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The previous issue in this series can be found in the
July, 2002 issue of Benchmarks Online:
Using
Robust Mean
 and Robust Variance Estimates to Calculate Robust Effect Size 

Please make sure and read the farewell message from
Dr. Karl Ho in this month's SAS Corner. - Ed.

An Introduction to Multilevel Models (Part I): 
Exploratory Growth
 Curve Modeling 

By Dr. Rich
Herrington, Research and Statistical Support Consultant


This month we discuss exploratory growth curve modeling.  This is
Part I in a series on Multilevel Modeling. 
 The GNU S language,
"R" is used to implement this procedure.  R is a
statistical programming environment that
 is a clone of the S and S-Plus
language developed at Lucent Technologies. In the following document we
 illustrate the use of a GNU Web interface to the R engine on the "rss"
server ( http://rss.acs.unt.edu/cgi-
bin/R/Rprog). 
This GNU Web interface is a derivative of the "Rcgi" Perl
scripts available for download from the
 CRAN  Website (http://www.cran.r-project.org),
the main "R" Website.   Scripts can be submitted
interactively,
 edited, and then be re-submitted with changed parameters by
selecting the hypertext link buttons that appear
 below the figures. 
For example, clicking the "Run Program" button  below
creates a vector of 100 random
 normal deviates; sorts and displays the
results; then creates a histogram of the random numbers.  To view any
 text output, scroll to the bottom of the browser window.  To view any
graphical output, select the "Display
 Graphic" link.  The
script can be edited and resubmitted by changing the script in the form
window and then
 selecting  "Run the R Program". 
Selecting the browser "back page" button will return the reader
to this
 document.

Introduction to Repeated Measure Multilevel Models 

In
this article we will discuss an exploratory approach to fitting a
repeated measures multilevel model.  This will
 serve as a warm up to
the more formal estimation methods used in multilevel modeling, which
we will cover in
 coming issues of RSS Matters.  We will
motivate the model with a simulated example that uses Iteratively
Re-
weighted Least Squares (IRLS) regression to estimate parameters. 
Our goal here is to keep the example simple
 to elucidate the
main insights that growth curve modeling (multilevel modeling)
offers.  Additionally, we will
 learn S language commands that
allow us to graphically explore and statistically estimate parameters
of a simple
 multilevel model.

The following graph represents the time course of what we will call the
level-one observed change, within an
 individual.  Examining
such a graph allows the data modeler to attempt to characterize the
change process as a
 simple mathematical function (i.e. linear,
quadratic, or cubic) for the individual entity.  An assumption of
growth
 curve modeling approaches and multilevel approaches in general,
is that a family of functions (e.g. linear) can
 characterize the
change process in different individuals, by allowing the
parameters of the linear function to vary
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 randomly across
individuals.  Individuals express their unique variability
through the parameters of the
 mathematical function.  These
randomly varying estimates of the change process (e.g. intercept and
slope) can
 be related to background conditions of the
individuals.  It is here that we wish to get efficient and
unbiased
 estimates of the predictors of the change process.  Do
background covariates predict rates of change (slope) or
 initial
status of the outcome variable?

   
   

Summary Measures of the Level-One Model Change Process

Since the observed growth record for an individual is subject to measurement error and sampling variability, it is
 useful to characterize the growth process as a mathematical function.  We will call this the level-one model
of
 change.  This mathematical
function (e.g. linear), if representative, should capture the essential
features of the
 growth profile.  The parameters of the function
should summarize the  characteristics of the change process for
 the
individual.  In the following graph, a linear function is considered
representative of the change process.  An
 intercept is calculated;
the intercept gives a best estimate of the initial status of the outcome
variable at the first
 observation period.  Additionally a slope is
calculated; a slope gives an estimate of the rate of change in the
 outcome
variable per unit change in the time indicator variable.  In our
simulated example we have
 electrophysiological assessments from the scalp
of an individual who is engaged in EEG biofeedback (also
 referred to as
neurofeedback - NF), gathered over four observation periods. 
Individuals use a process of trial and
 error and an electrical 
feedback signal from the scalp to change their own scalp electrical
potentials.  An initial
 question is posed for our example:  Does
the rate of change in cortical electrical activity (amplitude in
 millivolts)  relate to background conditions of depression in the individual?
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Individual Variation (Level-One) and  Group Level Variation
(Level-Two)

