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RSS Matters
An Introduction to Robust Measures of Location Using
 GNU S-Plus

By Dr. Rich Herrington, Research and Statistical Support
Consultant


This month we demonstrate the use of robust estimators of location using the GNU S-Plus
 language, "R". R is
a statistical programming environment that is a clone of the S and S-
Plus language developed at Lucent
Technologies. In the following document we will
 illustrate the use of a GNU Web interface to the R engine
on the "rss"
 server, http://rss.acs.unt.edu/cgi-bin/R/Rprog. This GNU Web
interface is a derivative of
 the "Rcgi" Perl scripts available for download from the CRAN  Website, 
 http://www.cran.r-project.org (the main "R" Website).  Scripts
can be submitted
 interactively, edited, and re-submitted with changed parameters by selecting the hypertext
 link buttons that appear below the figures. For example, clicking the button below:


opens a new window with a "browser entry form"  where the program code that has been
 submitted is
displayed. The script can be edited and re-submitted to produce a new program
 output. Scrolling down the
browser window displays text from the program
 execution. Selecting the "Display Graphic" link will open
another browser window where
 graphics will be displayed. Readers are encouraged to change program
parameters to see
 what the effect will be on results.  

Introduction to Robust Estimation


Conventional wisdom has often promoted the view that standard ANOVA techniques are
 robust to non-normality.
However, this view is with respect to type I error (Wilcox, 1998).
 When it is assumed that there are no
differences between groups in a group difference
 testing setting, then the probability level corresponding
to the critical cut-off score, used to
 reject the null hypothesis, is found to be close to the nominal
level of .05. However, many
 statistical journals have pointed out that standard methods are not robust when
differences
 exist (Hample, 1973; Tukey, 1960). As early as 1960, it was known that slight deviations
 away
from normality could have a large negative impact on power whenever means were
 being compared, and that
popular measures of effect size could misleading (Tukey, 1960).
 Later, a theory of robustness was developed
by Huber (1964) and Hampel (1968). Today,
 there is a well established mathematical foundation for dealing
with these issues(Huber,
 1981; Rousseeuw & Leroy, 1987). Moreover, basic coverage of the theory and the
use of
 computer software in performing robust analyses can be found in introductory textbooks
 (Rand Wilcox,
1997, 2001). 
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Dealing with Outliers


It is often assumed in the social sciences that data conform to a normal
 distribution.Numerous studies have
examined real world data sets for conformity to
 normality, and have strongly questioned this assumption
(Hampel, 1973; Tukey, 1960;
 Micceri, 1989; Stigler, 1977).Sometimes we may believe that a normal
distribution is a
 good approximation to the data, and at other times we may believe this to be only a rough
 approximation.Two approaches have been taken to incorporate this reality.One approach is
 a two-stage
process whereby influential observations are identified and removed from the
 data. So-called outlier�
analysis involves the calculation of leverage and influence
 statistics to help identify influential
observations (Rousseeuw & Leroy, 1987). The other
 approach, robust estimation, involves calculating
estimators that are relatively insensitive to
 the tails of a data distribution, but which conform to normal
theory approximation at the
 center of the data distribution. These robust estimators are somewhere between
a
 nonparametric or distribution free approach, and a parametric approach. Consequently, a
 robust approach
distinguishes between plausible distributions the data may come from,
 unlike a nonparametric approach,
which treats all possible distributions as equal.The
 positive aspect of this is that robust estimators are
very nearly as efficient (very nearly
 optimal estimators) as the best possible estimators(Huber, 1981). It
is possible to get a sense
 of how much you can violate the normality assumption before inferences are
compromised. 

