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The analyses show that the effect of temporal integra-
tion on the driven neuron for excitatory coupled neurons is
very different than the effect for inhibitory neurons. If the
neurons are excitatorily coupled, the finite duration of inte-
gration periods can produce regularity in spike firing in the
driven neuron. In contrast, for inhibitory coupled neurons,
the regularity of spike firing is not evident as a result of be-
ing suppressed by a randomly incoming firing rate. Thus, the
present technique provides an analytical tool to study the ef-
fects of temporal integration in a network of neurons since it
can detect whether the coupled firing in one neuron is cor-
related with thefirst preceding spike or thesecond-to-last
preceding spike in another neuron.

One of the seemingly unexpected results of temporal in-
tegration is that the firing pattern of a driven neuron can be
significantly different from that of the driver neuron. This is
due to the fact that more than one spike is required for tem-
poral summation. Without temporal summation, the driven
neuron can follow the spike firing pattern of the driver neu-
ron with a single-spike to single-spike following rate if the
neurons are tightly coupled. With temporal summation, two
or more spikes are required to arrive at the synapse succes-
sively within a short duration before the next spike will be
generated. Thus, the onset of the next spike generation is de-
layed by the ‘waiting-time’ (Knox 1974, 1981). Therefore,
the firing of the driven neuron will depend on the arrival
time of the second or third spike rather than the arrival time
of the first spike, i.e., the firing time of the driven neuron
will be correlated with the second- or higher-order ISIs of
the driver neuron (if these ISIs fall within the integration
period) instead of the first-order ISI.

The key factor contributing to the regularity of firing in-
tervals as a result of temporal integration is thefinite tempo-
ral integration period. When the integration period is limited
to a finite duration, the longer higher-order ISIs of the in-
coming spikes will be excluded from the generation of the
next spike. In other words, only incoming spikes arriving
at intervals within the integration period will be eligible for
triggering the generation of the next spike, which is revealed
by the present spike-train analysis technique. Thus, tempo-
ral integration may act as a bandpass filter in spike signal
processing.

Also unexpected is that the regularity of firing can be
enhanced by temporal integration in a chain of polysynapti-
cally connected neurons. This polysynaptic enhancement in
regularity of firing can be considered as multistage bandpass
filtering in neural signal processing.

In conclusion, this paper introduced a new spike-train
analysis method for detecting temporal integration of a dou-
blet spike firing in relation to the spike generation of a driven
neuron. Also revealed is the difference between the effects
of temporal integration on the excitatory neuron and the in-
hibitory neuron. By using the method introduced in this pa-
per, we have discovered that the regularity of spike firing
can be produced as a result of being driven by a randomly
firing neuron provided that the integration period is finite in
duration. This regularity can further be enhanced by polysy-
naptic coupling. Also, it is shown that a specific property of
a neuron (integration period in this case) can be used to reg-
ulate the firing pattern of another neuron, relatively different
from the firing pattern of the driver neuron. The bandpass

filtering property created by temporally integrating spikes in
a chain of neurons is revealed by this analysis. Although
this analysis is limited to reveal temporal summation only
of a doublet, this is one of the first correlation methods to re-
veal temporal integration based on spike trains only, without
intracellularly recording subthreshold potentials.
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