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The
Calculation of Statistical Power Using the
 Percentile Bootstrap and
Robust Estimation

By Dr. Rich Herrington, Research and
Statistical Support Consultant

Last month
we examined the percentile bootstrap, this month we demonstrate the

calculation of statistical power using the percentile bootstrap and
robust estimation. 
 The GNU S language, "R" is used to implement
this procedure.  R is a statistical
 programming environment that
is a clone of the S and S-Plus language developed at
 Lucent
Technologies. In the following document we illustrate the use of a GNU
Web
 interface to the R engine on the "rss" server,  http://rss.acs.unt.edu/cgi-bin/R/Rprog. 

This GNU Web interface is a derivative of the "Rcgi" Perl scripts
available for
 download from the CRAN  website,  http://www.cran.r-project.org
(the main "R"
 website).   Scripts can be submitted
interactively, edited, and be re-submitted with
 changed parameters by
selecting the hypertext link buttons that appear below the

figures.  For example, clicking the "Run Program" button 
below samples 1000
 random numbers from a normal distribution, then uses
nonparametric density
 estimation to fit a density curve to the
data.  To view any text output, scroll to the
 bottom of the
browser window.  To view the density curve, select the "Display

Graphic" link.  The script can be edited and resubmitted by
changing the script in the
 form window and then selecting  "Run
the R Program".  Selecting the browser "back
 page" button will
return the reader to this document.

The Importance of Power and Effect Size

The techniques of statistical power analysis, effect size
estimation, and sample size
 estimation are important methods in
statistics and research methodology (Cohen,
 1988). 
Briefly, the power of a statistical test is the probability of
rejecting the null
 hypothesis given that the alternate hypothesis is
true; the effect size is the degree to
 which the null hypothesis is
false in relation to the alternate hypothesis; type II error is
 the
probability of failing to reject the null hypothesis when it needs to
be rejected in
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 favor of the alternate hypothesis; and type I error is
the probability of incorrectly
 rejecting the null hypothesis.  Proper sample size estimation allows one to
achieve an
 acceptable level of power for a statistical test, thereby
setting the type II error at a pre-
specified level. 
Historically, for the social sciences, neglect of
these topics have led to
 a long standing controversy surrounding the
interpretation of statistical tests in the
 research community (Cohen,
1993).  Following Jacob Cohen?s (1965,
1962) initial
 work on the power of statistical tests in behavioral
research, many researchers and
 authors have pointed out the importance
of statistical power analysis.   Textbooks
and
 articles have appeared that provide tables of power and sample
sizes (Cohen, 1988).  
 Additionally,
several computer programs which perform exact power analysis
 assuming
normal theory have appeared (Bradley, Helmstreet, & Zeigenhagen,
1992;
 Faul & Erdfelder, 1992).  Despite
these recommendations, and availability of
 resources for power
calculation, Cohen has argued that researchers continue to ignore
 power
analysis (Cohen, 1994).  Sedlmeier and
Gigerenzer, G. (1989) reported a power
 review of the 1984 volume of the
Journal of Abnormal Psychology showing that there
 was not any marked
improvement in the power of statistical tests appearing in the

literature.  As recent as 1997, a methodological study has found that the power
of
 statistical tests are not taken into account by researchers and that
they continue to run a
 high risk of type II error (Clark-Carter, 1997).  
Cohen (1988) has suggested that the
 neglect of power analysis
exemplifies the slow movement of methodological advance. 

Cohen has also suggested a lack of consciousness regarding
effect size, coupled with
 an overriding concern with the accompanying
?p? value (Cohen, 1992; 1994).  
 Despite
this unawareness on the part of editors and researchers, there has been
a recent
 shift in the editorial practices of the American Psychological
Association (APA,
 1994).  The manual notes
that, ?Neither of the two types of probability values reflects
 the
importance or magnitude of an effect because both depend on sample
size?you are
 encouraged to provide effect-size information (APA, 1994,
p.18).?  Following these
 editorial changes,
in 1996 APA established a task force that, among other goals, 
 reexamined the role of statistical hypothesis
testing in the methodological practices of
 Psychology (http://www.apa.org/science/tfsi.html).  The Task Force on
Statistical
 Inference (TFSI) met twice in two years after which a
preliminary report was
 circulated that indicated its intention to
examine issues beyond null hypothesis
 significance testing.   After the second meeting, the task force
recommended several
 possibilities for further action, one of which was
to revise the statistical sections of the
 American Psychological
Association Publication Manual (APA, 1994).   A
report was
 generated following those meetings
 (http://www.apa.org/journals/amp/amp548594.html).
   Neglect of power not only
 decreases the recognition
of interesting effects (type II error), but it also has a negative