Symmetric and Asymmetric Distributions


Historically, statisticians have focused on estimators that assume symmetry in the
 population. The reason
for this is that estimators of location are best understood when a
 distribution s natural candidates for
location all nearly coincide (e.g. mean, median,
 mode).Additionally, when a distribution is treated in a
symmetric way so that no bias arises,
 a trade off is not needed between bias and variability (e.g.
M-estimators with odd influence
 functions are unbiased estimators whenever the distribution is symmetric).
Moreover,
 whenever a distribution is admitted as skew, there is some question as to what measure of
 location we are trying to estimate.That is, asymmetric distributions do not have a
 natural� location
parameter as the center of symmetry, of a symmetric distribution
 (Hoaglin, Mosteller, & Tukey, 1983).
It is a common practice to re-express the data, such as
 in a functional transformation (e.g.
log-transformation), so that the data more nearly
 resembles a symmetric distribution.Often, if the
departure from symmetry is not too large, it
 is found that estimators that rely on symmetry are still
satisfactory (Hoaglin, Mosteller, &
 Tukey, 1983). The use of quantile-quantile plots can aid in the
assessment of skewness (see
 below). In the case of M-estimators for location, we would like the M-estimate
to be an
 unbiased, robust estimate of the population mean.This goal can be realized in the case of a
 symmetric distribution.

The Contaminated Normal


For example, Tukey (1960) showed that classical estimators are quite sensitive to
 distributions which have
heavy tails. The approach Tukey took was to sample from a
 continuous distribution called the contaminated
normal (CN). The contaminated normal is a
 mixture of two normal distributions, one of which has a large
variance; the other
 distribution is standard normal. The contaminated normal has tails which are heavier,
or
 thicker, than the normal distribution.This can be illustrated by the use of quantile-quantile
 plots. The
empirical quantiles of a data set are graphed against the theoretical quantiles of a
 reference distribution
(i.e. normal distribution). Deviations away from the straight line
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 indicate deviations away from the
reference distribution. In the figure below, the quantile-
quantile plot illustrates a heavy-tailed
distribution.  


Robust estimators are considered resistant if small changes in many of the observations or
 large changes in
only a few data points have a small effect on its value. For example, the
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 median is considered an example
of a resistant measure of location, while the mean is not.
 In the figure below, the sampling distributions
of the mean and median are plotted when
 sampling from the contaminated normal distribution (CN).  Sampling
occurred from the CN
 distribution where there is a 90% probability of sampling from N(0, 1) and 10%
probability
 of sampling from N(0, 10) and the population mean for the CN is zero. Notice that there is
 substantially more variability in our estimate of the population mean when using the sample
 mean to
estimate the population mean, than when using the sample median to estimate the
 population mean. Also, the
sample median is closer to the population mean of zero, than is
 the sample mean.
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The Trimmed Mean


One problem with the median however is that its value is determined by only 1 or 2 values
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 in the data set 
information is lost.The trimmed mean represents a compromise between
 the mean and the median (Huber, 1981).
The trimmed mean is computed by putting the
 observations in order. Next, trim the numbers by removing the
d largest and d smallest
 observations, and then compute the average of the remaining numbers.
d can be between 0
 and n/2. Trimming enough data gives the sample median.Rules of thumb are that
20%-25%
 (d=.2*n) trimming works well in a wide range of settings(Wilcox, 1997).Another approach
 to
selecting the trimming amount is to calculate the mean for 0, .10, .20 and then use the
 trimming value that
corresponds to the smallest standard error (Leger and Romano, 1990).  

M-Estimators


The trimmed mean is based on a preset amount of trimming. A different approach is to
 determine empirically
the amount of trimming necessary. If the data come from a normal
 distribution, then light or no trimming is
necessary. If the data come from a heavy tailed
 distribution, then a heavier amount of trimming is desired
in both tails. If the distribution
 has a heavy right tail, then more trimming might be desired from the
right tail; or if the
 distribution has a heavy left tail, more trimming from the left tail might be
 appropriate.Essentially, M-estimators accomplish this appropriate amount of trimming by
 meeting certain
statistical criterion for what is considered a good estimator (i.e. maximum-
likelihood principle). For the
M-estimator, the degree of trimming is determined by a
 trimming constant, k.  

