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Introduction to basic Text Mining in R.
This month, we turn our attention totext mining. Text mining refers to the process of parsing a

selection or corpus of text in order to identify certain aspects, such as the most frequently occurring word
or phrase. In this simple example, we will (of course) be using R1 to collect a sample of text and conduct
some rudimentary analysis of it. Keep in mind, this article simply provides a cursory introduction to
some text mining functions.

First, we need to retrieve or import some text. We will use theUniversity of North Texas (UNT) policy
which governs Research and Statistical Support (RSS) services; UNT policy 3 - 5 for this example. We
can use the ‘readLines’ function available in the ‘base’ package to retrieve the policy from the UNT Pol-
icy web site. Notice this policy’s HTML page is 305 lines long, which includes all the HTML formatting;
not just the text of the policy.

Next, we need to isolate the actual text of the policy’s HTML page. This can take some investigating
– using the head and tail functions or simply pasting the HTMLpage into a text editor will allow us
to identify the line number(s) which contain the actual textof interest. Once identified, we can use a
‘which’ function to isolate or extract the lines we are interested in parsing. We notice below the actual
text of the policy exists on lines 192 through 197, prefaced by the “Total University” header on line 189.
We use the ‘which’ function to identify the line (189) with the header statement, then add 3 to it to arrive
at line 192 (id.1; which identifies the first line of the policy). Then, we add a further 5 to that (192 +
5 = 197) to identify the last line of the policy (id.2). Then, we create a new object (‘text.data’) which
contains only those lines which contain the text of the policy.

1http://cran.r-project.org/
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Now we are left with a vector object (text.data), which contains only the 6 lines of text of the policy (i.e.
each paragraph of the policy has become a character string line of the vector).

Next, we need to remove the HTML tags (e.g.<p>) from each line of text. Generally multiple characters
can be given in the ‘pattern’ argument within one implementation of ‘gsub’ function; but here we are
using two implementations so that we can specifically removeeach of the HTML (paragraph) tags while
leaving in place all other instances of the letter ‘p’. Notice, we are using the ‘replacement’ argument
to eliminate any instance of the ‘pattern’ argument – using nothing between the quotation marks of the
‘replacement’ argument.

Now we can load the ‘tm’ package (Feinerer & Hornik, 2013) andconvert our vector of character strings
into a recognizable corpus of text using the ‘VectorSource’function and the ‘Corpus’ function.
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Next, we make some adjustments to the text; making everything lower case, removing punctuation, re-
moving numbers, and removing common English stop words. The‘tm map’ function allows us to apply
transformation functions to a corpus.

Next we perform stemming, which truncates words (e.g., “compute”, “computes” & “computing” all
become “comput”). However, we need to load the ‘SnowballC’ package (Bouchet-Valat, 2013) which
allows us to identify specific stem elements using the ‘tmmap’ function of the ‘tm’ package.
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Next, we remove all the empty spaces generated by isolating the word stems in the previous step. We
use the ‘stripWhitespace’ argument of the ‘tmmap’ function to accomplish this task.

Now we can actually begin to analyze the text. First, we create something called a Term Document Ma-
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trix (TDM) which is a matrix of frequency counts for each wordused in the corpus. Below we only show
the first 20 words and their frequencies in each document (i.e. for us, each ‘document’ is a paragraph in
the original policy).

Next, we can begin to explore the TDM, using the ‘findFreqTerms’ function, to find which words were
used most. Below we specify that we want term / word stems whichwere used 8 or more times (in all
documents / paragraphs).

Next, we can use the ‘findAssocs’ function to find words which associate together. Here, we are specify-
ing the TDM to use, the term we want to find associates for, and the lowest acceptable correlation limit
with that term. This returns a vector of terms which are associated with ‘comput’ atr = 0.60 or more
(correlation) – and reports each association in descendingorder.
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If desired, terms which occur very infrequently (i.e. sparse terms) can be removed; leaving only the
‘common’ terms. Below, the ‘sparse’ argument refers to the MAXIMUM sparse-ness allowed for a term
to be in the returned matrix; in other words, the larger the percentage, the more terms will be retained
(the smaller the percentage, the fewer [but more common] terms will be retained).

We can review the terms returned from a specific sparse-ness by using the ‘inspect’ function with the
TDMs containing those specific sparse-ness rates (i.e. the terms retained at specific spare-ness levels).
Below we see the 22 terms returned when sparse-ness is set to 0.60.
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Next, we see the 5 terms returned when sparse-ness is set to 0.20 – fewer terms which occur more fre-
quently (than above).

Conclusions

As stated in the introduction to this article, the above functions provide only a cursory introduction to
importing some text and parsing it. Those seeking more information may want to consider taking a look
at the ‘Natural Language Processing’ Task View at CRAN (Fridolin, 2013; link provided below). The
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task view provides information on a number of packages and functions available for processing textual
data, including an R-Commander plugin which new R users are likely to find easier to use (at first).

For more information on what R can do, please visit the Research and Statistical Support Do-It-
Yourself Introduction to R2 course website. An Adobe.pdf version of this article can be found here3.

Until next time;“no twerking while working!”
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