effect on the ability of researchers to establish statistical consensus
through
 replication.  Ottenbacher (1996) points out that, ?The apparently paradoxical

conclusion is that the more often we are well guided by theory and
prior observation,
 but conduct a low power study, the more we decrease
the probability of replication...
 The responsible investigator must be
concerned with statistical power.  A
concern with
 power, however, cannot end with its calculation.   Because the ability to detect
 treatments
must be optimized, the responsible scientist must also be concerned
with
 factors that determine effect size?.  Most treatments of
power analysis deal with the
 calculation of power for parametric
statistics where normal theory assumptions are
 required (e.g. t-test,
F-tests).  The calculation of power for
robust statistics or
 nonstandard nonparametric statistics are not
addressed at a practical level.  For

example, Cohen?s book on power analysis (1988) concentrates mainly on
ANOVA
 and regression models and some standard nonparametric tests such
as the chi-square
 test.  What is not
addressed is how violations of normality assumptions affect power

estimates.  The bootstrap technique can be useful for exploring
how statistical power
 is affected by non-normality.

http://www.apa.org/science/tfsi.html
http://www.apa.org/journals/amp/amp548594.html
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Estimating Power with the Bootstrap

 Beran (1986) provided
mathematical and simulation results that show that a statistical
 test
for a null hypothesis can be constructed by bootstrapping the null
distribution for
 the test statistic. Beran
also proved that the power of the test against an alternative can

itself be estimated by simulation. The
uniform consistency of these simulated power
 functions is the main
result of Beran?s mathematical proof.  Additionally,
Beran
 performed a limited numerical study of the univariate bootstrap
t-test and the
 associated power function.  The
null hypothesis value of the mean difference was
 zero; the nominal test
level alpha was .05; and the sample size was 20.  The
critical
 value of the bootstrap test was obtained from the simulated
null distribution using 200
 bootstrap samples.  The
power of the bootstrap t-test was approximated by Monte
 Carlo
simulation using 1000 standard normal samples.  Thus,
the simulation used 200
 bootstrap samples for the critical value loop
and 1000 bootstrap samples for the outer
 loop.  Even
at sample size 20, Beran found that the power function of the bootstrap

test is almost indistinguishable from that of the classical t-test.  Yuan
(2001) applied
 Beran?s general theory of re-sampling to a covariance
structure analysis framework.
 Yuan found that, with several data sets,
robust estimators could be combined with the
 bootstrap to allow
researchers to be in the position of finding an almost optimal

procedure for evaluating covariance structure models (Yuan, 2001).  Additionally,
 based on Beran?s results, Yuan
provided an algorithm for determining sample size for
 a given level of
power.   A great advantage of calculating the
critical value from the
 simulated null sampling distribution is that
the empirical estimate of the critical value
 is asymptotically
consistent with the true population value, and no assumptions are
 made
regarding the shape of the null sampling distribution.
 Consequently, each
 statistical test (i.e. mean difference
test) that is performed on a simulated bootstrap
 sample, is compared to
this critical value, and since the critical value was constructed
 from
the observed data (under the assumption of the null hypothesis), and
according to
 Beran (1986), is a consistent estimate of the population
critical value, we can expect
 proper coverage of the mean difference
statistic with the bootstrap confidence
 intervals, based on this
critical value.  This is essential for
calculating power estimates
 of test statistics whose sampling
distributions are unknown (under the null or the
 alternate hypothesis),
because of violations of assumptions (i.e. normality) or
 mathematical
intractability.  Re-sampling under the null
hypothesis seems to be the
 preferred approach in calculating
probability values for an observed test statistic (Hall
 and Wilson,
1991, p. 757).  Hall and Wilson give the
following guidelines for
 bootstrap testing in univariate situations,
?The first guideline says that care should be
 taken to ensure that even
if the data might be drawn from a population that fails to
 satisfy Ho,
re-sampling should be done in
a way that reflects Ho? (Hall and Wilson,
 1991).  
Bootstrapping under the null hypothesis, for a two group
difference test of
 means, would involve mean centering each group
around their respective group
 means, and sampling with replacement from
the whole collection of mean centered
 scores to produce two new groups
of scores (two bootstrap samples) which reflect
 group differences when
the null hypothesis is true (Westfall and Young, 1993, p. 35-
36).
Furthermore, if one is bootstrapping measures of location other than
the mean, one
 must be sure to create a bootstrap population where the
observations are centered
 around that alternative measure of location
(Westfall and Young, 1993, p. 143-144). 
 For
example, if one is using a median, or an M-estimate as a measure of
location, then
 one would center around that measure to insure that the
null hypotheses are true in the
 bootstrap population.
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 The
General Bootstrap Power Simulation Algorithm

