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The previous issue in this series can be found in the July, 2002 issue of Benchmarks Online: Using Robust Mean
 and Robust Variance Estimates to Calculate Robust Effect Size 

Please make sure and read the farewell message from Dr. Karl Ho in this month's SAS Corner. - Ed.

An Introduction to Multilevel Models (Part I):  Exploratory Growth
 Curve Modeling 

By Dr. Rich Herrington, Research and Statistical Support Consultant

 This month we discuss exploratory growth curve modeling.  This is Part I in a series on Multilevel Modeling. 
 The GNU S language, "R" is used to implement this procedure.  R is a statistical programming environment that
 is a clone of the S and S-Plus language developed at Lucent Technologies. In the following document we
 illustrate the use of a GNU Web interface to the R engine on the "rss" server ( http://rss.acs.unt.edu/cgi-
bin/R/Rprog).  This GNU Web interface is a derivative of the "Rcgi" Perl scripts available for download from the
 CRAN  Website (http://www.cran.r-project.org), the main "R" Website.   Scripts can be submitted interactively,
 edited, and then be re-submitted with changed parameters by selecting the hypertext link buttons that appear
 below the figures.  For example, clicking the "Run Program" button  below creates a vector of 100 random
 normal deviates; sorts and displays the results; then creates a histogram of the random numbers.  To view any
 text output, scroll to the bottom of the browser window.  To view any graphical output, select the "Display
 Graphic" link.  The script can be edited and resubmitted by changing the script in the form window and then
 selecting  "Run the R Program".  Selecting the browser "back page" button will return the reader to this
 document.

Introduction to Repeated Measure Multilevel Models 

In this article we will discuss an exploratory approach to fitting a repeated measures multilevel model.  This will
 serve as a warm up to the more formal estimation methods used in multilevel modeling, which we will cover in
 coming issues of RSS Matters.  We will motivate the model with a simulated example that uses Iteratively Re-
weighted Least Squares (IRLS) regression to estimate parameters.  Our goal here is to keep the example simple
 to elucidate the main insights that growth curve modeling (multilevel modeling) offers.  Additionally, we will
 learn S language commands that allow us to graphically explore and statistically estimate parameters of a simple
 multilevel model.

The following graph represents the time course of what we will call the level-one observed change, within an
 individual.  Examining such a graph allows the data modeler to attempt to characterize the change process as a
 simple mathematical function (i.e. linear, quadratic, or cubic) for the individual entity.  An assumption of growth
 curve modeling approaches and multilevel approaches in general, is that a family of functions (e.g. linear) can
 characterize the change process in different individuals, by allowing the parameters of the linear function to vary
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 randomly across individuals.  Individuals express their unique variability through the parameters of the
 mathematical function.  These randomly varying estimates of the change process (e.g. intercept and slope) can
 be related to background conditions of the individuals.  It is here that we wish to get efficient and unbiased
 estimates of the predictors of the change process.  Do background covariates predict rates of change (slope) or
 initial status of the outcome variable?

      

Summary Measures of the Level-One Model Change Process

Since the observed growth record for an individual is subject to measurement error and sampling variability, it is
 useful to characterize the growth process as a mathematical function.  We will call this the level-one model of
 change.  This mathematical function (e.g. linear), if representative, should capture the essential features of the
 growth profile.  The parameters of the function should summarize the  characteristics of the change process for
 the individual.  In the following graph, a linear function is considered representative of the change process.  An
 intercept is calculated; the intercept gives a best estimate of the initial status of the outcome variable at the first
 observation period.  Additionally a slope is calculated; a slope gives an estimate of the rate of change in the
 outcome variable per unit change in the time indicator variable.  In our simulated example we have
 electrophysiological assessments from the scalp of an individual who is engaged in EEG biofeedback (also
 referred to as neurofeedback - NF), gathered over four observation periods.  Individuals use a process of trial and
 error and an electrical  feedback signal from the scalp to change their own scalp electrical potentials.  An initial
 question is posed for our example:  Does the rate of change in cortical electrical activity (amplitude in
 millivolts)  relate to background conditions of depression in the individual?



