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The previous issue in this series can be found in the December, 2002 issue of
 Benchmarks Online:
Interactive Graphics in R

Interactive Graphics in R (Part II - cont.):  Kernel
 Density Estimation in One and Two Dimensions

By Dr. Rich Herrington, Research and Statistical Support
Services Manager

This month we continue our discussion of 
graphics in R.  This month we examine
 histogram generation, 1-D and 2-D kernel density estimation.  The GNU
S language,
 "R" is used to implement this procedure.  R is a statistical programming environment
 that
utilizes the S and S-Plus language developed at Lucent Technologies. In the
 following document we
illustrate the use of a GNU Web interface to the R engine on
 the "rss" server ( http://rss.acs.unt.edu/cgi-bin/R/Rprog).  This GNU Web
interface
 is a derivative of the "Rcgi" Perl scripts available for download from the CRAN 
 Website
(http://www.cran.r-project.org), the main "R" Website.  
Scripts can be
 submitted interactively, edited, and then be re-submitted with changed parameters by

selecting the hypertext link buttons that appear below the figures.  For example,
 clicking the "Run
Program" button  below creates a vector of 100 random normal
 deviates; creates a histogram of the random
numbers, and then overlays a
 nonparametric density estimate over the histogram.  To view any text output,
scroll
 to the bottom of the browser window.  To view any graphical output, select the
 "Display Graphic"
link.  The script can be edited and resubmitted by changing the
 script in the form window and then
selecting  "Run the R Program".  Selecting the
 browser "back page" button will return the reader to this
document.

Introduction to Histograms

A histogram is a graphical method of representing a probability distribution  over an
 interval of the
real number line.  First, we discuss the formal representation of a
 histogram and follow this up with an
informal discussion.  We assume that one has n
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 data points from a particular probability distribution,
  over an interval [a, b]. 
 To obtain histograms,
we partition the interval [a, b] into m equally sized intervals
 called bins.  Bin j is then:


                       


The endpoints a and b are usually taken to be the minimum and maximum of the
 data set.  The number of data
points in bin j is .  Of course it will turn out
that


                                                      . 


Essentially, a histogram is the simplest non-parametric density estimator and is the
 that is used by most
researchers.  The figure below depicts a histogram of 100
 pseudo random numbers from a normal distribution
with a mean of zero and
 standard deviation of one:


           


This histogram is constructed by dividing the interval covered by the data values
 into equal sub-intervals
called bins. Each time a data point falls into a particular bin,
 then the bin is incremented by 1. The
choice of endpoints and the choice of the
 number of sub-intervals can have marked effects on the shape of
the histogram. Data
 can look bimodal when represented with a particular number of bins and bin width,
 but
can appear uni-modal when represented with, for example, less bins and a wider
 bin width (see below):
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Thus, histograms have a few drawbacks:  1) they are not smooth,  2) the depend
 greatly on the end points of
the bins,  and 3) they depend on the width of the bins. 
 These first two problems can be addressed by a
histogram smoothing technique
 called "kernel density estimation".  Before we look at kernel density
estimation, we
 want to illustrate a method for simulating correlated bivariate and multivariate data
 sets. 
We will use a simulated data set with a known population correlation to
 illustrate kernel density
estimation in two dimensions.

Simulating Data with a Known Covariance Matrix

A random vector having a multivariate normal distribution with a mean vector   

and a variance-covariance matrix V can be simulated by using the following
 procedure. First, form the
"Cholesky Decomposistion" of the matrix V, that is, find
 the lower triangular matrix L such that:


                                                    


In Splus and R the "chol" function performs this operation.  Thus, V is reproduced
 from the multiplication
of  L and the transpose of L.  Next,  simulate a vector z with
 a normal distribution whose mean is zero and
standard deviation is one.  A simulated
 vector from the required multivariate distribution is given by:


                                                     


Splus and R both include the MASS library.  The "mvrnorm" function in the MASS
 library utilizes the cholesky
decompostion algorithm to generate correlated data sets
 with a specified mean, variance and correlation
structure.  In the R code below, two
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 vectors are simulated with a mean of zero, variance of one, and a
correlation of .60 
 (as an aside, it is interesting to replace the last data point in one of the two
simulated
 data vectors  with a relatively large value.   It is interesting to see how one data point
 can
adversely effect the size of the correlation coefficient - this is left as an exercise
 for the reader. 
Furthermore, does the impact of this one large data point have the
 same impact on the correlation coefficient
as the sample size increases?).  The first
 example uses the MASS library to generate two correlated vectors. 
The
 "empirical=T" option allows the user to generate a data set where the correlation in
 the data set is
exactly .60.  The second example illustrates how to write a function
 that implements a bivariate or 
multivariate simulation using cholesky
 decomposition algorithm.  In this example however, because of sampling
variability,
 the sample correlation produced will be approximately equal to .60.


