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Using Robust Mean and Robust Variance Estimates
 to Calculate Robust Effect Size 
By Dr. Rich Herrington, Research and Statistical Support
Consultant
 

This month we demonstrate the calculation of robust effect sizes.  The GNU S language, "R" is used to
implement
 this procedure.  R is a statistical programming environment that is a clone of the S and S-Plus
language developed
 at Lucent Technologies. In the following document we illustrate the use of a GNU Web
interface to the R engine
 on the "rss" server, http://rss.acs.unt.edu/cgi-bin/R/Rprog.  This GNU Web
interface is a derivative of the "Rcgi"
 Perl scripts available for download from the CRAN  website, 
http://www.cran.r-project.org (the main "R"
 website).   Scripts
can be submitted interactively, edited, and be re-submitted with changed parameters by selecting
 the
hypertext link buttons that appear below the figures.  For example, clicking the "Run Program" button 
below
 creates a vector of 100 random normal deviates; displays the results; sorts and displays the results;
then creates a
 histogram and a density plot of the random numbers.  To view any text output, scroll to the
bottom of the browser
 window.  To view any graphical output, select the "Display Graphic" link.  The script
can be edited and
 resubmitted by changing the script in the form window and then selecting  "Run the R
Program".  Selecting the
 browser "back page" button will return the reader to this document.

Introduction  - Calculating Power and Effect Size

     Power analysis involves the relationships between four variables
involved in statistical inference: sample size
 (N), a significance criterion (  ), the population effect size (
  ), and statistical power.  For any statistical
 inference,
these relationships are a function of the other three (Cohen, 1988).  For
research planning, it is most
 useful to determine the N necessary to have a specified power for a given
   and 
.  The statistical power of
 a test is the long term
probability of rejecting   (null hypothesis) given a specified   criterion and sample size
 N.
  When the effect size is not equal to zero,   , is false, so a failure to reject  is a decision error on the part
 of the
researcher.  This is called a type II error (  ) and is related mathematically to power.  The probability of

rejecting the null if it needs to be rejected (power) is one minus the type II error (  ).   Figure 1. below is a
 graphical representation of the relationship between the null distribution, the alternate distribution,
and the critical
 scores under the null distribution.  The area
underneath the   distribution (the alternate distribution), past the
 critical
score of the left tail of  , and past the critical score of the right tail of  , represents the power of the
 statistical test being performed (the shaded area).
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     Effect size is the degree to which   (null hypothesis) is false and is indexed by the discrepancy
between the
 null hypothesis and the alternate hypothesis.  Power analysis
specifies a non-centrality parameter to quantify this
 discrepancy.  The
noncentrality parameter for the difference between means is:

                                                 
 


where the difference between estimated population means is scaled in   units (known as the estimated standard
 error of the
difference between means):

                                        



where,

                                      


and   is the sample estimate of the population standard
deviation.  The denominator of the non-centrality
 parameter represents the estimated standard deviation of the sampling
distribution for the null hypothesis for
 differences between means.  Usually,
   is calculated on the basis of a formula that assumes
normality in the
 population since the standard deviation of the null sampling distribution cannot be calculated
directly on the basis
 of the observed data without normality assumptions.   For
robust measures of location (i.e. M-estimate), the
 numerator would be the difference between two M-estimates, and the
denominator would represent the standard
 deviation of the null hypothesis re-sampling distribution for the difference
between M-estimates.  For robust
 estimates (as well as the sample mean), the
standard error can be estimated directly by calculating the standard
 deviation of the bootstrap estimates of the
differences between the robust estimates of location (see September
 2001 issue of
Benchmarks).  An alternative
effect size for group differences has been advocated by Cohen (1988). 
 Cohen s   measure is based on the pooled estimated population standard
deviation:

                              
               
 


Cohen provides guidelines for interpreting the practical importance of an effect size based on   when no prior
 research is available to anchor
   meaningfully. 
Cohen s rule of thumb for a small, medium and large effect
 size are based on a wide examination of the typical
difference found in psychological data. A small effect size for

  is .20;  a medium
effect size for   is .50; and a large effect size for   is .80 (Cohen, 1992).

Equating   and   using algebra, the expression for   is:
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It is noted that  is not a robust measure
of effect size.   The pooled sample standard deviation, which is used to
 estimate the population standard
deviation ( ) will be inflated in the presence of outliers thereby biasing the effect
 size measure.  Furthermore,  assumes a
normal distribution in the calculation of power estimates.