RSS Matters

http://www.unt.edu/benchmarks/archives/2002/october02/rss.htm[5/6/16, 12:14:12 PM]

       

Individual Variation (Level-One) and  Group Level Variation (Level-Two)

The following graph depicts four linear growth curves fit for four different individuals.  Additionally, an average
 curve is estimated which represents the change process of the group as a whole, collapsing over individual
 variation in the growth process.  Each person has an intercept estimate and a slope estimate;  these individual
 estimates can vary from the group intercept and group slope (level-two).  The source of this variation may be
 related to other predictor variables, such as background characteristics, or may represent variation that is not
 related to a substantial variable of interest.  We will call this the level-two model.  In our example, it might be
 that the rate of change in electrical activity on the scalp (as measured in millivolts), is related to initial status of
 depression, as measured behaviorally by a paper and pencil inventory - the Beck's Depression Inventory (BDI).

         

Predicting Outcome as a Function of Time - Allowing Individual Variation in Slopes and
 Intercepts

We can represent both level-one and level-two models of change as a set of regression equations.  The outcome
 variable (Y) is predicted by the estimates of individuals' slopes and intercepts.  Each individuals' slope and
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 intercept is composed of a constant (fixed) portion and a residual (random) portion.  The fixed portion can be
 thought of as the mean of the group estimate (i.e. group slope and group intercept), and the residual variation can
 be thought of as unique variation that is not accounted for at the group level.   We can substitute level two
 regression equations into level one regression equations to obtain a single regression equation. 

         

The first term represents the fixed component of growth; this represents the group level characteristics of growth.
 The second term represents the random component of growth; this represents the individual level characteristics
 of growth.  This model is referred to as an unconditional growth model because we are NOT attempting to
 predict growth using additional measures.  To predict growth we must use a conditional growth model.  Both
 time variant and time invariant predictors of growth can be used in a conditional growth model

It is important to note that this single equation has "heteroscedastic" components.  The second term in this
 regression equation is heteroscedastic because the time variable (T), which is increasing,  multiplies by a
 variance component (u).  Hence, the variance increases as a function of observation period, thus violating the
 assumption of homoscedasticity in classical OLS estimates of the regression equation.  It is for this reason that a
 non-OLS estimate is needed for the parameters in the model; heteroscedasticity can lead to biased and/or
 inefficient  estimates of slope and intercept coefficients   

Predicting the Outcome Variable as a Function of Level-One Covariates and Level-Two
 Covariates

In the system of regression equations below, both time varying level-one covariates, and time-invariant level-two
 covariates are combined.  X is an individual level, time varying covariate, and Z is a time invariant, individual
 level characteristic, or group level predictor; the six regression parameters (beta coefficients) relate the two
 predictors to variability in initial status and rate of change over time. 
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This model is a conditional growth model because the individual variability in initial status and change over time
 are conditioned upon exogenous predictor variables.  The conditional random effects model is sometimes
 referred to as a: random coefficient model, mixed-effects model, hierarchical linear model (Bryk & Raudenbush,
 1992), empirical Bayes model, "slopes as outcomes" model - or, more generally, a multilevel model.

 In longitudinal research, we sometimes have repeated measures of individuals who are all measured together on
 a small number of fixed occasions.  This is typically the case with experimental designs involving repeated
 measures and panel designs.  For our example, our group level predictor can be an indicator variable indicating
 either control or experimental group membership. 