The following graph depicts four linear growth curves fit for four different individuals.  Additionally, an average
 curve is estimated which represents the change process of the group as a whole, collapsing over individual
 variation in the growth process.  Each person has an intercept estimate and a slope estimate;  these individual
 estimates can vary from the group intercept and group slope (level-two).  The source of this
variation may be
 related to other predictor variables, such as background
characteristics, or may represent variation that is not
 related to a
substantial variable of interest.  We will call this the
level-two
model.  In our example, it might be
 that
the rate of change in electrical activity on the scalp (as measured in millivolts), is related to initial status of
 depression, as measured
behaviorally by a paper and pencil inventory - the Beck's Depression
Inventory (BDI).

        


Predicting Outcome as a Function of Time - Allowing Individual
Variation in Slopes and
 Intercepts

We can represent both level-one and level-two models of change as a set
of regression equations.  The outcome
 variable (Y) is predicted by
the estimates of individuals' slopes and intercepts.  Each
individuals' slope and
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 intercept is composed of a constant (fixed) portion
and a residual (random) portion.  The fixed portion can be
 thought of
as the mean of the group estimate (i.e. group slope and group intercept),
and the residual variation can
 be thought of as unique variation that is
not accounted for at the group level.   We can substitute level
two
 regression equations into level one regression equations to obtain a
single regression equation. 

        


The
first term represents the fixed component of growth; this
represents the group level characteristics of growth.
 The
second term represents the random component of growth;
this represents the individual level characteristics
 of
growth. 
This model is referred to as an unconditional growth model because we
are NOT attempting to
 predict growth using additional measures.  To
predict growth we must use a conditional growth model.  Both
 time variant and time invariant predictors of growth can be used in a
conditional growth model

It is important to note that this single equation has "heteroscedastic" components.  The second term in this
 regression equation is heteroscedastic because the time variable (T), which is increasing,  multiplies by a
 variance component (u).  Hence, the variance increases as a function of observation period, thus violating the
 assumption of homoscedasticity in classical OLS estimates of the regression equation.  It is for this reason that a
 non-OLS estimate is needed for the parameters in the model; heteroscedasticity can lead to biased and/or
 inefficient  estimates of slope and intercept
coefficients   

Predicting the Outcome Variable as a Function of Level-One Covariates
and Level-Two
 Covariates

In the system of regression equations below, both time varying level-one covariates, and time-invariant level-two
 covariates are
combined.  X is an individual level, time varying covariate, and Z is
a time invariant, individual
 level characteristic, or group level
predictor; the six regression parameters (beta coefficients) relate the
two
 predictors to variability in initial status and rate of change over
time. 
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This model is a conditional
growth model because the individual variability in initial status
and change over time
 are conditioned upon exogenous predictor
variables.  The conditional random effects
model is sometimes
 referred to as a: random coefficient model,
mixed-effects model, hierarchical linear model (Bryk & Raudenbush,
 1992), empirical Bayes
model, "slopes as outcomes" model - or, more generally, a
multilevel model.


In longitudinal research, we sometimes have repeated measures of
individuals who are all measured together on
 a small number of fixed
occasions.  This is typically the case with experimental
designs involving repeated
 measures and panel designs.  For our
example, our group level predictor can be an indicator variable
indicating
 either control or experimental group membership. 