Measures of Robust Effect Size

     Several problems exist with the  measure
of effect size.  The assumption of equal variances in the
 population
is often dealt with by substituting a pooled variance estimate for 
.  With data that appear to have
 unequal variances, questions arise
about how to interpret  .  Another criticism of   is that both the location
 and scale (mean difference and
sample standard deviation) of the sample are non-resistant measures.  One
strategy
 would be to replace the means and standard deviation with more resistant measures of location and
scale.  For
 example, one variation might
be a difference of medians divided by MAD (median absolute deviation):

                                         


where 
 and 
is the median of the scores in the control group.  This effect size
 estimator does not seem like a good candidate since both the median and MAD are both known to be
inefficient
 for Normal distributions compared to the mean and standard deviation.


Robust Effect Size based on M-estimators

     Lax (1985) examined the performance of 17 different estimators of
scale with heavy tailed distributions.  Lax
 examined the performance
of these scale estimators with the Normal distribution; a distribution with Cauchy tails
 (large kurtosis
relative to the Normal  The Slash dist.); and a mixture distribution of N(0,1) and N(0,100) for
 samples of
size 20.  The mixture distribution had 19 points sampled from N(0,1)
and 1 point sampled from
 N(0,100) (One-Wild dist.).  Lax combined
the efficiencies (see July 2001 issue
of Benchmarks) of the estimators
 for the three distributions into
what was defined as triefficiency�.  The biweight midvariance�
(with c=9)
 estimator performed best, with favorable efficiencies across all scenarios: Normal (86.7%),
One-Wild (85.8), and
 Slash (86.1).  Following Wilcox (1997) the
biweight midvariance can be calculated as follows.  Setting (with
c=9,
 M=sample median):

                                    and          


the following is calculated:

                               

     The square of  is called the biweight midvariance.  It
appears to have a breakdown point of approximately .5
 (Hoaglin, Moesteller, & Tukey,
1983).  Based on this robust
variance, the following robust effect size can be
 calculated:

                                                      


where,   is the robust M-estimator for group 1 (using Huber objective
function, with k=1.28 for both
 groups),   is the robust M-estimator for group 2, and
   is the square root of the biweight midvariance for
 group 1
(control group).  The robust effects size  does not assume equal variances among groups since only
 the robust variance for the
control group is used (alternatively, a pooled estimated of both the control and
 experimental group
biweight midvariances could be used, assuming equal variances). 
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An Example Using GNU-S ("R")

Doksum & Sievers (1976) report data on a study designed to assess the
effects of ozone on weight gain in rats. The
 experimental group
consisted of 22 seventy-day old rats kept in an ozone environment for 7 days (group y).   The
 control group consisted of 23 rats of the same age (group x), and were
kept in an ozone-free environment. Weight
 gain is measured in grams.  The following R code produces
quantile-quantile plots and non-parametric density
 plots of the two groups of data:

 


Resulting qqnorm plots and density plots from R code above:
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 Both groups appear to have right and left tails which are "heavy".   It appears as if the classical mean
difference
 between the groups will be underestimated (smaller).  The R code below estimates both the
classical means, and
 robust means; classical estimated pooled standard deviation, and estimated pooled
robust root biweight
 midvariance. 
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Results and Conclusion


The resulting M-estimators suggest that the population control group mean is downwardly biased (23.24 -
robust;
 22.40 - classical) and the experimental population group mean is biased upwardly (9.69 - robust;
11.01 -
 classical).  Additionally, the robust pooled scale estimate is smaller than the classical pooled
scale estimate (14.36
 - robust; 15.36 - classical).  Using these estimates to calculate Cohen's d measure
indicates that the effect size is
 downwardly biased.  Cohen's d based on classical estimators suggests a
medium to large effect size (.74), whereas
 Cohen's d based on robust estimators suggests a very large
effect size (.94).  In terms of sample size planning for
 future experiments, the robust Cohen's d would
suggest that a much smaller sample size would be needed to
 achieve the same power for a smaller effect
size using non-robust estimators of location and scale - a considerable
 savings in terms of data that
needs to be collected.  
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	MvMjAwMi9qdWx5MDIvcnNzLmh0bQA=: 
	form11: 
	INPUT: x<-rnorm(100)
y<-sort(x)
y
hist(x)
density(x)

	input4: 


	MvMjAwMi9qdWx5MDIvcnNzLmh0bQA=: 
	form67: 
	INPUT: #### Assign data to vector x and y for the 
#    two independent groups

library(eda)

#### Control Group (Ozone free environment)

x<-c(41.0,38.4,24.4,25.9,21.9,18.3,13.1,27.3,
     28.5,-16.9,26.0,17.4,21.8,15.4,27.4,19.2,
     22.4,17.7,26.0,29.4,21.4,26.6,22.7)

