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Over more than 60 years, classical statistical methods have been adapted in 
various ways to suit the particular characteristics of social and behavioral 
science research, with important areas of applications such as market 

research. Research in these branches often results in data that are non-numerical, 
with measurements recorded on scales having an uncertain unit of measurement. 
Data would typically consist of qualitative or categorical variables that describe the
units (objects, subjects) in a limited number of categories. 

The zero point of these scales is uncertain, the relationships among the different 
categories is often unknown, and although frequently it can be assumed that the 
categories are ordered, their mutual distances might still be unknown. The uncertainty
in the unit of measurement is not just a matter of measurement error, because its 
variability may have a systematic component.

An important development in multidimensional data analysis has been the optimal 
assignment of quantitative values to such qualitative scales. This form of optimal 
quantification (scaling, scoring) is a general approach to treat multivariate 
(categorical) data. For example, in the simple linear regression model we wish to 
predict a response variable z from m predictor variables in X. This objective is achieved
by finding a particular linear combination Xb that correlates maximally with z. Incorpo-
rating optimal scaling amounts to the minimization of ||X*b - z*||**2 over regression
weights b, and nonlinear functions z* =  θ (Z) and Xj* = ϕ j(Xj), j = 1,..., m. Thus, 
optimal scaling maximizes the correlation between θ (z) and ∑j

m (bjϕj (X j)), over 
feasible nonlinear functions. These functions are called transformations for quantita-
tive variables, and scalings, scorings or quantifications for categorical variables.

Categorical variables are dealt with in this framework in the following way. A categorical
variable hj defines a binary indicator matrix Gj with n rows and lj columns, where lj

denotes the number of categories. Elements hij then define elements gir(j) as follows:
hij = r → gir(j) = 1; hij ≠ r → gir(j) =  0, where r = 1,..., lj is the running index indicating
a category number in variable j. If category quantifications are denoted by yj, then a
transformed variable can be written as Gjyj and, for instance, a weighted sum of predictor
variables as ∑∑j

mbjGjyj = X*b, which is as in the standard linear model.

The optimal scaling process turns qualitative variables into quantitative ones. Optimality
is a relative notion, because it is always obtained with respect to the particular data. set
that is analyzed and the particular criterion that is optimized. Some associated 
interpretations of these optimality features include discrimination among objects, 
maximization of homogeneity or internal consistency among variables, making pairwise
relationships as linear as possible, maximization of variance accounted for (in the
analysis of interdependence), and transformations toward additivity, maximization of
r2, canonical correlation, and the ratio of Between to Total dispersion (in the analysis 
of dependence). In the optimal scaling process an appropriate quantification level has
to be chosen. In addition to a numerical (interval) level, we distinguish between the 
following levels and scaling methods:
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■ The ordinal scaling level, taking only rank-orders (among categories) into account, 
and using least squares monotonic regression or monotonic regression splines
(rank = l optimal scaling)

■ The nominal scaling level, taking only categorical information into account, and using
rank = 1 optimal scaling (as above, either by least squares regression or regression
splines) or the centroids approach (rank = p optimal scaling, where p denotes the 
chosen dimensionality in the solution).

A categorical variable is represented by a set of category points; rank = p optimal 
scaling locates a category point in the center of gravity (centroid) of the associated 
objects; rank = l optimal scaling (nominal and ordinal) fits category points on a straight
line through the origin.

A short history and a selection of important references

The idea of optimal scaling originates with different sources. Looking first at rank = p
optimal scaling, we find the history of the class of techniques that is nowadays usually
called (multiple) correspondence analysis (Greenacre, 1984), a literal translation of
Berzecri’s “analyse des correspondances (multiple).” The class of techniques is also
known under the names dual scaling (Nishisato, 1980; 1994), and homogeneity analysis
(Gifi, 1981, 1990). Some famous early contributions are by Horst (1935), Fisher
(1938,1940), Guttman (1941), Burt (1950), and Hayashi (1952).

Another major impetus to optimal scaling was given by work in the area of nonmetric
multidimensional scaling (MDS), pioneered by Shepard (1962), Kruskal (1964) and
Guttman (1968). In MDS, a set of proximities between n objects is approximated by a
set of distances in some low-dimensional space, usually Euclidean. Optimal scaling of
the proximities is typically performed by monotonic (rank =1) regression. Since the
breakthrough in MDS in the early 1960s, optimal scaling has subsequently been 
incorporated in multivariate analysis techniques as well. Some early contributions 
include Kruskal (1965), Shepard (1966) and Roskam (1968).

In the 1970s and 1980s psychometric contributions to the area became numerous; 
attempts to systematize resulted in the ALSOS system by Young, De Leeuw and Takane
(1976,1978), Young (1981), and the system by the Leiden “Albert Gifi” group. The Albert
Gifi (1990) book “Nonlinear Multivariate Analysis” aimed to provide a comprehensive
system, combining optimal scaling with multivariate analysis, including statistical 
developments from the 1970s and 1980s.