For our simulation example, we will use a much simpler model (displayed below), and
will only focus on one
 coefficient of interest.  In the
following example Y will be electrical voltages from the scalp
(amplitude -
 measured in millivolts) measured over observation
period (T).  Individuals change their own scalp electrical
 potential through trial and error, relying on a biofeedback signal
coming from their scalp (neurofeedback - NF). 
 Additionally, we
have measured levels of depression using a behavioral (self-report)
assessment device (Beck
 Depression Inventory - BDI).  Several
questions can be posed:  Is
there evidence for systematic change and
 individual variability in
NF amplitudes over time? Is the post BDI assessment
related to the initial levels or rates
 of change in NF amplitudes? What is the relationship between
the initial levels of NF amplitudes and the rates of
 change in NF
amplitudes over time? Is a linear relationship a good
description of within-person change?
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Parameter Estimation Using Iteratively Re-weighted Least Squares (IRLS)

We are interested in unbiased and efficient estimates of the beta
coefficients which relate the background
 covariate Z to the individual
level estimates of rates of change and initial status (pi
coefficients).  Willet (1988)
 outlines a fairly straightforward
approach to estimating a growth curve model for a single, level-two
coefficient
 (relating individual slope coefficients to individual
background covariates) .  This method relies on weighted
 least
squares (WLS) and can be improved by iterating until the weights or
residuals converge (IRLS).  This
 method is appealing because it
provides insight into a central point of multilevel modeling:  Level-two
 coefficient estimates are weighted by the precision of the level-one
coefficients.  Individuals whose growth
 coefficients are more
reliably estimated, provide more input (information) in the estimation of
level-two
 coefficients.  Individuals with large residual variability
in their growth record, and hence more unreliable
 estimates of level-one
growth coefficients, are down weighted in the second level of analysis of
the level-two
 coefficients.   In the table below, a modified form of Willet's
algorithm is outlined.

    

An Example Using GNU-S ("R")
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We will create a simulated
data set that is modeled after real neurofeedback data. The observations represent
 average neurofeedback session
amplitudes (10 averaged sessions per observation period).  The covariate
 represents either a pre or post BDI
assessment (we will use a post BDI assessment).  We will go
through most
 sections of the S code to illustrate how S can be used to
both simulate data according to an assumed model, and
 then estimate
the model, to try and recapture the population parameters.  It is
recommended that the reader
 change the population parameters and
experiment with the model.  In this way, intuition can be gained
about
 how the observed data varies according to changes in the
model.  A "Live" script is presented below (this script
 can be run, examined, and re-edited for re-submission and
re-examination); below this live script is annotated
 program output.
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Population parameters are set according to our previous model with one
background covariate (Z, the BDI).   A
 small number of growth
curves are generated to examine the effect of small sample size in getting
unbiased
 estimates using OLS versus IRLS parameter estimation.  Both
the fixed portion and the residual portion (beta
 and u) for the level-two
regressions are set in the population.  These will be used with the
background covariate
 to generate the slopes and intercepts for individuals
(pi's).

A matrix of observation periods must be generated for each individual.

Slopes and intercepts of individuals can be correlated across
individuals (p0 - intercept, p1 - slope).  We create
 slopes and
intercepts whose correlation is -.30:  high intercepts lead to rapid
rates of change, and low intercepts
 lead to small rates of change.

 

Residuals at level-one (within an individual) are likely to be
correlated.  We assume a correlation structure that is
 equal across
time periods (compound symmetry). 
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Next, a covariate is generated for each individual:

With the group betas (b0, b1), individual background covariate (covar),
and level-two residual terms (u0, u1), we
 can combine the level-two
parameters together to obtain the level-one parameters for each individual
(p0, p1). 
 We also estimate the average population slope and
intercept estimates, and the correlation between the two, once
 the betas
are combined with the covariate and the residual terms.  Later, in estimating a  statistical model for this
 simulated data, we might want to use
"centered" estimates of the covariate (covar) to aid in
interpretation and
 estimation (Hox, 2002). 
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Once the pi coefficients (p0, p1) are calculated for each individual,
we can combine them with the time index and
 add the level-one individual
residual term to obtain the "observed score" for each
individual, indexed by T - each
 individual gets four observations since T
ranges from 1 to 4. 

Some attention needs to be paid to the fact that some observations can
fall out of range of reasonable limits
 (dictated by physical logistics and
limitations).  We can replace the min and max observation with the
mean
 observation, for each observation period.   This process
"draws" the tails of the distribution of scores, for an
 observation period, toward the mean of the distribution.  This can be
iterated to shape the growth curves is so
 desired.  Here, we only
iterate one time, taking the one smallest and one largest observation and
replacing with
 the mean for that observation period.