Beran?s
(1986) simulation algorithm is presented as a sequence of steps (for a
two-
sided difference of location):
  
Step
1 - Generate the bootstrap null distribution using bootstrap
re-sampling:  A)
 Re-center the data
vector x and the data vector y around their respective measures of

location.  B)   Stack
the data vectors x and y into a single vector, z.  Vector
z is now
 considered the in-hand, proxy population. 
C) Re-sample with replacement from
 vector z to produce a
bootstrap sample for group x1 with length of the original group
 x.  Repeat this re-sampling to produce a group y1.  D)  Calculate a
measure of location
 for both groups (e.g. mean, M-estimate, trimmed
mean, or Windsorized mean).  E)
 Subtract
the two location measures.  This difference
is one bootstrap sample which
 comprises the empirical null sampling
distribution.  F)  Repeat
steps C-E a large
 number of times to generate the empirical null
distribution (suggestions vary widely,
 1000 seems to be a sufficient
number of bootstrap samples; one might resample
 10,000 bootstrap
samples to be conservative).  The empirical
null distribution will be
 centered on zero.

 Step
2. ? Calculate the critical scores that correspond to the 2.5th
and 97.5th

 critical alpha regions under the empirical null
distribution:  The critical
scores are
 the scores that correspond to the 2.5th and 97.5th
percentiles of the empirical null
 distribution.  We
can calculate the percentiles using the following approach:

round((.05/2)x(#bootstrap samples)) for lower percentile; and
round((1-
(.05/2))x(#bootstrap samples)).  Next,
locate the scores that correspond to those
 percentiles.


Step 3. ? Generate the bootstrap alternative distribution: 
A) Re-sample with
 replacement from vector x with replacement to
generate a bootstrap sample, x1, with
 length of original vector x.  B) Re-sample with replacement from vector y
with
 replacement to generate a bootstrap sample, y1, with length of
original vector y. C)
 Calculate measures of location for both bootstrap
samples x1 and y1.  D) Subtract the
 two
measures of location.  This is one bootstap
difference, and represents the
 difference between measures of location
under the empirical alternate distribution. 
 This
empirical distribution is centered on the population difference under
the alternate
 hypothesis.

 Step 4. ? Calculate the
empirical power of the statistical test: A) Using the
upper
 and lower critical scores for the empirical null hypothesis
calculated in step 2.,
 Calculate the number of difference scores in the
empirical alternative sampling
 distribution that are as or more extreme
than the critical scores under the null
 distribution. 
B) Take the count tallied in step A) and divide by the total
number of
 bootstrap samples.  This value is
the empirical power for the statistical test that tests
 differences
between groups using whatever location measure is under consideration.  

 The Data Set

Doksum & Sievers (1976) report data on a
study designed to assess the effects of
 ozone on weight gain in rats. The experimental group consisted of 22
seventy-day old
 rats kept in an ozone environment for 7 days (group y).  The control group consisted
 of 23 rats of the
same age (group x), and were kept in an ozone-free environment.
 Weight
gain is measured in grams.  The following R code produces
quantile-quantile
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 plots and non-parametric density plots of the two
groups of data:

Results

The following output is produced.  Group x (control group) is
in the upper left panel,
 and group y (experimental group) is in the
upper right panel.  Both groups show
 substantial deviations away
from normality.  Deviations away from the straight line
 indicate
deviations away from normality.  In the lower panel,
non-parametric density
 estimates of both groups are plotted on the same
graph.  The more peaked, narrower
 density function is the control
group, and the less peaked, more dispersed density
 function is
experimental group.  
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 Using GNU S ("R") to Calculate
Statistical Power Using
 the Bootstrap and Robust Estimation