Since the middle 1980s, the principles of optimal scaling have gradually appeared 
in the mainstream statistical literature (Breiman and Friedman, 1985; Gilula and 
Haberman, 1988; Ramsay, 1989; Buja, 1990; Hastie, Buja, and Tibshirani, 1994). The 
Gifi system is discussed among the traditional statistical techniques in Krzanowski 
and Marriott (1994). In the 1990s, optimal scaling methods have been extended into 
a more general framework.
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The data theory scaling system

Since the mission of the Data Theory Scaling System (DTSS) is to meet typical concerns
in the social and behavioral sciences, both from a substantive perspective as well as the
technical point of view, it has to deal with:

■ Discrete multivariate data

■ Ordinal data

■ Incomplete data

■ Nonlinear relationships between pairs of variables

■ Non-normal distributions

■ Ordering/scaling of response patterns

■ Social network data and other proximity relations

DTSS focuses on the multivariate analysis of qualitative or categorical data, including:

■ Dimension reduction by linear mapping (see, for example, Heiser and Meulman, 
1995); the Gifi system is confined to this aspect of DTSS, hence DTSS can be viewed
as a natural successor to the Gifi system, being much more general

■ Distance approximation in multivariate data analysis (Meulman, 1992)

■ Clustering objects (Heiser, 1993; Heiser and Groenen, 1997)

■ Clustering variables (Meulman and Verboon, 1993; Meulman, 1997)

■ Graphically displaying objects and variables in linear biplots as in Tucker (1960) 
and Gabriel (1971), and optimized for least squares multidimensional scaling of 
multivariate data (Meulman, 1998a)

■ Nonlinear biplots as in Gower and Harding (1991), generalized for least squares MDS
(Meulman and Heiser, 1993; Groenen and Meulman, 1997)

■ Combinatorial data analysis (Hubert, Arabie, Meulman, 1997); for example, optimal 
sequencing of objects under optimal scaling of the variables (Meulman, Hubert, 
Arabie, 1997)

■ Fitting graphs or networks (Heiser, 1997; Heiser and Meulman, 1997; 1998)

■ Implementing procedures in SPSS Categories. SPSS Categories 8.0 includes a 
new procedure for categorical regression using optimal scaling (see Van der Kooij 
and Meulman, 1997, also for additional references). The SPSS Categories also 
includes a new procedure for correspondence analysis, including analysis with 
supplementary points, restrictions, and alternative standardizations/biplots.
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Graphical display

Most DTSS analyses display the objects as points and variables as vectors (arrows) 
in the same low-dimensional space (biplots); this type of joint display is associated
with rank = 1 optimal scaling. A variable, however, can also be viewed as a group of
category points, which is associated with rank = p optimal scaling, and this is done
in multiple correspondence analysis. The joint display of object points and category
points has the following geometrical properties:

■ In solutions with a decent fit, objects with similar response profiles 
are close together
in the representation; the “average” object is located near the center of the plot

■ Category points for a nominal variable are displayed as centroids of the subjects 
who share the same category

■ The weighted mean squared distance of these category points toward the origin 
gives the discrimination measure (a measure of variance accounted for, but 
separate for each dimension due to the rank-p optimal scaling)

■ In solutions with a decent fit, categories of different variables that are associated
with the same objects are close together in the representation

■ For each variable, categories partition the subject points into subclouds; 
overlapping subclouds correspond to a relatively badly discriminating vanable; 
well-separated subclouds to a good discriminator

In contrast to the prevailing belief that multiple correspondence analysis is 
radically different from loglinear analysis because the first would ignore higher-
order interactions, Meulman and Heiser (1997) have shown that distances in the
graphical display in multiple correspondence analysis are inverse functions of the
odd-ratios that express higher-order interactions.

If objects are displayed as points, and variables as vectors, the orthogonal projection
of the object points onto the variable vectors (the inner product of the row scores
and the column scores) gives an approximation of the columns (and the rows) of 
the (optimally transformed) data matrix. Because the fit in a joint representation 
is defined on inner products, one has to make a coherent choice of normalization. 

Usually, the object scores are normalized to have means of zero and variance equal
to one (the cloud of object points is spherical or orthonormal). Then the coherent
normalization identifies scores for the variables as correlations between the vari-
ables and the p dimensions of the space fitted to the objects. 

If the cloud of the object points has been scaled to be orthonormal, the squared
length of the vector representing a variable is proportional to the variance 
accounted for (fit). If two variables have a decent fit, the angle between their 
vectors approximates their correlation. When the row scores are normalized, 
however, one loses the classical scaling distance interpretation with respect to 
the objects (as in Gower, 1966). To attain the latter, one should rescale the row
scores by using the square root of the eigenvalues, and normalize the column 
scores, keeping the inner product fixed.
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When optimal scaling of the variables is included, the categories are located on the 
vector that represents the variable, and the spacing between the points corresponds 
to the optimal quantification of the variable. The locations (in a direction in space) are
given by coordinates that are sometimes called single category coordinates; such points
could also be called markers (Gabriel, 1971; Gower and Hand, 1996).

Some final remarks

If objects (rows) are represented in a principal components analysis (which is 
infrequently the case, particularly when principal components analysis is needlessly
limited to the analysis of a correlation or covariance matrix), it is best done as points,
with the variables (columns) as vectors. You should realize, however, that the rows of
the data matrix are not necessarily always the subjects (respondents) in the data. 

On the contrary, the first applications of Tucker’s (1960) vector model (e.g., Carroll,
1972) involved preference data, where a number of subjects express their preference
for a number of options. For such data, the appropriate analysis is to put the options as
objects in the rows, and the judges (subjects) as variables in the columns.

In contrast to the vector model, the results of a correspondence analysis are usually
represented in an alternative way:  both row and column objects are represented as
points. This way of representation is associated with the so-called unfolding/ideal point
model, where relations between row and column entries are represented as distances
(the closer a row object to a column object, the larger the association). 

There are, however, many complications with the unfolding/ideal point interpretation of
correspondence analysis due to the indeterminancy (freedom) in choosing the coherent
normalization of row and column scores. This indeterminancy is directly associated
with an inner product approximation, and therefore it would be much more appropriate
to interpret the correspondence analysis results in terms of the vector model as well
(see Meulman, 1998b).
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