An alternative modeling strategy: Partial Least Squares

Dr. Jon Starkweather, Research and Statistical Support consultant.

Partial Least Squares (PLS) modeling is often used as an alternative to traditional modeling techniques. Unlike traditional modeling techniques which rely upon covariance decomposition, PLS is a variance based (or components based) technique and does not carry with it many of the assumptions of covariance methods (i.e. distributional assumptions). It is sometimes considered an analysis of last resort because large samples are not *as* necessary with it, and PLS is less sensitive to multicollinearity. However, PLS is primarily descriptive when used with small samples and is still constrained with respect to making inferences about parameters when sample sizes are small. The benefit of having the ability to do descriptive analysis with small samples is that PLS can fit models with non-linear relationships and non-Gaussian distributions among the variables in addition to the traditional linear and Gaussian situations.

PLS is also quite versatile; it can be used as a regression technique, a principal components technique, a canonical correlation technique, or a path modeling (or structural equation modeling) technique. It is well documented that PLS is biased because the optimization is local rather than global level; however, as sample size increases PLS becomes less bias. PLS can be used to make inferences about parameters when sample sizes are large. PLS is often used when other methods fail (i.e. a slightly biased estimate is better than no estimate).

As an example, we will first model a simulated data set using traditional modeling techniques using a popular method and package. John Fox's (2010) package <u>'sem'</u> is one of the more established modeling packages in R and will be used here to demonstrate how certain data sets do not converge on a specified model.

Example

First, import the <u>data</u> from the internet and run the ubiquitous 'head' function to get a look at the data. The example data contains 20 variables (v1 - v20) and 1000 cases. Here we will name the data 'pls.data'.

```
- • ×
R Console
File Edit Misc Packages Windows Help
R version 2.13.0 (2011-04-13)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i386-pc-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
  Natural language support but running in an English locale
R is a collaborative project with many contributors. Type <code>'contributors()'</code> for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> pls.data <- read.table("http://www.unt.edu/rss/class/Jon/R SC/Module8/PLSdata001.txt",
     header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)
> cov.m <- cov(pls.data[,4:23])</pre>
> head(pls.data)
  id sex age
                     v1
                              v^2
                                        v3
                                                  v4
                                                           v5
                                                                     v6
                                                                               v7
                                                                                         ν8
       1 30 131.11743 59.51358 25.94516 73.32716 57.45567 46.63123 44.55832 63.80995
   1
       2 27 87.99215 48.39060 31.23116 92.53837 79.06543 48.73282 38.40678 60.67488
  2
2
3 3 2 36 94.41560 52.77620 21.57114 63.59395 45.64394 29.87916 23.38897 52.36779
       2 27 80.61290 46.07760 30.65801 71.62971 65.66272 33.55456 35.87245 44.09138
1 27 107.70663 58.61991 25.66450 86.68273 74.67492 44.21711 42.31820 54.76483
4
   4
5
  5
6
  6
      1 35 129.69572 60.33568 27.04439 72.06893 71.33984 54.55930 36.40072 54.02113
        v9
                 v10
                          v11
                                     v12
                                              v13
                                                        v14
                                                                 v15
                                                                           v16
                                                                                      v17
1 24.72150 24.46817 60.57330 101.03496 50.77800 22.99464 23.08530 50.23240 97.58174
2 24.98940 22.37192 51.07190 96.25460 61.19011 22.65629 23.96417 48.62368 93.85276
                                62.57547 37.41148 14.95853 18.57941 35.64330 63.71728
3 16.15046 18.29899 42.41373
4 17.38695 16.32546 36.46037
                               88.30067 40.23851 20.07501 20.10772 42.83935 69.43062
5 22.91687 20.71210 49.89569 90.71575 60.32451 22.93967 22.01327 47.12148 100.03622
6 25.82321 25.31235 59.92794
                                71.97986 58.56063 23.23412 23.16468 55.03165 94.96685
       v18
                 v19
                          v20
1 56.05315 22.10798 60.62849
2 64.78140 23.94896 45.84800
3 38.33542 15.77232 36.45215
4 46.78583 16.48520 35.31118
5 61.12789 23.67255 45.03366
6 61.39238 25.06159 52.53633
>
```

Next, create a covariance matrix object which will be passed on to the 'sem' function. The covariance object is named 'cov.m' (some of the matrix in the image below is not shown).