In this section, we use
M-estimation as measures of location for the control and
 experimental
group.  Bootstrap p-values, confidence intervals and
power for the
 difference between the M-estimates are calculated. 
Additionally, a classical t-test is
 calculated for comparison:           
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Results

The
following results are produced:

Welch
Independent Two Sample t-test:

 data: x and y 

t = 2.4585,  df = 32.909,  p-value
= 0.01938 
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 alternative hypothesis: true difference in means is
not equal to 0 
 95 percent confidence interval:
(1.964178, 
20.826336) 
 sample estimates:
 mean of x      
mean of y 
 22.40435     
11.00909 

 Bootstrap statistics based on
difference between M-estimates:

 Bootstrap Empirical
P-value 
 >

pvalue.empirical
[1] 0


Bootstrap Empirical Power
 > power.twotail
 [1] 0.9331104


Bootstrap Confidence Intervals
 > h1.ci
 $ci
 [1]
4.117494     21.818252

 The M-estimate
confidence intervals are much narrower that the classical confidence

intervals.  With 399 bootstrap samples, not one bootstrap sample
exceeded the
 observed difference, giving a p value less than
1/399=.0025.  The non-parametric
 bootstrap power for the
difference in M-estimates was .933.   

Conclusions

The bootstrap and robust estimation
provide a method for improving statistical power
 whenever the data can
be described as having heavy-tailed distributions.  Furthermore,

an estimate of power based on the percentile bootstrap is
non-parametric, and does not
 depend on normal theory assumptions. 
Bootstrap power estimation is a general
 methodology that can be used to
calculate power for many different kinds of statistical
 estimators
(e.g. mean, median, or
M-estimates).        

Announcements

GNU S ("R") on SOL

The Research and Statistical Support Office (RSS) in conjunction
with the UNIX
 support group in the Academic Computing Center have made
the decision to place
 GNU S or "R" on the main UNIX research computer,
SOL.  We are hoping to get R
 and it's supporting libraries
installed in the next month.  This will provide an
 alternative to
the S-PLUS language that already exists on SOL.  SOL accounts are

available to both students and faculty for research purposes. 
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	9zZXB0ZW1iZXIwMS9yc3MuaHRtAA==: 
	form10: 
	INPUT: x<-rnorm(1000)
density(x)
plot(density(x)) 
	input3: 


	9zZXB0ZW1iZXIwMS9yc3MuaHRtAA==: 
	form28: 
	INPUT: ###Control Group

x<-c(41.0,38.4,24.4,25.9,21.9,18.3,13.1,27.3, 28.5,-16.9,26.0,17.4,21.8,15.4,27.4,19.2, 22.4,17.7,26.0,29.4,21.4,26.6,22.7) 

###Experimental Group (Ozone environment)

y<-c(10.1,6.1,20.4,7.3,14.3,15.5,-9.9,6.8, 28.2,17.9,-9.0,-12.9,14.0,6.6,12.1,15.7, 39.9,-15.9,54.6,-14.7,44.1,-9.0) 

summary(x)
summary(y) 

#### Plot all graphs on same page in a 
# 2x2 grid

par(mfrow=c(2,2)) 
qqnorm(x) 
qqline(x) 
qqnorm(y) 
qqline(y) 

#### Plot both graphs on same graph 
plot(density(x), ylim=c(0,.06), xlim=c(-30,70)) 
par(new=T) 
plot(density(y), ylim=c(0,.06), xlim=c(-30,70)) 

	input3: 


	9zZXB0ZW1iZXIwMS9yc3MuaHRtAA==: 
	form2: 
	INPUT: # Function for extracting M-Estimator from the MASS Library 

library(MASS)
mest.MASS<-function(x, k=1.28){ 
location<-hubers(x, k)$mu 
}

k<-1.28 

#### Calculate the size of the two groups 
N1<-length(x)
N2<-length(y) 

##### Number of bootstrap samples 
nboot<-399 

### Alpha criterion 

alpha<-.05 

#### Non-directional test=2, directional test=1 

empTAIL<-2 

#### Assign type of estimator (mean, median, mest.MASS) 
est<-mest.MASS 

######## Re-center data so that H0 holds in original sample 

z.x<-x 
z.y<-y 

# Center x vector according to estimation method 

c.x<-(z.x-est(z.x, k)) 

# Center y vector according to estimation method 

c.y<-(z.y-est(z.y, k)) 

# Stack x and y vector

cx.cy<-c(c.x,c.y) 