Finally, we list out the observed scores as simulated from a
"known" model.

    . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 
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    . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 

A "not-so-useful" depiction of all the observed growth
profiles is a "Profile" plot.  A profile plot allows one to
 discern some random effects structures in the data - we can see that the
slopes and intercepts are potentially
 correlated; we see that there is
heteroscedasticity prevalent in the data; and we can examine potential
"outlying"
 growth records.

   


Parametric Estimation of Growth Curve Models Using OLS and IRLS

Ordinary Least Squares (OLS) is used to estimate the level-one linear
regressions for all individuals.  Standard
 errors for each individual
regression are used to create weights for the level-two regression of the
level-one
 slopes and background covariates.  Additionally, at the
level-two regression, iteratively re-weighted least squares
 (IRLS) is used
to converge on the best estimates given the initial level-one
weights. 
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All 20 regressions are performed; the beta coefficients, standard
errors (used for weights later), covariates, and
 other interesting
information are combined into a single data frame;  informative names
are then assigned to the
 columns.

A nice alternative to a profile plot of the observed data,  is a
profile plot of the level-one predicted values for each
 observation
period.  This plot better summarizes the correlation structure of the
parameters (slopes and
 intercepts), and indicates more clearly the nature
of the heteroscedasticity in the data.
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A comparison of the OLS and IRLS solution indicates that the slope estimates are close for both the IRLS and
 OLS procedures (.25 for OLS
versus .36 for IRLS).  However, the IRLS procedure gives a
substantially smaller
 residual standard error (1.001 for OLS versus .5483
for IRLS), thereby giving a more efficient estimate for the
 IRLS
procedure.  Furthermore, the residuals for the OLS indicate fairly
high values (-1.7009, 1.5025), whereas
 the IRLS residuals are relatively smaller (-.84154, 1.00915) - using 2.0 as a cutoff.  
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OLS gives a good fit to the observed data even though growth curve
parameters are not weighted by the
 parameter’s precision at level-one.  This indicates a relatively efficient solution, however IRLS
gives a much
 better fit to the data. Consequently, the estimates of
R-squared are significantly larger for IRLS indicating that
 the OLS is not
as efficient in the presence of heterogeneous slopes having differing
measurement precisions.


Descriptive statistics for the observed data and the level-one regressions are
generated.

A Graphical Depiction of the Relationship Between the Observed
Background Covariate
 and the Estimate Growth Rates

Another useful graphical depiction is a scatter plot (with an OLS best
fit line) of the estimated growth rates
 (slopes) with the background
covariate.  One can graphically characterize the impact of the 
heteroscedasticity
 present in the data on the level-two regression of
slopes and covariates.  The heteroscedasticity in the plot
 appears to
be quite large.  While significant "outliers" are present,
these outliers seem to "counterbalance" one
 another across the
mean of the Y-axis, and counterbalance one another across the mean of the
X-axis.  This
 could account for the closeness of the IRLS and OLS
parameter estimates.  If the size of the residuals are:  1)
 symmetrical and counterbalanced across both Y and X axes (as is in this
case), and  2)  the outlying values on
 the X-axis are close to
the mean of the X-axis,  this would lead to less bias in the
parameter estimates.  An
 interesting experiment would be to generate
different data sets with differing patterns of heteroscedasticity, and
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 observe the difference in the parameter estimates of the OLS and IRLS
procedures. 

The graph below (panel 1) depicts the relationship between the covariate (Y-axis) and the slopes for individuals
 (X-axis).  The second graph (panel 2) plots the observed data as a function of observation period, and the third
 graph (panel 3) is the predicted values from the level-one regressions plotted as a function of observation
 period. 

