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RSS Matters
The Calculation of Statistical Power Using the
 Percentile Bootstrap and Robust Estimation

By Dr. Rich Herrington, Research and Statistical Support Consultant

Last month we examined the percentile bootstrap, this month we demonstrate the
 calculation of statistical power using the percentile bootstrap and robust estimation. 
 The GNU S language, "R" is used to implement this procedure.  R is a statistical
 programming environment that is a clone of the S and S-Plus language developed at
 Lucent Technologies. In the following document we illustrate the use of a GNU Web
 interface to the R engine on the "rss" server,  http://rss.acs.unt.edu/cgi-bin/R/Rprog. 
 This GNU Web interface is a derivative of the "Rcgi" Perl scripts available for
 download from the CRAN  website,  http://www.cran.r-project.org (the main "R"
 website).   Scripts can be submitted interactively, edited, and be re-submitted with
 changed parameters by selecting the hypertext link buttons that appear below the
 figures.  For example, clicking the "Run Program" button  below samples 1000
 random numbers from a normal distribution, then uses nonparametric density
 estimation to fit a density curve to the data.  To view any text output, scroll to the
 bottom of the browser window.  To view the density curve, select the "Display
 Graphic" link.  The script can be edited and resubmitted by changing the script in the
 form window and then selecting  "Run the R Program".  Selecting the browser "back
 page" button will return the reader to this document.

The Importance of Power and Effect Size

The techniques of statistical power analysis, effect size estimation, and sample size
 estimation are important methods in statistics and research methodology (Cohen,
 1988).  Briefly, the power of a statistical test is the probability of rejecting the null
 hypothesis given that the alternate hypothesis is true; the effect size is the degree to
 which the null hypothesis is false in relation to the alternate hypothesis; type II error is
 the probability of failing to reject the null hypothesis when it needs to be rejected in
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 favor of the alternate hypothesis; and type I error is the probability of incorrectly
 rejecting the null hypothesis.  Proper sample size estimation allows one to achieve an
 acceptable level of power for a statistical test, thereby setting the type II error at a pre-
specified level.  Historically, for the social sciences, neglect of these topics have led to
 a long standing controversy surrounding the interpretation of statistical tests in the
 research community (Cohen, 1993).  Following Jacob Cohen?s (1965, 1962) initial
 work on the power of statistical tests in behavioral research, many researchers and
 authors have pointed out the importance of statistical power analysis.   Textbooks and
 articles have appeared that provide tables of power and sample sizes (Cohen, 1988).  
 Additionally, several computer programs which perform exact power analysis
 assuming normal theory have appeared (Bradley, Helmstreet, & Zeigenhagen, 1992;
 Faul & Erdfelder, 1992).  Despite these recommendations, and availability of
 resources for power calculation, Cohen has argued that researchers continue to ignore
 power analysis (Cohen, 1994).  Sedlmeier and Gigerenzer, G. (1989) reported a power
 review of the 1984 volume of the Journal of Abnormal Psychology showing that there
 was not any marked improvement in the power of statistical tests appearing in the
 literature.  As recent as 1997, a methodological study has found that the power of
 statistical tests are not taken into account by researchers and that they continue to run a
 high risk of type II error (Clark-Carter, 1997).   Cohen (1988) has suggested that the
 neglect of power analysis exemplifies the slow movement of methodological advance. 
 Cohen has also suggested a lack of consciousness regarding effect size, coupled with
 an overriding concern with the accompanying ?p? value (Cohen, 1992; 1994).  
 Despite this unawareness on the part of editors and researchers, there has been a recent
 shift in the editorial practices of the American Psychological Association (APA,
 1994).  The manual notes that, ?Neither of the two types of probability values reflects
 the importance or magnitude of an effect because both depend on sample size?you are
 encouraged to provide effect-size information (APA, 1994, p.18).?  Following these
 editorial changes, in 1996 APA established a task force that, among other goals, 
 reexamined the role of statistical hypothesis testing in the methodological practices of
 Psychology (http://www.apa.org/science/tfsi.html).  The Task Force on Statistical
 Inference (TFSI) met twice in two years after which a preliminary report was
 circulated that indicated its intention to examine issues beyond null hypothesis
 significance testing.   After the second meeting, the task force recommended several
 possibilities for further action, one of which was to revise the statistical sections of the
 American Psychological Association Publication Manual (APA, 1994).   A report was
 generated following those meetings
 (http://www.apa.org/journals/amp/amp548594.html).    Neglect of power not only
 decreases the recognition of interesting effects (type II error), but it also has a negative
 effect on the ability of researchers to establish statistical consensus through
 replication.  Ottenbacher (1996) points out that, ?The apparently paradoxical
 conclusion is that the more often we are well guided by theory and prior observation,
 but conduct a low power study, the more we decrease the probability of replication...
 The responsible investigator must be concerned with statistical power.  A concern with
 power, however, cannot end with its calculation.   Because the ability to detect
 treatments must be optimized, the responsible scientist must also be concerned with
 factors that determine effect size?.  Most treatments of power analysis deal with the
 calculation of power for parametric statistics where normal theory assumptions are
 required (e.g. t-test, F-tests).  The calculation of power for robust statistics or
 nonstandard nonparametric statistics are not addressed at a practical level.  For
 example, Cohen?s book on power analysis (1988) concentrates mainly on ANOVA
 and regression models and some standard nonparametric tests such as the chi-square
 test.  What is not addressed is how violations of normality assumptions affect power
 estimates.  The bootstrap technique can be useful for exploring how statistical power
 is affected by non-normality.