The scatterplot below gives a graphical depiction of the relationship between the two
 simulated
vectors:
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Histograms and One-Dimensional Kernel Density Estimation

The essential idea behind nonparametric density estimation is to relax the parametric
 assumptions about
the data.  Usually these assumptions are replaced by ones that
 refer to the smoothness of the density.  A
histogram, being the most common
 nonparametric density estimator, assumes that the underlying density
function is
 fairly smooth as determined by the bin widths.  This estimate is made by binning the
 data and
displaying the frequency or proportion of points in each bin.  The "kernel
 density estimator" is related to
the histogram, but produces a smooth estimate of the
 density.  The kernel density estimator creates an
estimate of the density by placing a
 "bump" at each data point and then sum the bumps up:


                                          


The "bump" function k( ) is called a kernel and the parameter  is the kernel width. 
 A kernel should always be non-negative and integrate
to one.   The following
 example is taken from Smoothing Methods in Statistics by Jeffrey S. Simonoff
 (1996).  The data are three-month CD rates for 69 Long Island banks and thrifts in
 August 1989.
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The figure below depicts the unsmoothed histogram and a kernel density estimate of
 the CD data.  The
kernel estimate of these data uses a Gaussian density for k, with 
=0.08.   The curve in the bottom of the panel is smooth, and has a tri-modal
form
 with modes at 7.5%, 8.0%, and 8.5%.  The curves along the bottom of the plot
 illustrate the additive
form of .  The density estimate at any
point in the large
 curve is an average of the Gaussian densities centered at each observation (the
 smaller
curves).   
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The degree to which the data are smoothed has a large effect on the appearance of
 the density estimate.  The
setting of the bandwidth parameter, , determines the
 degree of smoothing for the data.  The simplest way to choose the bandwidth
  is
 by choosing a  value for
  that minimizes our error in
accuracy (minimize AMISE -
 asymptotic mean integrated squared error) as compared to some reference
 distribution (e.g. assuming that the true density is Gaussian).  For example, if the
 reference distribution
is Gaussian, and a Gaussian kernel K is used, then:


                                                                              


Substituting an estimate for  into
this estimate of  gives a
data-based rule for
 selecting . 
Kernel density estimation is not without problems  Boundary bias, lack
 of local adaptivity, and the
tendency to flatten out peaks and valleys are potential
 difficulties with this method (Simonoff, 1996).

A Simulation Example of One and Two Dimensional Kernel
 Density
Estimation
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In the following example we simulate a bivariate normal distribution with a mean of
 zero, standard
deviation of one, and a correlation of .60.  The first part of the
 example is concerned with comparing a
univariate kernel density estimate to a
 Gaussian (normal) distribution for each of the marginal
(univariate) distributions. 
 Since the data are randomly sampled from Gaussian distributions, the kernel
density
 estimate and Gaussian curve should be close.  The Gaussian curve is fit by
 estimating the mean and
standard deviation of the data.  Then assuming that the data
 is truly Gaussian, a Gaussian probability
distribution is fit with the estimated mean
 and standard deviation as parameters.  The second part of the
example graphically
 depicts the two univariate histograms in the margins of a bivariate scatterplot for the
 two variables.  The purpose for this graphical arrangement is to build our intuition
 about the joint
density function which characterizes the joint variation of our two
 variables while still viewing the
marginal distributions.  While this graphical
 arrangement allows us to view the two marginal distributions
simultaneously, it
 appears that little insight is gained bout the joint density function.  
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The following figure depicts the marginal distributions fit with both a Gaussian
 distribution (Normal)
and a kernel density estimate.
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The "layout" function in Splus/R allows us to define three regions for the graphics
 plot.  The "horiz=T"
option for the "barplot" function allows us to depict the y
 marginal distribution's y axis horizontally in
the right portion of the graph layout. 
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Regions of high density in the scatterplot will be where the high density portions of
 each marginal
distribution intersect.  It is somewhat difficult to discern where the
 areas of high density in the
scatterplot are because each scatterplot point gets
 overlaid on previously plotted points.      

Contour and Perspective Plots:  Two Dimensional Kernel Density
 Estimation

The MASS library provides the function "kde2d" for extending univariate kernel
 density estimation to two
dimensions (Venables and Ripley, 2002).  We defer the
 details of multivariate kernel density estimation to
Simonoff (1996).  In the
 following program, we continue to use the simulated bivariate data set with mean of
 zero, standard deviation of one, and correlation of .60. 



RSS Matters

http://www.unt.edu/benchmarks/archives/2003/february03/rss.htm[5/6/16, 2:15:37 PM]

 The following graphical output is produced:
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Conclusions

There are a number of ways in which kernel density smoothing can aid in analysis
 and inference - here we
only review a few.  First, kernel density estimation provides
 an exploratory method for potentially
highlighting important structure in the data. 
 For example, in the CD rate data, an initial hypothesis of a
Gaussian distribution
 might be reasonable.  However, examining the kernel density estimate of the data
 reveals the possible existence of two, possibly three subgroups in the data. 
 Secondly, the smooth curves of
the kernel density estimate can be used to test the
 adequacy of fit of a hypothesized model.  For example,
the difference between the
 assumed Gaussian model and the nonparametric kernel density estimate curves can
 be
used to define a test of the goodness of fit for the Gaussian distribution.  Tests
 constructed this way can
be more powerful than those based on the empirical
 distribution alone (Simonoff, 1996).  Lastly, standard
methodologies can be
 modified using smoothed density estimates by substituting the density estimate for
 either the empirical or parametric density function.  For example, the bootstrap is a
 methodology that is
improved by substituting the empirical distribution function by
 a smoothed version of it (see RSS Matters Oct. 2001).  These examples
are only a
 few of the ways in which smoothing methods can useful.  Readers are encouraged to
 review
Simonoff's 1996 summary of smoothing methods in statistics.