Conclusions

A
Two Stage IRLS model of the Post BDI covariate and the individual
growth rates
 indicates that there is reliable differences in growth
rates in individuals and is
 correlated with the post BDI assessment
(for the simulated data set). In general,
 larger negative
slopes are correlated with smaller values on the BDI assessment, and

lesser negative slopes are correlated with larger values on the post
BDI assessment. 
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 In general, larger negative
slopes are correlated with larger NF amplitudes at initial
 status,
and smaller negative slopes are correlated with smaller NF
amplitudes at
 initial status.  The IRLS and OLS beta estimates
(slopes) were fairly close in value -
 this may be due to the
symmetrical pattern of heteroscedasticity  in the data. 
 However, IRLS estimation gave significantly smaller level-two
residual standard
 error than OLS estimation, for the level-two
regression - IRLS is more efficient than
 OLS in this example. 
Consequently, the percentage variance accounted for in the
 outcome
variable (NF amplitudes), by knowledge of the background covariate
 (BDI),
was substantially larger for the IRLS solution.   

Next Time

Next time we  will explore the use of  the S-Plus and R
library NLME (linear and nonlinear mixed effects)  with
 the
simulated data set used in this article.  Additionally, we will
look at other parameter estimation algorithms
 (e.g. Restricted Maximum
Likelihood - REML), and other model diagnostic approaches (e.g. AIC). 
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	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form12: 
	INPUT: x<-rnorm(100)
sort(x)
hist(x)
	input3: 


	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form15: 
	INPUT: ####################################################
## Simulating Growth Curves
set.seed(20)
library(MASS)

#### Number of Growth Curves

nobs.curves<-20

############## Level Two Parameters

beta.00<-8.5
beta.01<-.005

beta.10<-.05 
beta.11<-(-.10)

u.0.std<-.03
u.1.std<-.15

#### Parameter for Level One Residuals

error.std<-3

#### Parameters for covariate 

covar.mean<-10
covar.std<-2.5

#### Generate Time vector

time<-matrix(rep(c(0,1,2,3), length=4*nobs.curves), 
             nrow=nobs.curves, ncol=4, byrow=T)

time.list<-vector('list', nobs.curves)
for (i in 1:nobs.curves){time.list[[i]]<-time[i,]}

#### Generate Correlated Level One Parameters

Sigma.param <- matrix(c(1,-.3,-.3,1),2,2)
pi.indiv<-mvrnorm(n=nobs.curves, rep(0, 2), Sigma.param, 
                  empirical=TRUE)
cor(pi.indiv)

#### Generate Correlated Residuals

Sigma.error <- matrix(c(1,.2,.2,.2,.2,1,.2,.2,.2,.2,1,.2,.2,.2,.2,1),
                      4,4)
z.error<-mvrnorm(n=nobs.curves, rep(0, 4), Sigma.error, 
                     empirical=TRUE)

indiv.error<-z.error*error.std
indiv.error
                     
#### Generate Covariate Scores

covar<-matrix(rnorm(nobs.curves, covar.mean, 
              covar.std), nrow=nobs.curves)
covar

#### Construct Level One Parameters from level two parameters
          
pi.0<-matrix(beta.00+beta.01*(covar)+pi.indiv[,1]*u.0.std, ncol=1)
pi.1<-matrix(beta.10+beta.11*(covar)+pi.indiv[,2]*u.1.std, ncol=1)

mean(pi.0)
mean(pi.1)
sd(pi.0)
sd(pi.1)
cor(pi.0, pi.1)

#### Construct observed data set

y.obs<-matrix(0, nrow=nobs.curves, ncol=4)
for(i in 1:nobs.curves){
 for (j in 1:4){
    y.obs[i,j]<-pi.0[i]+pi.1[i]*time[i,j]+indiv.error[i,j]
                }
    }

######## Eliminate unlikely observations in the simulation 
#        by drawing tails of distribution inward toward mean

y.obs[y.obs[,1]==min(y.obs[,1]),1]<-mean(y.obs[,1])
y.obs[y.obs[,1]==max(y.obs[,1]),1]<-mean(y.obs[,1])

y.obs[y.obs[,2]==min(y.obs[,2]),2]<-mean(y.obs[,2])
y.obs[y.obs[,2]==max(y.obs[,2]),2]<-mean(y.obs[,2])

y.obs[y.obs[,3]==min(y.obs[,3]),3]<-mean(y.obs[,3])
y.obs[y.obs[,3]==max(y.obs[,3]),3]<-mean(y.obs[,3])

y.obs[y.obs[,4]==min(y.obs[,4]),4]<-mean(y.obs[,4])
y.obs[y.obs[,4]==max(y.obs[,4]),4]<-mean(y.obs[,4])