# Sampling from H0: Population is stacked x and y vector; 
# Sample with replacement 
# Stack x and y vector

h0datax<-matrix(sample(cx.cy, size=N1 * nboot, replace=T), nrow=nboot) 
h0datay<-matrix(sample(cx.cy, size=N2 * nboot, replace=T), nrow=nboot) 
h0bvecx<-apply(h0datax,1,est,k)
h0bvecy<-apply(h0datay,1,est,k) 
h0bvec<-sort(h0bvecx-h0bvecy)

###### Calculate critcal cutoffs 

critup<-quantile(h0bvec,.975)

critlow<-quantile(h0bvec,.025) 

#### Calculate two-sided mean difference test probability for 
#    observed difference

diff.empirical<-est(z.x, k)-est(z.y, k)
count<-length(h0bvec[abs(h0bvec)>=abs(diff.empirical)])
pvalue.empirical<-count/nboot

# Sampling from H1: Sample wih replacement from # x and y vectors seperately 

h1datax<-matrix(sample(x, size=N1 * nboot, replace=T), nrow=nboot) 
h1datay<-matrix(sample(y, size=N2 * nboot, replace=T), nrow=nboot) 

#### Apply M-estimator to each data vector and accumulate in 
#    new data vectors 

h1bvecx<-apply(h1datax, 1, est, k)
h1bvecy<-apply(h1datay, 1, est, k) 

#### Sort and subtract Bootstrap M-estimate data vectors 
#    and accumulate into a M-estimator difference vector 

h1bvec<-sort(h1bvecx-h1bvecy) 

### Calculate the upper and lower cuttoff percentiles for 
#   the lower and upper alpha criterion

effectlow<-round((alpha/empTAIL)* nboot)
effectup<-round((1-alpha/empTAIL)* nboot) 

#### Calculate Empirical Power 

countup<-length(h1bvec[h1bvec>=critup])
countlow<-length(h1bvec[h1bvec<=critlow])
power.twotail<-(countup+countlow)/nboot 

### Calculate M-estimate differences that correspond to the 
#   upper and lower alpha criterion cuttoffs 

h1.ci<-list(ci=c(h1bvec[effectlow], h1bvec[effectup]))

###Display Results

t.test(x,y) 
pvalue.empirical 
power.twotail 
h1.ci 

	INPUT_(1): # Function for extracting M-Estimator from the MASS Library 

library(MASS)
mest.MASS<-function(x, k=1.28){ 
location<-hubers(x, k)$mu 
}

k<-1.28 

#### Calculate the size of the two groups 
N1<-length(x)
N2<-length(y) 

##### Number of bootstrap samples 
nboot<-399 

### Alpha criterion 

alpha<-.05 

#### Non-directional test=2, directional test=1 

empTAIL<-2 

#### Assign type of estimator (mean, median, mest.MASS) 
est<-mest.MASS 

######## Re-center data so that H0 holds in original sample 

z.x<-x 
z.y<-y 

# Center x vector according to estimation method 

c.x<-(z.x-est(z.x, k)) 

# Center y vector according to estimation method 

c.y<-(z.y-est(z.y, k)) 

# Stack x and y vector

cx.cy<-c(c.x,c.y) 

# Sampling from H0: Population is stacked x and y vector; 
# Sample with replacement 
# Stack x and y vector

h0datax<-matrix(sample(cx.cy, size=N1 * nboot, replace=T), nrow=nboot) 
h0datay<-matrix(sample(cx.cy, size=N2 * nboot, replace=T), nrow=nboot) 
h0bvecx<-apply(h0datax,1,est,k)
h0bvecy<-apply(h0datay,1,est,k) 
h0bvec<-sort(h0bvecx-h0bvecy)

###### Calculate critcal cutoffs 

critup<-quantile(h0bvec,.975)

critlow<-quantile(h0bvec,.025) 

#### Calculate two-sided mean difference test probability for 
#    observed difference

diff.empirical<-est(z.x, k)-est(z.y, k)
count<-length(h0bvec[abs(h0bvec)>=abs(diff.empirical)])
pvalue.empirical<-count/nboot

# Sampling from H1: Sample wih replacement from # x and y vectors seperately 

h1datax<-matrix(sample(x, size=N1 * nboot, replace=T), nrow=nboot) 
h1datay<-matrix(sample(y, size=N2 * nboot, replace=T), nrow=nboot) 