For our simulation example, we will use a much simpler model (displayed below), and will only focus on one
 coefficient of interest.  In the following example Y will be electrical voltages from the scalp (amplitude -
 measured in millivolts) measured over observation period (T).  Individuals change their own scalp electrical
 potential through trial and error, relying on a biofeedback signal coming from their scalp (neurofeedback - NF). 
 Additionally, we have measured levels of depression using a behavioral (self-report) assessment device (Beck
 Depression Inventory - BDI).  Several questions can be posed:  Is there evidence for systematic change and
 individual variability in NF amplitudes over time? Is the post BDI assessment related to the initial levels or rates
 of change in NF amplitudes? What is the relationship between the initial levels of NF amplitudes and the rates of
 change in NF amplitudes over time? Is a linear relationship a good description of within-person change?
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Parameter Estimation Using Iteratively Re-weighted Least Squares (IRLS)

We are interested in unbiased and efficient estimates of the beta coefficients which relate the background
 covariate Z to the individual level estimates of rates of change and initial status (pi coefficients).  Willet (1988)
 outlines a fairly straightforward approach to estimating a growth curve model for a single, level-two coefficient
 (relating individual slope coefficients to individual background covariates) .  This method relies on weighted
 least squares (WLS) and can be improved by iterating until the weights or residuals converge (IRLS).  This
 method is appealing because it provides insight into a central point of multilevel modeling:  Level-two
 coefficient estimates are weighted by the precision of the level-one coefficients.  Individuals whose growth
 coefficients are more reliably estimated, provide more input (information) in the estimation of level-two
 coefficients.  Individuals with large residual variability in their growth record, and hence more unreliable
 estimates of level-one growth coefficients, are down weighted in the second level of analysis of the level-two
 coefficients.   In the table below, a modified form of Willet's algorithm is outlined.

    

An Example Using GNU-S ("R")
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We will create a simulated data set that is modeled after real neurofeedback data. The observations represent
 average neurofeedback session amplitudes (10 averaged sessions per observation period).  The covariate
 represents either a pre or post BDI assessment (we will use a post BDI assessment).  We will go through most
 sections of the S code to illustrate how S can be used to both simulate data according to an assumed model, and
 then estimate the model, to try and recapture the population parameters.  It is recommended that the reader
 change the population parameters and experiment with the model.  In this way, intuition can be gained about
 how the observed data varies according to changes in the model.  A "Live" script is presented below (this script
 can be run, examined, and re-edited for re-submission and re-examination); below this live script is annotated
 program output.
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Population parameters are set according to our previous model with one background covariate (Z, the BDI).   A
 small number of growth curves are generated to examine the effect of small sample size in getting unbiased
 estimates using OLS versus IRLS parameter estimation.  Both the fixed portion and the residual portion (beta
 and u) for the level-two regressions are set in the population.  These will be used with the background covariate
 to generate the slopes and intercepts for individuals (pi's).

A matrix of observation periods must be generated for each individual.

Slopes and intercepts of individuals can be correlated across individuals (p0 - intercept, p1 - slope).  We create
 slopes and intercepts whose correlation is -.30:  high intercepts lead to rapid rates of change, and low intercepts
 lead to small rates of change.

 

Residuals at level-one (within an individual) are likely to be correlated.  We assume a correlation structure that is
 equal across time periods (compound symmetry). 
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Next, a covariate is generated for each individual:

With the group betas (b0, b1), individual background covariate (covar), and level-two residual terms (u0, u1), we
 can combine the level-two parameters together to obtain the level-one parameters for each individual (p0, p1). 
 We also estimate the average population slope and intercept estimates, and the correlation between the two, once
 the betas are combined with the covariate and the residual terms.  Later, in estimating a  statistical model for this
 simulated data, we might want to use "centered" estimates of the covariate (covar) to aid in interpretation and
 estimation (Hox, 2002). 
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Once the pi coefficients (p0, p1) are calculated for each individual, we can combine them with the time index and
 add the level-one individual residual term to obtain the "observed score" for each individual, indexed by T - each
 individual gets four observations since T ranges from 1 to 4. 