##########

y.obs.all<-cbind(y.obs,covar)
y.obs.all<-data.frame(y.obs.all)
names(y.obs.all)<-c('Time0', 'Time1', 'Time2', 'Time3', 'Covariate')

#### Convert y.obs Matrix into a List

y.obs.list<-vector('list', nobs.curves)
for (i in 1:nobs.curves){y.obs.list[[i]]<-y.obs[i,]}
y.obs.list

	INPUT_(1): ####################################################
## Simulating Growth Curves
set.seed(20)
library(MASS)

#### Number of Growth Curves

nobs.curves<-20

############## Level Two Parameters

beta.00<-8.5
beta.01<-.005

beta.10<-.05 
beta.11<-(-.10)

u.0.std<-.03
u.1.std<-.15

#### Parameter for Level One Residuals

error.std<-3

#### Parameters for covariate 

covar.mean<-10
covar.std<-2.5

#### Generate Time vector

time<-matrix(rep(c(0,1,2,3), length=4*nobs.curves), 
             nrow=nobs.curves, ncol=4, byrow=T)

time.list<-vector('list', nobs.curves)
for (i in 1:nobs.curves){time.list[[i]]<-time[i,]}

#### Generate Correlated Level One Parameters

Sigma.param <- matrix(c(1,-.3,-.3,1),2,2)
pi.indiv<-mvrnorm(n=nobs.curves, rep(0, 2), Sigma.param, 
                  empirical=TRUE)
cor(pi.indiv)

#### Generate Correlated Residuals

Sigma.error <- matrix(c(1,.2,.2,.2,.2,1,.2,.2,.2,.2,1,.2,.2,.2,.2,1),
                      4,4)
z.error<-mvrnorm(n=nobs.curves, rep(0, 4), Sigma.error, 
                     empirical=TRUE)

indiv.error<-z.error*error.std
indiv.error
                     
#### Generate Covariate Scores

covar<-matrix(rnorm(nobs.curves, covar.mean, 
              covar.std), nrow=nobs.curves)
covar

#### Construct Level One Parameters from level two parameters
          
pi.0<-matrix(beta.00+beta.01*(covar)+pi.indiv[,1]*u.0.std, ncol=1)
pi.1<-matrix(beta.10+beta.11*(covar)+pi.indiv[,2]*u.1.std, ncol=1)

mean(pi.0)
mean(pi.1)
sd(pi.0)
sd(pi.1)
cor(pi.0, pi.1)

#### Construct observed data set

y.obs<-matrix(0, nrow=nobs.curves, ncol=4)
for(i in 1:nobs.curves){
 for (j in 1:4){
    y.obs[i,j]<-pi.0[i]+pi.1[i]*time[i,j]+indiv.error[i,j]
                }
    }

######## Eliminate unlikely observations in the simulation 
#        by drawing tails of distribution inward toward mean

y.obs[y.obs[,1]==min(y.obs[,1]),1]<-mean(y.obs[,1])
y.obs[y.obs[,1]==max(y.obs[,1]),1]<-mean(y.obs[,1])

y.obs[y.obs[,2]==min(y.obs[,2]),2]<-mean(y.obs[,2])
y.obs[y.obs[,2]==max(y.obs[,2]),2]<-mean(y.obs[,2])

y.obs[y.obs[,3]==min(y.obs[,3]),3]<-mean(y.obs[,3])
y.obs[y.obs[,3]==max(y.obs[,3]),3]<-mean(y.obs[,3])

y.obs[y.obs[,4]==min(y.obs[,4]),4]<-mean(y.obs[,4])
y.obs[y.obs[,4]==max(y.obs[,4]),4]<-mean(y.obs[,4])


##########

y.obs.all<-cbind(y.obs,covar)
y.obs.all<-data.frame(y.obs.all)
names(y.obs.all)<-c('Time0', 'Time1', 'Time2', 'Time3', 'Covariate')