Next Time

http://www.unt.edu/benchmarks/archives/2001/october01/rss.htm
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Next time we return to Part II of our series on multilevel modeling using the NLME
 (linear and nonlinear
mixed effects) functions in R and S-Plus. 
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	AwMy9mZWJydWFyeTAzL3Jzcy5odG0A: 
	form13: 
	INPUT: x<-rnorm(100)
hist(x, prob=T)
lines(density(x))

	input2: 


	AwMy9mZWJydWFyeTAzL3Jzcy5odG0A: 
	form63: 
	INPUT: ### Using the MASS library to generate a bivariate
#   correlated data set

library(MASS)
set.seed(321)
x.y<-mvrnorm(n=500, mu=c(0,0), Sigma=matrix(c(1,.60,.60,1), 
             ncol=2), empirical=T)

x<-x.y[,1]
y<-x.y[,2]
cor(x,y)

plot(x,y)

### An example of how to create a function to create
#   a correlated bivariate data set with the cholesky
#   decomposition algorithm 

rmvn<-function(n, mu=0, V=matrix(1))
    {p<-length(mu)
     D<-chol(V)
     matrix(rnorm(n*p), ncol=p)%*%D+
            rep(mu, rep(n,p))
}

x.y<-rmvn(n=500, mu=c(0,0), V=matrix(c(1,.6, .6, 1), ncol=2))
cor(x.y)

	input2: 


	AwMy9mZWJydWFyeTAzL3Jzcy5odG0A: 
	form86: 
	INPUT: ### Example from "Smoothing Methods in Statistics"
#   by Jeffrey S. Simonoff, page 42

x.data<-read.table("http://pages.stern.nyu.edu/~jsimonof/SmoothMeth/Data/ASCII/cdrate.dat")

x.data<-x.data$V1

par(mfrow=c(2,1))

hist(x.data, xlab="CD rate")

plot(density(x.data, kernel="gaussian", bw=.08, n=200,
     from=7.4, to=8.9), ylim=c(-.5, 2))

axis(2,at=c(0, .5, 1, 1.5))
mtext("CD rate", side=1)

for(i in 1:69)
{
lines(c(0:100)/200-.25 + x.data[i*1-1], dnorm(c(0:100)/200-.25 + 
x.data[i*1-1], mean=x.data[i*1-1], sd=.08)*0.09-0.5)
}

rug(jitter(x.data,factor=.3))

	input2: 


	AwMy9mZWJydWFyeTAzL3Jzcy5odG0A: 
	form115: 
	INPUT: ### Part I of the Example

par(mfrow=c(2,1))

xhist <- hist(x, prob=T, ylim=c(0,.42))

lines(density(x))

seq.x<-seq(min(xhist$mids), max(xhist$mids),.01)
lines(seq.x, dnorm(seq.x), col="red")

legend(1.5,.4,c("Normal", "KDE"),lty=1,cex=.6,
            col=c(2,1))

yhist <- hist(y, prob=T, ylim=c(0,.40))

lines(density(y))

seq.y<-seq(min(yhist$mids), max(yhist$mids),.01)
lines(seq.y, dnorm(seq.y), col="red")

legend(1.5,.4,c("Normal", "KDE"),lty=1,cex=.6,
           col=c(2,1))

### Part II of the example

top <- max(c(xhist$counts, yhist$counts))

xrange <- c(-3,3)
yrange <- c(-3,3)

layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)

plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
abline(lm(y~x))

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=FALSE, ylim=c(0, top),
             space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=FALSE, xlim=c(0, top),
             space=0, horiz=TRUE)

	input2: 


	AwMy9mZWJydWFyeTAzL3Jzcy5odG0A: 
	form133: 
	INPUT: par(mfrow=c(2,1))

plot(x,y)

f<-kde2d(x,y,n=50)

contour(f$x,f$y,f$z)

persp(f$x,f$y,f$z,shade=.3, theta = 120, phi = 45,
      expand = 0.5, col = "yellow")

persp(f$x,f$y,f$z,shade=.3, theta = 300, phi = 45,
      expand = 0.5, col = "yellow")

par(mfrow=c(2,2))

plot(x,y)

f<-kde2d(x,y,n=50)

contour(f$x,f$y,f$z)

persp(f$x,f$y,f$z,shade=.3, theta = 120, phi = 45,
      expand = 0.5, col = "yellow")

persp(f$x,f$y,f$z,shade=.3, theta = 300, phi = 45,
      expand = 0.5, col = "yellow")

	input2: 