#### Apply M-estimator to each data vector and accumulate in 
#    new data vectors 

h1bvecx<-apply(h1datax, 1, est, k)
h1bvecy<-apply(h1datay, 1, est, k) 

#### Sort and subtract Bootstrap M-estimate data vectors 
#    and accumulate into a M-estimator difference vector 

h1bvec<-sort(h1bvecx-h1bvecy) 

### Calculate the upper and lower cuttoff percentiles for 
#   the lower and upper alpha criterion

effectlow<-round((alpha/empTAIL)* nboot)
effectup<-round((1-alpha/empTAIL)* nboot) 

#### Calculate Empirical Power 

countup<-length(h1bvec[h1bvec>=critup])
countlow<-length(h1bvec[h1bvec<=critlow])
power.twotail<-(countup+countlow)/nboot 

### Calculate M-estimate differences that correspond to the 
#   upper and lower alpha criterion cuttoffs 

h1.ci<-list(ci=c(h1bvec[effectlow], h1bvec[effectup]))

###Display Results

t.test(x,y) 
pvalue.empirical 
power.twotail 
h1.ci 

	INPUT_(1)_(2): # Function for extracting M-Estimator from the MASS Library 

library(MASS)
mest.MASS<-function(x, k=1.28){ 
location<-hubers(x, k)$mu 
}

k<-1.28 

#### Calculate the size of the two groups 
N1<-length(x)
N2<-length(y) 

##### Number of bootstrap samples 
nboot<-399 

### Alpha criterion 

alpha<-.05 

#### Non-directional test=2, directional test=1 

empTAIL<-2 

#### Assign type of estimator (mean, median, mest.MASS) 
est<-mest.MASS 

######## Re-center data so that H0 holds in original sample 

z.x<-x 
z.y<-y 

# Center x vector according to estimation method 

c.x<-(z.x-est(z.x, k)) 

# Center y vector according to estimation method 

c.y<-(z.y-est(z.y, k)) 

# Stack x and y vector

cx.cy<-c(c.x,c.y) 

# Sampling from H0: Population is stacked x and y vector; 
# Sample with replacement 
# Stack x and y vector

h0datax<-matrix(sample(cx.cy, size=N1 * nboot, replace=T), nrow=nboot) 
h0datay<-matrix(sample(cx.cy, size=N2 * nboot, replace=T), nrow=nboot) 
h0bvecx<-apply(h0datax,1,est,k)
h0bvecy<-apply(h0datay,1,est,k) 
h0bvec<-sort(h0bvecx-h0bvecy)

###### Calculate critcal cutoffs 

critup<-quantile(h0bvec,.975)

critlow<-quantile(h0bvec,.025) 

#### Calculate two-sided mean difference test probability for 
#    observed difference

diff.empirical<-est(z.x, k)-est(z.y, k)
count<-length(h0bvec[abs(h0bvec)>=abs(diff.empirical)])
pvalue.empirical<-count/nboot

# Sampling from H1: Sample wih replacement from # x and y vectors seperately 

h1datax<-matrix(sample(x, size=N1 * nboot, replace=T), nrow=nboot) 
h1datay<-matrix(sample(y, size=N2 * nboot, replace=T), nrow=nboot) 

#### Apply M-estimator to each data vector and accumulate in 
#    new data vectors 

h1bvecx<-apply(h1datax, 1, est, k)
h1bvecy<-apply(h1datay, 1, est, k) 

#### Sort and subtract Bootstrap M-estimate data vectors 
#    and accumulate into a M-estimator difference vector 

h1bvec<-sort(h1bvecx-h1bvecy) 

### Calculate the upper and lower cuttoff percentiles for 
#   the lower and upper alpha criterion

effectlow<-round((alpha/empTAIL)* nboot)
effectup<-round((1-alpha/empTAIL)* nboot) 

#### Calculate Empirical Power 

countup<-length(h1bvec[h1bvec>=critup])
countlow<-length(h1bvec[h1bvec<=critlow])
power.twotail<-(countup+countlow)/nboot 

### Calculate M-estimate differences that correspond to the 
#   upper and lower alpha criterion cuttoffs 

h1.ci<-list(ci=c(h1bvec[effectlow], h1bvec[effectup]))

###Display Results

t.test(x,y) 
pvalue.empirical 
power.twotail 
h1.ci 

	input3: 