#### Convert y.obs Matrix into a List

y.obs.list<-vector('list', nobs.curves)
for (i in 1:nobs.curves){y.obs.list[[i]]<-y.obs[i,]}
y.obs.list

	input3: 


	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form3: 
	INPUT: #####################################################
### Perform OLS Regression on all Curves

results<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),
          x = time.list, y = y.obs.list)

#### Extract Results into a Dataframe

result.matrix<-matrix(0, ncol=11, nrow=nobs.curves)
for(i in 1:nobs.curves){
result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],
                         summary(results[[i]])$coefficients[3],
                         summary(results[[i]])$coefficients[2],
                         summary(results[[i]])$coefficients[4],
                         summary(results[[i]])$sigma,
                         summary(results[[i]])$r.squared,
                         covar[i],
                         results[[i]]$fitted.values[1],
                         results[[i]]$fitted.values[2],
                         results[[i]]$fitted.values[3],
                         results[[i]]$fitted.values[4])
}

#### Label Columns of DataFrame

result.matrix<-data.frame(result.matrix)
names(result.matrix)<-c('intercept','int.std.err','slope',
                         'slope.std.err','resid.std.err','R.squared',
                         'covar','t0.pred','t1.pred','t2.pred',
                         't3.pred')


#### Calculation of Level Two Analysis of Slopes with Covarite

result.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))
level.two.sigma<-result.level2$sigma

#### Calculate weights based on level two sigma then calculate 
#    weighted least squares and get new sigma; Continue this 
#    iteratively until level two sigma does not change (IRWLS)

new.level.two.sigma<-0
while((level.two.sigma-new.level.two.sigma)>.0001){
    weight<-(level.two.sigma^2/(level.two.sigma^2+
             result.matrix$resid.std.err^2))
    result.weighted<-lm(result.matrix[,3]~result.matrix[,7], 
                    weights=weight)
    new.level.two.sigma<-summary(result.weighted)$sigma
    level.two.sigma<-new.level.two.sigma
    }

summary(result.weighted)

#### OLS Results

result.level2
result.level2$r.squared^.5


#### WLS Results

summary(result.weighted)
summary(result.weighted)$r.squared^.5

#### Descriptives on Observed Scores

cor(y.obs)
apply(y.obs, 2, mean)
apply(y.obs, 2, sd)
mean(covar)

#### Level Two Means for Intercept and Slope

mean(result.matrix[,1])
mean(result.matrix[,3])
cor(result.matrix[,1], result.matrix[,3])

	INPUT_(1): #####################################################
### Perform OLS Regression on all Curves

results<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),
          x = time.list, y = y.obs.list)

#### Extract Results into a Dataframe

result.matrix<-matrix(0, ncol=11, nrow=nobs.curves)
for(i in 1:nobs.curves){
result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],
                         summary(results[[i]])$coefficients[3],
                         summary(results[[i]])$coefficients[2],
                         summary(results[[i]])$coefficients[4],
                         summary(results[[i]])$sigma,
                         summary(results[[i]])$r.squared,
                         covar[i],
                         results[[i]]$fitted.values[1],
                         results[[i]]$fitted.values[2],
                         results[[i]]$fitted.values[3],
                         results[[i]]$fitted.values[4])
}

#### Label Columns of DataFrame

result.matrix<-data.frame(result.matrix)
names(result.matrix)<-c('intercept','int.std.err','slope',
                         'slope.std.err','resid.std.err','R.squared',
                         'covar','t0.pred','t1.pred','t2.pred',
                         't3.pred')


#### Calculation of Level Two Analysis of Slopes with Covarite

result.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))
level.two.sigma<-result.level2$sigma

#### Calculate weights based on level two sigma then calculate 
#    weighted least squares and get new sigma; Continue this 
#    iteratively until level two sigma does not change (IRWLS)

new.level.two.sigma<-0
while((level.two.sigma-new.level.two.sigma)>.0001){
    weight<-(level.two.sigma^2/(level.two.sigma^2+
             result.matrix$resid.std.err^2))
    result.weighted<-lm(result.matrix[,3]~result.matrix[,7], 
                    weights=weight)
    new.level.two.sigma<-summary(result.weighted)$sigma
    level.two.sigma<-new.level.two.sigma
    }

summary(result.weighted)