Some attention needs to be paid to the fact that some observations can fall out of range of reasonable limits
 (dictated by physical logistics and limitations).  We can replace the min and max observation with the mean
 observation, for each observation period.   This process "draws" the tails of the distribution of scores, for an
 observation period, toward the mean of the distribution.  This can be iterated to shape the growth curves is so
 desired.  Here, we only iterate one time, taking the one smallest and one largest observation and replacing with
 the mean for that observation period.

Finally, we list out the observed scores as simulated from a "known" model.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A "not-so-useful" depiction of all the observed growth profiles is a "Profile" plot.  A profile plot allows one to
 discern some random effects structures in the data - we can see that the slopes and intercepts are potentially
 correlated; we see that there is heteroscedasticity prevalent in the data; and we can examine potential "outlying"
 growth records.

    

Parametric Estimation of Growth Curve Models Using OLS and IRLS

Ordinary Least Squares (OLS) is used to estimate the level-one linear regressions for all individuals.  Standard
 errors for each individual regression are used to create weights for the level-two regression of the level-one
 slopes and background covariates.  Additionally, at the level-two regression, iteratively re-weighted least squares
 (IRLS) is used to converge on the best estimates given the initial level-one weights. 
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All 20 regressions are performed; the beta coefficients, standard errors (used for weights later), covariates, and
 other interesting information are combined into a single data frame;  informative names are then assigned to the
 columns.

A nice alternative to a profile plot of the observed data,  is a profile plot of the level-one predicted values for each
 observation period.  This plot better summarizes the correlation structure of the parameters (slopes and
 intercepts), and indicates more clearly the nature of the heteroscedasticity in the data.
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A comparison of the OLS and IRLS solution indicates that the slope estimates are close for both the IRLS and
 OLS procedures (.25 for OLS versus .36 for IRLS).  However, the IRLS procedure gives a substantially smaller
 residual standard error (1.001 for OLS versus .5483 for IRLS), thereby giving a more efficient estimate for the
 IRLS procedure.  Furthermore, the residuals for the OLS indicate fairly high values (-1.7009, 1.5025), whereas
 the IRLS residuals are relatively smaller (-.84154, 1.00915) - using 2.0 as a cutoff.  
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OLS gives a good fit to the observed data even though growth curve parameters are not weighted by the
 parameter’s precision at level-one.  This indicates a relatively efficient solution, however IRLS gives a much
 better fit to the data. Consequently, the estimates of R-squared are significantly larger for IRLS indicating that
 the OLS is not as efficient in the presence of heterogeneous slopes having differing measurement precisions.

 Descriptive statistics for the observed data and the level-one regressions are generated.

A Graphical Depiction of the Relationship Between the Observed Background Covariate
 and the Estimate Growth Rates

Another useful graphical depiction is a scatter plot (with an OLS best fit line) of the estimated growth rates
 (slopes) with the background covariate.  One can graphically characterize the impact of the  heteroscedasticity
 present in the data on the level-two regression of slopes and covariates.  The heteroscedasticity in the plot
 appears to be quite large.  While significant "outliers" are present, these outliers seem to "counterbalance" one
 another across the mean of the Y-axis, and counterbalance one another across the mean of the X-axis.  This
 could account for the closeness of the IRLS and OLS parameter estimates.  If the size of the residuals are:  1)
 symmetrical and counterbalanced across both Y and X axes (as is in this case), and  2)  the outlying values on
 the X-axis are close to the mean of the X-axis,  this would lead to less bias in the parameter estimates.  An
 interesting experiment would be to generate different data sets with differing patterns of heteroscedasticity, and



RSS Matters

http://www.unt.edu/benchmarks/archives/2002/october02/rss.htm[5/6/16, 12:14:12 PM]

 observe the difference in the parameter estimates of the OLS and IRLS procedures. 

The graph below (panel 1) depicts the relationship between the covariate (Y-axis) and the slopes for individuals
 (X-axis).  The second graph (panel 2) plots the observed data as a function of observation period, and the third
 graph (panel 3) is the predicted values from the level-one regressions plotted as a function of observation
 period. 