R R	Console							_ D X	
File	Edit Misc Packages	Windows Help							
		1 - 1 - + - 5 4	. 0.01.)					[-
2	cov.m <- cov(g	pis.data[,4	:23])					ſ	
^	cov.m	0	2	1	5		7	0	
	225 0000000	00 44E0030	0 6075040	V4 4 160770	0 2626107	E1 E0070E	20 622020		
	223.0000000	52.4450952 56 2500000	0.02/3042	-2 017296	0.3020107	22 041021	16 155790	22 142522	
V2	02.4450952	0 7102722	14 0625000	19 697207	0.3207936	22.041021	5 976501	0 405605	
	-4 1627721	-2 0172958	19 6972073	126 562500	55 3054256	18 944608	15 544449	9.405605	
V4 775	-4.1627721	-2.0172956	21 1108057	55 305426	81 0000000	24 485383	18 944449	25.921000	
- v 3 - v 6	51 5097852	22 8418206	8 2210733	18 944608	24 4853834	36 000000	18 037645	24 398476	
- 	38 6329385	16 1557877	5 8765015	15 544449	18 9440143	18 037645	27 562500	18 649779	
1 778	50 6107546	23 1435219	9 4056053	23 921660	26 4268095	24 398476	18 649779	68 062500	
1 77 9	28 4324332	12 8101526	4 3032578	10 776141	13 8760229	13 117043	9 745600	12 898916	
v 1	0 25 4395190	11 2221589	3 7345258	10 504763	12 4496514	11 540798	8 725929	11 730134	
$\frac{1}{\sqrt{1}}$	1 49 0496078	21 3374561	7 3816034	19 197224	23 9037955	22 998952	17 137271	23 077786	
$\frac{1}{\sqrt{1}}$	2 45 2919591	19 2186731	18 5226206	52 908010	59 9266838	33 763836	26 395675	34 575677	
v1	3 33 4545605	14 9415087	17 3464097	45 163672	52 9947690	29 338479	22 189366	29 937668	
v1	4 13.4705705	5.5531698	6.2699226	16.294190	19.8686515	10.878815	8.473193	11.089990	
v1	5 12.0616551	5.3743438	5.6847087	15,137249	17.7541376	10.094192	7.445060	9,969569	
v1	6 40.6980194	18.0731626	10.7690379	26.946218	34,4143007	23.076664	17.203529	24.729194	
v1	7 93.8815359	41.6372802	24.2968475	62.508273	75.3421656	53.322918	40.600596	55.096656	
v1	8 53.2273603	23.4027734	14.4123724	37.815029	45.2801612	30.935149	23.954879	32.875793	
v1	9 19.7264396	8.3296843	5.3515471	12.940903	16.2033235	11.117326	8.455361	11.211828	≡
v2	0 41.0924684	17.4708487	10.8094127	27.265314	32.5463932	23.337671	18.631685	25.108573	
	v9	v10	v11	v12	v13 v	714 1	v15 v:	16	
v1	28.432433 25	5.439519 49	.049608 45	.29196 33.49	5456 13.4705	570 12.061	655 40.6980	02	
v2	12.810153 11	1.222159 21	.337456 19	.21867 14.94	4151 5.5531	170 5.3743	344 18.073	16	
++-3	N 303328	2 721526 7	291602 19	50060 17 20	16/1 6 2600	223 5 68N	700 10 760	אר אר	