http://www.apa.org/science/tfsi.html
http://www.apa.org/journals/amp/amp548594.html
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Estimating Power with the Bootstrap

 Beran (1986) provided mathematical and simulation results that show that a statistical
 test for a null hypothesis can be constructed by bootstrapping the null distribution for
 the test statistic. Beran also proved that the power of the test against an alternative can
 itself be estimated by simulation. The uniform consistency of these simulated power
 functions is the main result of Beran?s mathematical proof.  Additionally, Beran
 performed a limited numerical study of the univariate bootstrap t-test and the
 associated power function.  The null hypothesis value of the mean difference was
 zero; the nominal test level alpha was .05; and the sample size was 20.  The critical
 value of the bootstrap test was obtained from the simulated null distribution using 200
 bootstrap samples.  The power of the bootstrap t-test was approximated by Monte
 Carlo simulation using 1000 standard normal samples.  Thus, the simulation used 200
 bootstrap samples for the critical value loop and 1000 bootstrap samples for the outer
 loop.  Even at sample size 20, Beran found that the power function of the bootstrap
 test is almost indistinguishable from that of the classical t-test.  Yuan (2001) applied
 Beran?s general theory of re-sampling to a covariance structure analysis framework.
 Yuan found that, with several data sets, robust estimators could be combined with the
 bootstrap to allow researchers to be in the position of finding an almost optimal
 procedure for evaluating covariance structure models (Yuan, 2001).  Additionally,
 based on Beran?s results, Yuan provided an algorithm for determining sample size for
 a given level of power.   A great advantage of calculating the critical value from the
 simulated null sampling distribution is that the empirical estimate of the critical value
 is asymptotically consistent with the true population value, and no assumptions are
 made regarding the shape of the null sampling distribution.  Consequently, each
 statistical test (i.e. mean difference test) that is performed on a simulated bootstrap
 sample, is compared to this critical value, and since the critical value was constructed
 from the observed data (under the assumption of the null hypothesis), and according to
 Beran (1986), is a consistent estimate of the population critical value, we can expect
 proper coverage of the mean difference statistic with the bootstrap confidence
 intervals, based on this critical value.  This is essential for calculating power estimates
 of test statistics whose sampling distributions are unknown (under the null or the
 alternate hypothesis), because of violations of assumptions (i.e. normality) or
 mathematical intractability.  Re-sampling under the null hypothesis seems to be the
 preferred approach in calculating probability values for an observed test statistic (Hall
 and Wilson, 1991, p. 757).  Hall and Wilson give the following guidelines for
 bootstrap testing in univariate situations, ?The first guideline says that care should be
 taken to ensure that even if the data might be drawn from a population that fails to
 satisfy Ho, re-sampling should be done in a way that reflects Ho? (Hall and Wilson,
 1991).   Bootstrapping under the null hypothesis, for a two group difference test of
 means, would involve mean centering each group around their respective group
 means, and sampling with replacement from the whole collection of mean centered
 scores to produce two new groups of scores (two bootstrap samples) which reflect
 group differences when the null hypothesis is true (Westfall and Young, 1993, p. 35-
36). Furthermore, if one is bootstrapping measures of location other than the mean, one
 must be sure to create a bootstrap population where the observations are centered
 around that alternative measure of location (Westfall and Young, 1993, p. 143-144). 
 For example, if one is using a median, or an M-estimate as a measure of location, then
 one would center around that measure to insure that the null hypotheses are true in the
 bootstrap population.
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 The General Bootstrap Power Simulation Algorithm