Conclusions

A Two Stage IRLS model of the Post BDI covariate and the individual growth rates
 indicates that there is reliable differences in growth rates in individuals and is
 correlated with the post BDI assessment (for the simulated data set). In general,
 larger negative slopes are correlated with smaller values on the BDI assessment, and
 lesser negative slopes are correlated with larger values on the post BDI assessment. 
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 In general, larger negative slopes are correlated with larger NF amplitudes at initial
 status, and smaller negative slopes are correlated with smaller NF amplitudes at
 initial status.  The IRLS and OLS beta estimates (slopes) were fairly close in value -
 this may be due to the symmetrical pattern of heteroscedasticity  in the data. 
 However, IRLS estimation gave significantly smaller level-two residual standard
 error than OLS estimation, for the level-two regression - IRLS is more efficient than
 OLS in this example.  Consequently, the percentage variance accounted for in the
 outcome variable (NF amplitudes), by knowledge of the background covariate
 (BDI), was substantially larger for the IRLS solution.   

Next Time

Next time we  will explore the use of  the S-Plus and R library NLME (linear and nonlinear mixed effects)  with
 the simulated data set used in this article.  Additionally, we will look at other parameter estimation algorithms
 (e.g. Restricted Maximum Likelihood - REML), and other model diagnostic approaches (e.g. AIC). 
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	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form15: 
	INPUT: ###################################################### Simulating Growth Curvesset.seed(20)library(MASS)#### Number of Growth Curvesnobs.curves<-20############## Level Two Parametersbeta.00<-8.5beta.01<-.005beta.10<-.05 beta.11<-(-.10)u.0.std<-.03u.1.std<-.15#### Parameter for Level One Residualserror.std<-3#### Parameters for covariate covar.mean<-10covar.std<-2.5#### Generate Time vectortime<-matrix(rep(c(0,1,2,3), length=4*nobs.curves),              nrow=nobs.curves, ncol=4, byrow=T)time.list<-vector('list', nobs.curves)for (i in 1:nobs.curves){time.list[[i]]<-time[i,]}#### Generate Correlated Level One ParametersSigma.param <- matrix(c(1,-.3,-.3,1),2,2)pi.indiv<-mvrnorm(n=nobs.curves, rep(0, 2), Sigma.param,                   empirical=TRUE)cor(pi.indiv)#### Generate Correlated ResidualsSigma.error <- matrix(c(1,.2,.2,.2,.2,1,.2,.2,.2,.2,1,.2,.2,.2,.2,1),                      4,4)z.error<-mvrnorm(n=nobs.curves, rep(0, 4), Sigma.error,                      empirical=TRUE)indiv.error<-z.error*error.stdindiv.error                     #### Generate Covariate Scorescovar<-matrix(rnorm(nobs.curves, covar.mean,               covar.std), nrow=nobs.curves)covar#### Construct Level One Parameters from level two parameters          pi.0<-matrix(beta.00+beta.01*(covar)+pi.indiv[,1]*u.0.std, ncol=1)pi.1<-matrix(beta.10+beta.11*(covar)+pi.indiv[,2]*u.1.std, ncol=1)mean(pi.0)mean(pi.1)sd(pi.0)sd(pi.1)cor(pi.0, pi.1)#### Construct observed data sety.obs<-matrix(0, nrow=nobs.curves, ncol=4)for(i in 1:nobs.curves){ for (j in 1:4){    y.obs[i,j]<-pi.0[i]+pi.1[i]*time[i,j]+indiv.error[i,j]                }    }######## Eliminate unlikely observations in the simulation #        by drawing tails of distribution inward toward meany.obs[y.obs[,1]==min(y.obs[,1]),1]<-mean(y.obs[,1])y.obs[y.obs[,1]==max(y.obs[,1]),1]<-mean(y.obs[,1])y.obs[y.obs[,2]==min(y.obs[,2]),2]<-mean(y.obs[,2])y.obs[y.obs[,2]==max(y.obs[,2]),2]<-mean(y.obs[,2])y.obs[y.obs[,3]==min(y.obs[,3]),3]<-mean(y.obs[,3])y.obs[y.obs[,3]==max(y.obs[,3]),3]<-mean(y.obs[,3])y.obs[y.obs[,4]==min(y.obs[,4]),4]<-mean(y.obs[,4])y.obs[y.obs[,4]==max(y.obs[,4]),4]<-mean(y.obs[,4])##########y.obs.all<-cbind(y.obs,covar)y.obs.all<-data.frame(y.obs.all)names(y.obs.all)<-c('Time0', 'Time1', 'Time2', 'Time3', 'Covariate')#### Convert y.obs Matrix into a Listy.obs.list<-vector('list', nobs.curves)for (i in 1:nobs.curves){y.obs.list[[i]]<-y.obs[i,]}y.obs.list
	INPUT_(1): ###################################################### Simulating Growth Curvesset.seed(20)library(MASS)#### Number of Growth Curvesnobs.curves<-20############## Level Two Parametersbeta.00<-8.5beta.01<-.005beta.10<-.05 beta.11<-(-.10)u.0.std<-.03u.1.std<-.15#### Parameter for Level One Residualserror.std<-3#### Parameters for covariate covar.mean<-10covar.std<-2.5#### Generate Time vectortime<-matrix(rep(c(0,1,2,3), length=4*nobs.curves),              nrow=nobs.curves, ncol=4, byrow=T)time.list<-vector('list', nobs.curves)for (i in 1:nobs.curves){time.list[[i]]<-time[i,]}#### Generate Correlated Level One ParametersSigma.param <- matrix(c(1,-.3,-.3,1),2,2)pi.indiv<-mvrnorm(n=nobs.curves, rep(0, 2), Sigma.param,                   empirical=TRUE)cor(pi.indiv)#### Generate Correlated ResidualsSigma.error <- matrix(c(1,.2,.2,.2,.2,1,.2,.2,.2,.2,1,.2,.2,.2,.2,1),                      4,4)z.error<-mvrnorm(n=nobs.curves, rep(0, 4), Sigma.error,                      empirical=TRUE)indiv.error<-z.error*error.stdindiv.error                     #### Generate Covariate Scorescovar<-matrix(rnorm(nobs.curves, covar.mean,               covar.std), nrow=nobs.curves)covar#### Construct Level One Parameters from level two parameters          pi.0<-matrix(beta.00+beta.01*(covar)+pi.indiv[,1]*u.0.std, ncol=1)pi.1<-matrix(beta.10+beta.11*(covar)+pi.indiv[,2]*u.1.std, ncol=1)mean(pi.0)mean(pi.1)sd(pi.0)sd(pi.1)cor(pi.0, pi.1)#### Construct observed data sety.obs<-matrix(0, nrow=nobs.curves, ncol=4)for(i in 1:nobs.curves){ for (j in 1:4){    y.obs[i,j]<-pi.0[i]+pi.1[i]*time[i,j]+indiv.error[i,j]                }    }######## Eliminate unlikely observations in the simulation #        by drawing tails of distribution inward toward meany.obs[y.obs[,1]==min(y.obs[,1]),1]<-mean(y.obs[,1])y.obs[y.obs[,1]==max(y.obs[,1]),1]<-mean(y.obs[,1])y.obs[y.obs[,2]==min(y.obs[,2]),2]<-mean(y.obs[,2])y.obs[y.obs[,2]==max(y.obs[,2]),2]<-mean(y.obs[,2])y.obs[y.obs[,3]==min(y.obs[,3]),3]<-mean(y.obs[,3])y.obs[y.obs[,3]==max(y.obs[,3]),3]<-mean(y.obs[,3])y.obs[y.obs[,4]==min(y.obs[,4]),4]<-mean(y.obs[,4])y.obs[y.obs[,4]==max(y.obs[,4]),4]<-mean(y.obs[,4])##########y.obs.all<-cbind(y.obs,covar)y.obs.all<-data.frame(y.obs.all)names(y.obs.all)<-c('Time0', 'Time1', 'Time2', 'Time3', 'Covariate')#### Convert y.obs Matrix into a Listy.obs.list<-vector('list', nobs.curves)for (i in 1:nobs.curves){y.obs.list[[i]]<-y.obs[i,]}y.obs.list
	input3: 