Next, load the 'sem' package by typing: library (sem) in the R console. Then, specify the sem measurement model (i.e. confirmatory factor model). The model specification syntax is given below (not in an image) due to its length.

measurement.model <- specify.model()</pre> F1 -> v1, lam11, NA F1 -> v2, lam12, NA F2 -> v3, lam21, NA F2 \rightarrow v4, lam22, NA F2 -> v5, lam23, NA F3 -> v6, lam31, NA F3 -> v7, lam32, NA F3 -> v8, lam33, NA F3 -> v9, lam34, NA F3 -> v10, lam35, NA F3 -> v11, lam36, NA F4 -> v12, lam41, NA F4 -> v13, lam42, NA F4 -> v14, lam43, NA F4 -> v15, lam44, NA F5 -> v16, lam51, NA F5 -> v17, lam52, NA F5 -> v18, lam53, NA F5 -> v19, lam54, NA F5 -> v20, lam55, NA v1 <-> v1, var1, NA v2 <-> v2, var2, NA v3 <-> v3, var3, NA v4 <-> v4, var4, NA v5 <-> v5, var5, NA v6 <-> v6, var6, NA

v7	<	-	>	v	7	,		v	а	r	7	,		N	А		
v8	<	-	>	v	8	,		v	а	r	8	,		N	А		
v9	<	-	>	v	9	,		v	а	r	9	,		N	A		
v1()	<	->	>	v	1	0	,		v	а	r	1	0	,	1	NA
v11	L	<	->	>	v	1	1	,		v	а	r	1	1	,]	NA
v12	2	<	->	>	v	1	2	,		v	а	r	1	2	,	1	NA
v13	3	<	->	>	v	1	3	,		v	а	r	1	3	,]	NA
v14	ł	<	->	>	v	1	4	,		v	а	r	1	4	,]	NA
v15	5	<	->	>	v	1	5	,		v	а	r	1	5	,]	NA
v16	5	<	->	>	v	1	6	,		v	а	r	1	6	,	1	NA
v17	7	<	->	>	V	1	7	,		v	а	r	1	7	,	1	NA
v18	3	<	->	>	V	1	8	,		v	а	r	1	8	,	1	NA
v19)	<	->	>	V	1	9	,		v	а	r	1	9	,	1	NA
v2()	<	->	>	V	2	0	,		v	а	r	2	0	,	1	NA
F1	<	-	>	F	2	,		С	0	v	1	,		N	A		
F1	<	-	>	F	3	,		С	0	v	2	,		N	A		
F1	<	-	>	F	4	,		С	0	v	3	,		N	A		
F1	<	-	>	F	5	,		С	0	v	4	,		N	A		
F2	<	-	>	F	3	,		С	0	v	5	,		N	A		
F2	<	-	>	F	4	,		С	0	v	6	,		N	A		
F2	<	-	>	F	5	,		С	0	v	7	,		N	A		
FЗ	<	-	>	F	4	,		С	0	v	8	,		N	A		
FЗ	<	-	>	F	5	,		С	0	v	9	,		N	A		
F4	<	-	>	F	5	,		С	0	v	1	0	,		N	A	
F1	<	-	>	F	1	,		N	A	,		1					
F2	<	-	>	F	2	,		N	A	,		1					
FЗ	<	-	>	F	3	,		N	A	,		1					
F4	<	-	>	F	4	,		N	A	,		1					
F5	<	_	>	F	5	,		N	A	,		1					

Next, we run the measurement model; but unfortunately, it does not converge.

```
      R Console

      File Edit Misc Packages Windows Help

      > sem.model.1 <- sem(measurement.model, cov.m, 1000, maxiter = 10000)</td>

      Warning message:

      In sem.default(ram = ram, S = S, N = N, param.names = pars, var.names = vars, :

      Could not compute QR decomposition of Hessian.

      Optimization probably did not converge.
```

So, we detach the 'sem' package using the following command: detach ("package:sem") and decide to use a PLS strategy. The 'plspm' package (PLS Path Modeling; <u>Sanchez & Trinchera</u>, <u>2010</u>) provides functions for conducting and graphing a variety of PLS techniques; such as PLS regression with a single outcome, PLS canonical correlation, PLS regression with multiple outcomes (similar to canonical correlation, but with directionality implied between the two composite variates), PLS principal components analysis, and PLS path modeling (i.e. SEM).