Beran?s (1986) simulation algorithm is presented as a sequence of steps (for a two-
sided difference of location):
  
Step 1 - Generate the bootstrap null distribution using bootstrap re-sampling:  A)
 Re-center the data vector x and the data vector y around their respective measures of
 location.  B)   Stack the data vectors x and y into a single vector, z.  Vector z is now
 considered the in-hand, proxy population.  C) Re-sample with replacement from
 vector z to produce a bootstrap sample for group x1 with length of the original group
 x.  Repeat this re-sampling to produce a group y1.  D)  Calculate a measure of location
 for both groups (e.g. mean, M-estimate, trimmed mean, or Windsorized mean).  E)
 Subtract the two location measures.  This difference is one bootstrap sample which
 comprises the empirical null sampling distribution.  F)  Repeat steps C-E a large
 number of times to generate the empirical null distribution (suggestions vary widely,
 1000 seems to be a sufficient number of bootstrap samples; one might resample
 10,000 bootstrap samples to be conservative).  The empirical null distribution will be
 centered on zero.

 Step 2. ? Calculate the critical scores that correspond to the 2.5th and 97.5th

 critical alpha regions under the empirical null distribution:  The critical scores are
 the scores that correspond to the 2.5th and 97.5th percentiles of the empirical null
 distribution.  We can calculate the percentiles using the following approach:
 round((.05/2)x(#bootstrap samples)) for lower percentile; and round((1-
(.05/2))x(#bootstrap samples)).  Next, locate the scores that correspond to those
 percentiles.

 Step 3. ? Generate the bootstrap alternative distribution:  A) Re-sample with
 replacement from vector x with replacement to generate a bootstrap sample, x1, with
 length of original vector x.  B) Re-sample with replacement from vector y with
 replacement to generate a bootstrap sample, y1, with length of original vector y. C)
 Calculate measures of location for both bootstrap samples x1 and y1.  D) Subtract the
 two measures of location.  This is one bootstap difference, and represents the
 difference between measures of location under the empirical alternate distribution. 
 This empirical distribution is centered on the population difference under the alternate
 hypothesis.

 Step 4. ? Calculate the empirical power of the statistical test: A) Using the upper
 and lower critical scores for the empirical null hypothesis calculated in step 2.,
 Calculate the number of difference scores in the empirical alternative sampling
 distribution that are as or more extreme than the critical scores under the null
 distribution.  B) Take the count tallied in step A) and divide by the total number of
 bootstrap samples.  This value is the empirical power for the statistical test that tests
 differences between groups using whatever location measure is under consideration.  

 The Data Set

Doksum & Sievers (1976) report data on a study designed to assess the effects of
 ozone on weight gain in rats. The experimental group consisted of 22 seventy-day old
 rats kept in an ozone environment for 7 days (group y).  The control group consisted
 of 23 rats of the same age (group x), and were kept in an ozone-free environment.
 Weight gain is measured in grams.  The following R code produces quantile-quantile
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 plots and non-parametric density plots of the two groups of data:

Results

The following output is produced.  Group x (control group) is in the upper left panel,
 and group y (experimental group) is in the upper right panel.  Both groups show
 substantial deviations away from normality.  Deviations away from the straight line
 indicate deviations away from normality.  In the lower panel, non-parametric density
 estimates of both groups are plotted on the same graph.  The more peaked, narrower
 density function is the control group, and the less peaked, more dispersed density
 function is experimental group.  
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 Using GNU S ("R") to Calculate Statistical Power Using
 the Bootstrap and Robust Estimation

In this section, we use M-estimation as measures of location for the control and
 experimental group.  Bootstrap p-values, confidence intervals and power for the
 difference between the M-estimates are calculated.  Additionally, a classical t-test is
 calculated for comparison:           
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Results

The following results are produced:

Welch Independent Two Sample t-test:

 data: x and y 
 t = 2.4585,  df = 32.909,  p-value = 0.01938 
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 alternative hypothesis: true difference in means is not equal to 0 
 95 percent confidence interval:
(1.964178,  20.826336) 
 sample estimates:
 mean of x       mean of y 
 22.40435      11.00909 

 Bootstrap statistics based on difference between M-estimates:

 Bootstrap Empirical P-value 
 >

pvalue.empirical
[1] 0

 Bootstrap Empirical Power
 > power.twotail
 [1] 0.9331104

 Bootstrap Confidence Intervals
 > h1.ci
 $ci
 [1] 4.117494     21.818252

 The M-estimate confidence intervals are much narrower that the classical confidence
 intervals.  With 399 bootstrap samples, not one bootstrap sample exceeded the
 observed difference, giving a p value less than 1/399=.0025.  The non-parametric
 bootstrap power for the difference in M-estimates was .933.   