	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form3: 
	INPUT: ######################################################## Perform OLS Regression on all Curvesresults<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),          x = time.list, y = y.obs.list)#### Extract Results into a Dataframeresult.matrix<-matrix(0, ncol=11, nrow=nobs.curves)for(i in 1:nobs.curves){result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],                         summary(results[[i]])$coefficients[3],                         summary(results[[i]])$coefficients[2],                         summary(results[[i]])$coefficients[4],                         summary(results[[i]])$sigma,                         summary(results[[i]])$r.squared,                         covar[i],                         results[[i]]$fitted.values[1],                         results[[i]]$fitted.values[2],                         results[[i]]$fitted.values[3],                         results[[i]]$fitted.values[4])}#### Label Columns of DataFrameresult.matrix<-data.frame(result.matrix)names(result.matrix)<-c('intercept','int.std.err','slope',                         'slope.std.err','resid.std.err','R.squared',                         'covar','t0.pred','t1.pred','t2.pred',                         't3.pred')#### Calculation of Level Two Analysis of Slopes with Covariteresult.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))level.two.sigma<-result.level2$sigma#### Calculate weights based on level two sigma then calculate #    weighted least squares and get new sigma; Continue this #    iteratively until level two sigma does not change (IRWLS)new.level.two.sigma<-0while((level.two.sigma-new.level.two.sigma)>.0001){    weight<-(level.two.sigma^2/(level.two.sigma^2+             result.matrix$resid.std.err^2))    result.weighted<-lm(result.matrix[,3]~result.matrix[,7],                     weights=weight)    new.level.two.sigma<-summary(result.weighted)$sigma    level.two.sigma<-new.level.two.sigma    }summary(result.weighted)#### OLS Resultsresult.level2result.level2$r.squared^.5#### WLS Resultssummary(result.weighted)summary(result.weighted)$r.squared^.5#### Descriptives on Observed Scorescor(y.obs)apply(y.obs, 2, mean)apply(y.obs, 2, sd)mean(covar)#### Level Two Means for Intercept and Slopemean(result.matrix[,1])mean(result.matrix[,3])cor(result.matrix[,1], result.matrix[,3])
	INPUT_(1): ######################################################## Perform OLS Regression on all Curvesresults<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),          x = time.list, y = y.obs.list)#### Extract Results into a Dataframeresult.matrix<-matrix(0, ncol=11, nrow=nobs.curves)for(i in 1:nobs.curves){result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],                         summary(results[[i]])$coefficients[3],                         summary(results[[i]])$coefficients[2],                         summary(results[[i]])$coefficients[4],                         summary(results[[i]])$sigma,                         summary(results[[i]])$r.squared,                         covar[i],                         results[[i]]$fitted.values[1],                         results[[i]]$fitted.values[2],                         results[[i]]$fitted.values[3],                         results[[i]]$fitted.values[4])}#### Label Columns of DataFrameresult.matrix<-data.frame(result.matrix)names(result.matrix)<-c('intercept','int.std.err','slope',                         'slope.std.err','resid.std.err','R.squared',                         'covar','t0.pred','t1.pred','t2.pred',                         't3.pred')#### Calculation of Level Two Analysis of Slopes with Covariteresult.