PLS Path Modeling

Load the package (which three dependencies [amap, diagram, shape]).

```
      R Console

      File Edit Misc Packages Windows Help Vignettes

      > library(plspm)

      Loading required package: amap

      Loading required package: diagram

      Loading required package: shape

      >
```

First, we must create a matrix which expresses the *inner* (structural) model; this model simply shows the relationships among the latent variables; where the column variable 'causes' the row variable(s) if a 'one' is in the intersecting cell (e.g. f1 and f2 cause f3 --> columns 1 and 2 cause row 3).

```
_ D _X
R Console
File Edit Misc Packages Windows Help Vignettes
  inner.matrix <- matrix(c(0, 0, 0, 0, 0,
>
                                  0, 0, 0, 0, 0,
+
                                  1, 1, 0, 0, 0,
÷
                                  0, 1, 1, 0, 0,
+ 0, 0, 1, 1, 0), 5, 5, byrow = TRUE)
> dimnames(inner.matrix) <- list(c("f1", "f2", "f3", "f4", "f5"),
+ c("f1", "f2", "f3", "f4", "f5"))</pre>
> inner.matrix
    f1 f2 f3 f4 f5
f1 0 0 0 0 0
f2 0 0 0 0 0
f3 1 1 0 0 0
            1 0
                    0
f4
     0 1
f5 0 0 1 1
                    0
>
```

Next, create the list which expresses the outer (measurement) model; this model simply shows the relationships between the manifest variables and the latent variables (e.g. variables v1 and v2 are related to the first factor [f1]). Although we create a *list* object in R, this is often referred to as the outer *matrix* in the PLS literature.

```
      File Edit Misc Packages Windows Help Vignettes

      > outer.list <- list(c(1,2), c(3,4,5), c(6,7,8,9,10,11), c(12,13,14,15), c(16,17,18,19,205)</td>

      > outer.list

      [[1]]

      [1]

      1

      2

      [[2]]

      [1]

      3

      4

      5

      [[3]]

      [1]

      6

      7

      8

      9

      10

      11

      12

      [[5]]

      [1]

      16

      17

      18

      19

      20
```

Next, create a vector which identifies the "mode" of indicators which were used (i.e. "A" for reflective measurement or "B" for formative measurement). Recall, 'Reflective' measurement is said to occur when each manifest variable is "caused by" a latent variable and 'Formative' measurement is said to occur when each manifest variable "causes" the latent variable. Below, all 5 latent variables in our model are "reflectively" measured (i.e. each latent causes the observed scores on the manifest variables).

```
      R Console

      File Edit Misc Packages Windows Help Vignettes

      > mode.vec <- c("A", "A", "A", "A", "A")</td>

      > mode.vec

      [1] "A" "A" "A" "A" "A"
```