#### Experimental Group (Ozone environment)

y<-c(10.1,6.1,20.4,7.3,14.3,15.5,-9.9,6.8,
     28.2,17.9,-9.0,-12.9,14.0,6.6,12.1,15.7,
     39.9,-15.9,54.6,-14.7,44.1,-9.0)

summary(x)
summary(y)

par(mfrow=c(2,2)) #### Plot all graphs on same page in a 
                  #    2x2 grid

qqnorm(x)
qqline(x)

qqnorm(y)
qqline(y)

plot(density(x), ylim=c(0,.06), xlim=c(-30, 70))
par(new=T) #### Plot both graphs on same graph
plot(density(y), ylim=c(0,.06), xlim=c(-30, 70))

	input4: 


	MvMjAwMi9qdWx5MDIvcnNzLmh0bQA=: 
	form77: 
	INPUT: ## Function to calculate pooled variance
std.dev.pooled<-function(std.dev1, std.dev2, n1, n2){
    pooled.std.dev<-(((n1-1)*std.dev1^2+(n2-1)*std.dev2^2)/
                        (n1+n2-2))^.5
}

## M-estimator function
mest<-function(x,bend=1.28){
#
#  Compute M-estimator of location using Huber's Psi.
#  The default bending constant is 1.28
#
if(mad(x)==0)stop("MAD=0. The M-estimator cannot be computed.")
y<-(x-median(x))/mad(x)  #mad in splus is madn in the book.
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
mest<-median(x)+mad(x)*A/B
repeat{
y<-(x-mest)/mad(x)
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
newmest<-mest+mad(x)*A/B
if(abs(newmest-mest) <.0001)break
mest<-newmest
}
mest
}

hpsi<-function(x,bend=1.28){
#
#   Evaluate Huber`s Psi function for each value in the vector x
#   The bending constant defaults to 1.28.
#
hpsi<-ifelse(abs(x)<=bend,x,bend*sign(x))
hpsi
}


## Biweight midvariance function
bivar<-function(x){
# compute biweight midvariance of x
m<-median(x)
u<-abs((x-m)/(9*qnorm(.75)*mad(x)))
top<-length(x)*sum((x[u<=1]-m)^2*(1-u[u<=1]^2)^4)
bot<-sum((1-u[u<=1]^2)*(1-5*u[u<=1]^2))
bi<-top/bot^2
bi
}


#### Control Group (Ozone free environment)

x<-c(41.0,38.4,24.4,25.9,21.9,18.3,13.1,27.3,
     28.5,-16.9,26.0,17.4,21.8,15.4,27.4,19.2,
     22.4,17.7,26.0,29.4,21.4,26.6,22.7)

#### Experimental Group (Ozone environment)

y<-c(10.1,6.1,20.4,7.3,14.3,15.5,-9.9,6.8,
     28.2,17.9,-9.0,-12.9,14.0,6.6,12.1,15.7,
     39.9,-15.9,54.6,-14.7,44.1,-9.0)

## Classical Mean
mean(x)
mean(y)

## Robust Mean (M-estimator)
mest(x)
mest(y)

## Classical Pooled Variance
std.dev.pooled.x.y<-std.dev.pooled(var(x)^.5, var(y)^.5, length(x), length(y))
std.dev.pooled.x.y

## Pooled Robust variance
robust.std.dev.pooled.x.y<-std.dev.pooled(bivar(x)^.5, bivar(y)^.5, length(x), length(y))
robust.std.dev.pooled.x.y

## Cohens d (non-robust)
cohen.d<-(mean(x)-mean(y))/std.dev.pooled.x.y
cohen.d

## Robust Cohen's d
robust.d<-(mest(x)-mest(y))/robust.std.dev.pooled.x.y
robust.d

	INPUT_(1): ## Function to calculate pooled variance
std.dev.pooled<-function(std.dev1, std.dev2, n1, n2){
    pooled.std.dev<-(((n1-1)*std.dev1^2+(n2-1)*std.dev2^2)/
                        (n1+n2-2))^.5
}

## M-estimator function
mest<-function(x,bend=1.28){
#
#  Compute M-estimator of location using Huber's Psi.
#  The default bending constant is 1.28
#
if(mad(x)==0)stop("MAD=0. The M-estimator cannot be computed.")
y<-(x-median(x))/mad(x)  #mad in splus is madn in the book.
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
mest<-median(x)+mad(x)*A/B
repeat{
y<-(x-mest)/mad(x)
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
newmest<-mest+mad(x)*A/B
if(abs(newmest-mest) <.0001)break
mest<-newmest
}
mest
}

hpsi<-function(x,bend=1.28){
#
#   Evaluate Huber`s Psi function for each value in the vector x
#   The bending constant defaults to 1.28.
#
hpsi<-ifelse(abs(x)<=bend,x,bend*sign(x))
hpsi
}