Conclusions

The bootstrap and robust estimation provide a method for improving statistical power
 whenever the data can be described as having heavy-tailed distributions.  Furthermore,
 an estimate of power based on the percentile bootstrap is non-parametric, and does not
 depend on normal theory assumptions.  Bootstrap power estimation is a general
 methodology that can be used to calculate power for many different kinds of statistical
 estimators (e.g. mean, median, or M-estimates).        

Announcements

GNU S ("R") on SOL

The Research and Statistical Support Office (RSS) in conjunction with the UNIX
 support group in the Academic Computing Center have made the decision to place
 GNU S or "R" on the main UNIX research computer, SOL.  We are hoping to get R
 and it's supporting libraries installed in the next month.  This will provide an
 alternative to the S-PLUS language that already exists on SOL.  SOL accounts are
 available to both students and faculty for research purposes. 
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	INPUT_(1)_(2): # Function for extracting M-Estimator from the MASS Library library(MASS)mest.MASS<-function(x, k=1.28){ location<-hubers(x, k)$mu }k<-1.28 #### Calculate the size of the two groups N1<-length(x)N2<-length(y) ##### Number of bootstrap samples nboot<-399 ### Alpha criterion alpha<-.05 #### Non-directional test=2, directional test=1 empTAIL<-2 #### Assign type of estimator (mean, median, mest.MASS) est<-mest.MASS ######## Re-center data so that H0 holds in original sample z.x<-x z.y<-y # Center x vector according to estimation method c.x<-(z.x-est(z.x, k)) # Center y vector according to estimation method c.y<-(z.y-est(z.y, k)) # Stack x and y vectorcx.cy<-c(c.x,c.y) # Sampling from H0: Population is stacked x and y vector; # Sample with replacement # Stack x and y vectorh0datax<-matrix(sample(cx.cy, size=N1 * nboot, replace=T), nrow=nboot) h0datay<-matrix(sample(cx.cy, size=N2 * nboot, replace=T), nrow=nboot) h0bvecx<-apply(h0datax,1,est,k)h0bvecy<-apply(h0datay,1,est,k) h0bvec<-sort(h0bvecx-h0bvecy)###### Calculate critcal cutoffs critup<-quantile(h0bvec,.975)critlow<-quantile(h0bvec,.025) #### Calculate two-sided mean difference test probability for #    observed differencediff.empirical<-est(z.x, k)-est(z.y, k)count<-length(h0bvec[abs(h0bvec)>=abs(diff.empirical)])pvalue.empirical<-count/nboot# Sampling from H1: Sample wih replacement from # x and y vectors seperately h1datax<-matrix(sample(x, size=N1 * nboot, replace=T), nrow=nboot) h1datay<-matrix(sample(y, size=N2 * nboot, replace=T), nrow=nboot) #### Apply M-estimator to each data vector and accumulate in #    new data vectors h1bvecx<-apply(h1datax, 1, est, k)h1bvecy<-apply(h1datay, 1, est, k) #### Sort and subtract Bootstrap M-estimate data vectors #    and accumulate into a M-estimator difference vector h1bvec<-sort(h1bvecx-h1bvecy) ### Calculate the upper and lower cuttoff percentiles for #   the lower and upper alpha criterioneffectlow<-round((alpha/empTAIL)* nboot)effectup<-round((1-alpha/empTAIL)* nboot) #### Calculate Empirical Power countup<-length(h1bvec[h1bvec>=critup])countlow<-length(h1bvec[h1bvec<=critlow])power.twotail<-(countup+countlow)/nboot ### Calculate M-estimate differences that correspond to the #   upper and lower alpha criterion cuttoffs h1.ci<-list(ci=c(h1bvec[effectlow], h1bvec[effectup]))###Display Resultst.test(x,y) pvalue.empirical power.twotail h1.ci 
	input3: 