Finally, we can run the Partial Least Squares Path Model. One of the benefits of using the 'plspm' package rather than one of the other PLS packages available in R, is that the 'plspm' package offers some very easy to use and interpret output. Each function provides a description of the function's output items and shows how to extract or reference them.

```
_ D _X
R Console
File Edit Misc Packages Windows Help Vignettes
 > pls.model.1 <- plspm(x = pls.data[,4:23], inner = inner.matrix, outer = outer.list, mod$
        scheme = "factor", scaled = TRUE, plsr = TRUE, tol = 0.00001, iter = 100)
 > pls.model.1
 PARTIAL LEAST SQUARES PATH MODELING (PLS-PM)
                _____
 Results available in the following objects:
        Souter.mod" Description

"$outer.mod" "outer model"

"$inner.mod" "inner model"

"$latents" "scaled LVs"

"$scores" "LVs for

"$out vertice"
 2
       "$latents" "scaled LVs"
"$scores" "LVs for scaled=FALSE"
"$out.weights" "outer weights"
"$loadings" "loadings"
"$path.coefs" "path coefficients matrix"
"$r.sqr" "R-squared"
"$outer.cor" "outer correlations"
"$inner.sum" "summary inner model"
"$effects" "total effects"
"$unidim" "unidimensionality"
"$gof" "goodnes-of-fit"
"$data" "data matrix"
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
                                      "data matrix"
 14
 You can also use the function 'summary'
 > |
```

Using the 'summary' function on a 'plspm' object provides a well-documented and indexed summary of the analysis' output. Below you can see that the current summary provides a very thorough summary with labels for each element which makes interpretation very straighforward. In fact, the output (from the 'summary') is so large that is necessitates four screen capture images to display it all here.

R Console File Edit Misc Packages Windows Help Vignettes > summary(pls.model.1) PARTIAL LEAST SQUARES PATH MODELING (PLS-PM) _____ MODEL SPECIFICATION Number of Cases 1000 1 Latent Variables 5 2 Manifest Variables 20 3 Standardized Data factor 4 Scale of Data 5 Weighting Scheme 1e-05 100 Tolerance Crit 6 7 Max Num Iters Convergence Iters 3 8 Paths by PLS-R TRUE Bootstrapping FALSE 9 10 Bootstrapping 11 Bootstrap samples NULL BLOCKS DEFINITION Block ock Type NMVs Mode f1 Exogenous 2 Reflective f2 Exogenous 3 Reflective 1 f1 2 f3Endogenous6Reflectivef4Endogenous4Reflectivef5Endogenous5Reflective 3 4 5 -----------BLOCKS UNIDIMENSIONALITY Type.measure MVs C.alpha DG.rho eig.1st eig.2nd
 Reflective
 2
 0.846
 0.928
 1.73
 0.267

 Reflective
 3
 0.778
 0.871
 2.08
 0.566

 Reflective
 6
 0.885
 0.913
 3.83
 0.618

 Reflective
 4
 0.890
 0.924
 3.02
 0.472

 Reflective
 5
 0.918
 0.939
 3.78
 0.431
 f1 f2 £3 f4 f5 _____ OUTER MODEL weights std.loads communal redundan f1 0.570 0.940 0.504 0.922 0.883 0.849 0.000 v1 0.000 v2 f2 0.374 0.826 0.682 0.328 0.761 0.579 0.489 0.902 0.814 v3 0.000 0.000 0.000 v4 v5 f3
 0.222
 0.846
 0.716

 0.192
 0.760
 0.578

 0.168
 0.673
 0.453

 0.251
 0.896
 0.803

 0.221
 0.838
 0.703
 0.531 **v**6 0.429 v7 v8 0.336 v9 0.596 0.521 v10 0.190 0.759 0.576 v11 0.427