## Biweight midvariance function
bivar<-function(x){
# compute biweight midvariance of x
m<-median(x)
u<-abs((x-m)/(9*qnorm(.75)*mad(x)))
top<-length(x)*sum((x[u<=1]-m)^2*(1-u[u<=1]^2)^4)
bot<-sum((1-u[u<=1]^2)*(1-5*u[u<=1]^2))
bi<-top/bot^2
bi
}


#### Control Group (Ozone free environment)

x<-c(41.0,38.4,24.4,25.9,21.9,18.3,13.1,27.3,
     28.5,-16.9,26.0,17.4,21.8,15.4,27.4,19.2,
     22.4,17.7,26.0,29.4,21.4,26.6,22.7)

#### Experimental Group (Ozone environment)

y<-c(10.1,6.1,20.4,7.3,14.3,15.5,-9.9,6.8,
     28.2,17.9,-9.0,-12.9,14.0,6.6,12.1,15.7,
     39.9,-15.9,54.6,-14.7,44.1,-9.0)

## Classical Mean
mean(x)
mean(y)

## Robust Mean (M-estimator)
mest(x)
mest(y)

## Classical Pooled Variance
std.dev.pooled.x.y<-std.dev.pooled(var(x)^.5, var(y)^.5, length(x), length(y))
std.dev.pooled.x.y

## Pooled Robust variance
robust.std.dev.pooled.x.y<-std.dev.pooled(bivar(x)^.5, bivar(y)^.5, length(x), length(y))
robust.std.dev.pooled.x.y

## Cohens d (non-robust)
cohen.d<-(mean(x)-mean(y))/std.dev.pooled.x.y
cohen.d

## Robust Cohen's d
robust.d<-(mest(x)-mest(y))/robust.std.dev.pooled.x.y
robust.d

	INPUT_(1)_(2): ## Function to calculate pooled variance
std.dev.pooled<-function(std.dev1, std.dev2, n1, n2){
    pooled.std.dev<-(((n1-1)*std.dev1^2+(n2-1)*std.dev2^2)/
                        (n1+n2-2))^.5
}

## M-estimator function
mest<-function(x,bend=1.28){
#
#  Compute M-estimator of location using Huber's Psi.
#  The default bending constant is 1.28
#
if(mad(x)==0)stop("MAD=0. The M-estimator cannot be computed.")
y<-(x-median(x))/mad(x)  #mad in splus is madn in the book.
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
mest<-median(x)+mad(x)*A/B
repeat{
y<-(x-mest)/mad(x)
A<-sum(hpsi(y,bend))
B<-length(x[abs(y)<=bend])
newmest<-mest+mad(x)*A/B
if(abs(newmest-mest) <.0001)break
mest<-newmest
}
mest
}

hpsi<-function(x,bend=1.28){
#
#   Evaluate Huber`s Psi function for each value in the vector x
#   The bending constant defaults to 1.28.
#
hpsi<-ifelse(abs(x)<=bend,x,bend*sign(x))
hpsi
}


## Biweight midvariance function
bivar<-function(x){
# compute biweight midvariance of x
m<-median(x)
u<-abs((x-m)/(9*qnorm(.75)*mad(x)))
top<-length(x)*sum((x[u<=1]-m)^2*(1-u[u<=1]^2)^4)
bot<-sum((1-u[u<=1]^2)*(1-5*u[u<=1]^2))
bi<-top/bot^2
bi
}


#### Control Group (Ozone free environment)

x<-c(41.0,38.4,24.4,25.9,21.9,18.3,13.1,27.3,
     28.5,-16.9,26.0,17.4,21.8,15.4,27.4,19.2,
     22.4,17.7,26.0,29.4,21.4,26.6,22.7)

#### Experimental Group (Ozone environment)

y<-c(10.1,6.1,20.4,7.3,14.3,15.5,-9.9,6.8,
     28.2,17.9,-9.0,-12.9,14.0,6.6,12.1,15.7,
     39.9,-15.9,54.6,-14.7,44.1,-9.0)

## Classical Mean
mean(x)
mean(y)

## Robust Mean (M-estimator)
mest(x)
mest(y)

## Classical Pooled Variance
std.dev.pooled.x.y<-std.dev.pooled(var(x)^.5, var(y)^.5, length(x), length(y))
std.dev.pooled.x.y

## Pooled Robust variance
robust.std.dev.pooled.x.y<-std.dev.pooled(bivar(x)^.5, bivar(y)^.5, length(x), length(y))
robust.std.dev.pooled.x.y

## Cohens d (non-robust)
cohen.d<-(mean(x)-mean(y))/std.dev.pooled.x.y
cohen.d

## Robust Cohen's d
robust.d<-(mest(x)-mest(y))/robust.std.dev.pooled.x.y
robust.d

	input4: 