#### OLS Results

result.level2
result.level2$r.squared^.5


#### WLS Results

summary(result.weighted)
summary(result.weighted)$r.squared^.5

#### Descriptives on Observed Scores

cor(y.obs)
apply(y.obs, 2, mean)
apply(y.obs, 2, sd)
mean(covar)

#### Level Two Means for Intercept and Slope

mean(result.matrix[,1])
mean(result.matrix[,3])
cor(result.matrix[,1], result.matrix[,3])

	INPUT_(1)_(2): #####################################################
### Perform OLS Regression on all Curves

results<-lapply(1:nobs.curves, function(i, x, y) lm(y[[i]]~x[[i]]),
          x = time.list, y = y.obs.list)

#### Extract Results into a Dataframe

result.matrix<-matrix(0, ncol=11, nrow=nobs.curves)
for(i in 1:nobs.curves){
result.matrix[i,]<-cbind(summary(results[[i]])$coefficients[1],
                         summary(results[[i]])$coefficients[3],
                         summary(results[[i]])$coefficients[2],
                         summary(results[[i]])$coefficients[4],
                         summary(results[[i]])$sigma,
                         summary(results[[i]])$r.squared,
                         covar[i],
                         results[[i]]$fitted.values[1],
                         results[[i]]$fitted.values[2],
                         results[[i]]$fitted.values[3],
                         results[[i]]$fitted.values[4])
}

#### Label Columns of DataFrame

result.matrix<-data.frame(result.matrix)
names(result.matrix)<-c('intercept','int.std.err','slope',
                         'slope.std.err','resid.std.err','R.squared',
                         'covar','t0.pred','t1.pred','t2.pred',
                         't3.pred')


#### Calculation of Level Two Analysis of Slopes with Covarite

result.level2<-summary(lm(result.matrix[,3]~result.matrix[,7]))
level.two.sigma<-result.level2$sigma

#### Calculate weights based on level two sigma then calculate 
#    weighted least squares and get new sigma; Continue this 
#    iteratively until level two sigma does not change (IRWLS)

new.level.two.sigma<-0
while((level.two.sigma-new.level.two.sigma)>.0001){
    weight<-(level.two.sigma^2/(level.two.sigma^2+
             result.matrix$resid.std.err^2))
    result.weighted<-lm(result.matrix[,3]~result.matrix[,7], 
                    weights=weight)
    new.level.two.sigma<-summary(result.weighted)$sigma
    level.two.sigma<-new.level.two.sigma
    }

summary(result.weighted)

#### OLS Results

result.level2
result.level2$r.squared^.5


#### WLS Results

summary(result.weighted)
summary(result.weighted)$r.squared^.5

#### Descriptives on Observed Scores

cor(y.obs)
apply(y.obs, 2, mean)
apply(y.obs, 2, sd)
mean(covar)

#### Level Two Means for Intercept and Slope

mean(result.matrix[,1])
mean(result.matrix[,3])
cor(result.matrix[,1], result.matrix[,3])

	input3: 


	AwMi9vY3RvYmVyMDIvcnNzLmh0bQA=: 
	form35: 
	INPUT: #############################################################
###### Plot covariate with estimated growth rates

par(mfrow=c(3,3), new=F)
par(new=F)
plot(result.matrix[,7],result.matrix[,3])
abline(lm(result.matrix[,3]~result.matrix[,7]))


#### Plot observed data 

for(i in 1:nobs.curves){
    plot(time[i,],y.obs[i,], ylim=c(0,13), xlim=c(-1,4))
    lines(time[i,],y.obs[i,])
    par(new=T)
    }

#### Plot Trajectory of Fitted Growth Curves

result.plot.matrix<-data.matrix(result.matrix[8:11])
result.plot.matrix
par(new=F)
for(i in 1:nobs.curves){
    plot(time[i,],result.plot.matrix[i,], ylim=c(0,13), xlim=c(-1,4))
    lines(time[i,],result.plot.matrix[i,])
    par(new=T)
    }

	input3: 