_ 🗆 🗡

R R Conso	ble					
File Edit	Misc Packages	Windows He	lp Vignett	es		
v9	0.251	0.89	6 C	.803	0.596	
v10	0.221	0.83	8 0).703	0.521	
v11	0.190	0.759	9 0).576	0.427	
I4 112	0 238	0.78	1 () 611	0 495	
v12 v13	0.230	0.92	1 0 3 ().852	0.495	
v14	0.305	0.90	5 0	.820	0.664	
v15	0.274	0.85	6 0	.733	0.594	
f5						
v16	0.206	0.814	4 0	1.663	0.577	
v17	0.263	0.943	3 0	1.888	0.772	
V18 	0.248	0.910	0 C	7.828	0.720	
v19 v20	0.222	0.80	3 0 3 0) 661	0.545	
120	0.200	0.01.			0.070	
CORREI	LATIONS BEI f1	WEEN MVs	AND LV	'S 	fS	
f1	11	12	15	14	15	
v1	0.9395	-0.0026	0.665	0.322	0.518	
v2	0.9216	0.0039	0.587	0.279	0.452	
f2						
v3	0.0191	0.8256	0.414	0.609	0.550	
v4	-0.0261	0.7608	0.353	0.539	0.465	
v5 50	0.0039	0.9025	0.542	0.795	0.710	
13	0 5821	0 4506	0 846	0 664	0 739	
v0 v7	0.4865	0.3942	0.760	0.579	0.648	
v8	0.4216	0.3724	0.673	0.489	0.563	
v9	0.6471	0.4993	0.896	0.756	0.845	
v10	0.5736	0.4519	0.838	0.664	0.734	
v11	0.4886	0.3846	0.759	0.568	0.637	
f4						
v12	0.2511	0.5540	0.565	0.781	0.639	
V13	0.3034	0.7905	0.768	0.923	0.869	
v14 v15	0.2950	0.7269	0.722	0.905	0.012	
f5	0.2752	0.0075	0.017	0.000	0.720	
v16	0.4091	0.5527	0.674	0.693	0.814	
v17	0.5305	0.6952	0.872	0.874	0.943	
v18	0.4794	0.6670	0.818	0.829	0.910	
v19	0.4365	0.5974	0.735	0.738	0.860	
v20	0.4053	0.5397	0.694	0.690	0.813	
INNER	MODEL					
\$£3						
C	oncept val	lue				
1	R2 0.74	119				
2 Inte	arcept 0.00	100				
o pa	ath_f1_0.67	40				
a pe	1011_12 0.00	,55				
<						

R Console	- • ×
File Edit Misc Packages Windows Help Vignettes	
\$f3	^
concept value	
1 R2 0.7419 2 Intercept 0 0000	
3 path f1 0.6743	
4 path_f2 0.5355	
S F 4	
concept value	
1 R2 0.8105	
2 Intercept 0.0000	
4 path f3 0.5036	
\$15 concept value	
1 R2 0.8695	
2 Intercept 0.0000	
3 path_13 0.4773 4 path_14 0.5099	
CORRELATIONS BETWEEN LVS f1 f2 f3 f4 f5	
f1 1.0000 0.0005 0.675 0.324 0.523	
f2 0.0005 1.0000 0.536 0.794 0.706	
F3 0.6746 0.5359 1.000 0.784 0.877	
f5 0.5231 0.7060 0.877 0.884 1.000	
SUMMARY INNER MODEL	
LV.Type Measure MVs R.square Av.Commu Av.Redun AVE	
f1 Exogen Rflct 2 0.000 0.866 0.000 0.866	
f3 Endogen Rflct 6 0.742 0.638 0.473 0.638	
f4 Endogen Rflct 4 0.810 0.754 0.611 0.754	
f5 Endogen Rflct 5 0.870 0.756 0.657 0.756	
GOODNESS-OF-FIT	_
GoF value	=
2 Relative 0.9754	
3 Outer.mod 0.9996	
4 Inner.mod 0.9758	
TOTAL EFFECTS	
relationships dir.effects ind.effects tot.effects	
2 fl->f3 0.000 0.0	
3 f1->f4 0.000 0.340 0.340	
<	× ⊩

3 Outer.mo 4 Inner.mo	d 0.9996 d 0.9758			
TOTAL EFFEC	 TS			
relatio	nships d	lir.effects	ind.effects	tot.effects
1	f1->f2	0.000	0.000	0.000
2	f1->f3	0.674	0.000	0.674
3	f1->f4	0.000	0.340	0.340
4	f1->f5	0.000	0.495	0.495
5	f2->f3	0.536	0.000	0.536
6	f2->f4	0.524	0.270	0.793
7	f2->f5	0.000	0.660	0.660
8	f3->f4	0.504	0.000	0.504
9	f3->f5	0.477	0.257	0.734
10	f4->f5	0.510	0.000	0.510
>				
4				

Another big advantage to using the 'plspm' package (rather than others available for PLS modeling) is the ability to produce a path diagram based on the model fitted.