Desirable Properties of a Robust Estimator


A good robust estimator is asymptotically consistent and unbiased (the estimator converges
 on the true
population value as sample size increases). Additionally, a good robust estimator
 should be efficient when
the underlying distribution is normal, but still be relatively
 efficient when the tails of the distribution
deviate from normality. That is, the variance of
 the sampling distribution for the estimator should be
small whether we are sampling from a
 normal or non-normal distribution.When sampling data from a normal
distribution, the
 mean is a minimum variance estimator.That is, the mean is considered an optimal estimator
 because the variance of its sampling distribution is as small as possible assuming an
 underlying normal
distribution.  While the mean is an optimal estimator, it does not possess
 other characteristics which are
associated with a good estimator. Whenever sampling from a
 non-normal distribution, the mean can lose many
of the properties which make it an optimal
 estimator. Efficient estimators exist for situations where
non-normality is present. These
 estimators are refereed to as robust estimators.

Comparing Estimators - Asymptotic Relative Efficiency


Efficiency refers to the variance of the sampling distribution for the estimator. High
 efficiency
estimators have small variance in the sampling distribution for the
 estimator.Efficiency will affect the
power of a test procedure in that less variance in the
 sampling distribution for the estimator being
tested, will lead to higher power for the
 statistical test. here are two ways of viewing efficiency. Finite
sample efficiency refers to
 the variance of the sampling distribution for the estimator as it is applied in
small sample
 settings.  Asymptotic efficiency refers to the way an estimator performs as the sample size
 gets larger. It is a common practice to compare estimators to one another using Asymptotic
 Relative
Efficiency (ARE). For a fixed underlying distribution, we define the Relative
 Efficiency (RE) of one
estimator to another estimator as the ratio of the two variances of the
 estimators, and ARE is the
asymptotic value of RE as the sample size goes to infinity. For
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 example, to compare the efficiencies of the
mean and median, one would sample from a
 fixed underlying distribution and fixed sample size (i.e. normal
distribution), then divide the
 variance of the median into the variance of the mean. As the sample size
increases, this ratio
 will converge to the ARE of the two estimators. In this way, estimators can be
compared
 with respect to the different types on non-normality that is found in data analysis settings.

Robustness Properties: High Breakdown and Resistance


High breakdown is the largest percentage of data points that can be arbitrarily changed and
 not unduly
influence the estimator (e.g. location parameter). For example, the median has
 50% breakdown.That is, for
100 rank ordered data points, the first 49 points can be changed
 arbitrarily such that the values are still
less than the median, and the median will not
 change. The mean is not considered a robust estimator because
changing one observation
 arbitrarily can greatly influence the mean. This implies that the mean has a
breakdown of
 (1/n) x 100. As n increases, the breakdown of the mean linearly decreases in an unbounded
 fashion.  In comparison, the median has a much higher breakdown than the mean, and as
 such, is considered a
more robust estimate of location. 

A Comparison of Four Robust Estimators of Location


The median has a breakdown of 50%. The trimmed mean has a breakdown that corresponds
 to the degree of
trimming that is utilized. For example, a 20% trimmed mean has a
 breakdown of 20%. The mean has a breakdown
of (1/n)x100, where n is the sample size.
 For Huber type estimators, the breakdown will depend on the
trimming constant k. In the
 figure below, the sampling distributions of the sample mean, sample trimmed
mean, sample
 M-estimator, and the sample median are plotted. Sampling occurred from the CN
 distribution
where there is a 90% probability of sampling from N(0, 1) and 10% probability
 of sampling from N(0, 10)
with a mean of zero. We see that the sample median, sample m-
estimate and sample trimmed mean are all
considerably closer to the population mean of
 zero. Additionally, there is less variability in these
estimates, than the sample mean.
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