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))level.two.sigma<-result.level2$sigma#### Calculate weights based on level two sigma then calculate #    weighted least squares and get new sigma; Continue this #    iteratively until level two sigma does not change (IRWLS)new.level.two.sigma<-0while((level.two.sigma-new.level.two.sigma)>.0001){    weight<-(level.two.sigma^2/(level.two.sigma^2+             result.matrix$resid.std.err^2))    result.weighted<-lm(result.matrix[,3]~result.matrix[,7],                     weights=weight)    new.level.two.sigma<-summary(result.weighted)$sigma    level.two.sigma<-new.level.two.sigma    }summary(result.weighted)#### OLS Resultsresult.level2result.level2$r.squared^.5#### WLS Resultssummary(result.weighted)summary(result.weighted)$r.squared^.5#### Descriptives on Observed Scorescor(y.obs)apply(y.obs, 2, mean)apply(y.obs, 2, sd)mean(covar)#### Level Two Means for Intercept and Slopemean(result.matrix[,1])mean(result.matrix[,3])cor(result.matrix[,1], result.matrix[,3])
	INPUT_(1)_(2): ######################################################## Perform OLS Regression on all Curvesresults<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),          x = time.list, y = y.obs.list)#### Extract Results into a Dataframeresult.matrix<-matrix(0, ncol=11, nrow=nobs.curves)for(i in 1:nobs.curves){result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],                         summary(results[[i]])$coefficients[3],                         summary(results[[i]])$coefficients[2],                         summary(results[[i]])$coefficients[4],                         summary(results[[i]])$sigma,                         summary(results[[i]])$r.squared,                         covar[i],                         results[[i]]$fitted.values[1],                         results[[i]]$fitted.values[2],                         results[[i]]$fitted.values[3],                         results[[i]]$fitted.values[4])}#### Label Columns of DataFrameresult.matrix<-data.frame(result.matrix)names(result.matrix)<-c('intercept','int.std.err','slope',                         'slope.std.err','resid.std.err','R.squared',                         'covar','t0.pred','t1.pred','t2.pred',                         't3.pred')#### Calculation of Level Two Analysis of Slopes with Covariteresult.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))level.two.sigma<-result.level2$sigma#### Calculate weights based on level two sigma then calculate #    weighted least squares and get new sigma; Continue this #    iteratively until level two sigma does not change (IRWLS)new.level.two.sigma<-0while((level.two.sigma-new.level.two.sigma)>.0001){    weight<-(level.two.sigma^2/(level.two.sigma^2+             result.matrix$resid.std.err^2))    result.weighted<-lm(result.matrix[,3]~result.matrix[,7],                     weights=weight)    new.level.two.sigma<-summary(result.weighted)$sigma    level.two.sigma<-new.level.two.sigma    }summary(result.weighted)#### OLS Resultsresult.level2result.level2$r.squared^.5#### WLS Resultssummary(result.weighted)summary(result.weighted)$r.squared^.5#### Descriptives on Observed Scorescor(y.obs)apply(y.obs, 2, mean)apply(y.obs, 2, sd)mean(covar)#### Level Two Means for Intercept and Slopemean(result.matrix[,1])mean(result.matrix[,3])cor(result.matrix[,1], result.matrix[,3])
	input3: 


	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form35: 
	INPUT: ################################################################### Plot covariate with estimated growth ratespar(mfrow=c(3,3), new=F)par(new=F)plot(result.matrix[,7],result.matrix[,3])abline(lm(result.matrix[,3]~result.matrix[,7]))#### Plot observed data for(i in 1:nobs.curves){    plot(time[i,],y.obs[i,], ylim=c(0,13), xlim=c(-1,4))    lines(time[i,],y.obs[i,])    par(new=T)    }#### Plot Trajectory of Fitted Growth Curvesresult.plot.matrix<-data.matrix(result.matrix[8:11])result.plot.matrixpar(new=F)for(i in 1:nobs.curves){    plot(time[i,],result.plot.matrix[i,], ylim=c(0,13), xlim=c(-1,4))    lines(time[i,],result.plot.matrix[i,])    par(new=T)    }
	input3: 