Another advantage to using the 'plspm' package is the ability to conduct bootstrapped validation of a PLS path model using the 'boot.val' optional argument to the 'plspm' function.

R Console	
File Edit Misc Packages Windo	ws Help Vignettes
<pre>> pls.model.2 <- pls + scheme = "facto > pls.model.2</pre>	<pre>pm(x = pls.data[,4:23], inner = inner.matrix, outer = outer.list, mod\$ r", scaled = TRUE, plsr = TRUE, boot.val = TRUE, br = 200, tol = 0.00\$</pre>
PARTIAL LEAST SQUARE	S PATH MODELING (PLS-PM)
Results available in	the following objects:
Name	Description
1 "\$outer.mod"	"outer model"
2 "\$inner.mod"	"inner model"
3 "\$latents"	"scaled LVs"
4 "\$scores"	"LVs for scaled=FALSE"
5 "\$out.weights"	"outer weights"
6 "\$loadings"	"loadings"
7 "\$path.coefs"	"path coefficients matrix"
8 "\$r.sqr"	"R-squared"
9 "\$outer.cor"	"outer correlations"
10 "\$inner.sum"	"summary inner model"
11 "\$effects"	"total effects"
12 "\$unidim"	"unidimensionality"
13 "\$gof"	"goodnes-of-fit"
14 "\$boot"	"bootstrap results"
15 "\$data"	"data matrix"
You can also use the	function 'summary'
>	

Notice in the above table, there is a "\$boot" element in the output. The rest of the output is identical to what was displayed above. The "\$boot" element contains the cross validation output, which is the only part of the output displayed below.

Ŗ R Co	onsole				
File E	dit Misc Packag	ges Windows Help	vignettes		
10	£4-	>f5	0.510	0.000	0.510
BOOT	ISTRAP VALI	DATION			
weig	Original	Mean Boot	Std Error	perc 05	nerc 95
v1	0.570	0.571	0.00873	0.557	0.586
v2	0.504	0.503	0.00764	0.491	0.516
v3	0.374	0.375	0.00976	0.358	0.390
v4	0.328	0.327	0.01060	0.310	0.343
v5	0.489	0.490	0.01127	0.472	0.509
vб	0.222	0.222	0.00372	0.216	0.228
v7	0.192	0.192	0.00401	0.186	0.198
v 8	0.168	0.168	0.00527	0.160	0.176
v9	0.251	0.251	0.00440	0.243	0.258
v10	0.221	0.221	0.00381	0.215	0.227
v11	0.189	0.190	0.00416	0.183	0.197
v12	0.238	0.238	0.00434	0.231	0.245
V13	0.328	0.328	0.003/5	0.321	0.334
V14 ++15	0.306	0.305	0.00343	0.300	0.311
v15 v16	0.274	0.275	0.00359	0.203	0.200
v10 v17	0.200	0.200	0.00204	0.201	0.209
v18	0.203	0.203	0.00257	0.230	0.252
v19	0.222	0.221	0.00272	0.217	0.225
v20	0.208	0.208	0.00277	0.204	0.213
load	lings				
	Original	Mean.Boot	Std.Error	perc.05	perc.95
v1	0.939	0.939	0.00357	0.933	0.945
v2	0.922	0.921	0.00566	0.912	0.930
v3	0.826	0.826	0.01168	0.806	0.844
v4	0.761	0.759	0.01683	0.731	0.786
v5	0.902	0.903	0.00522	0.895	0.912
V6	0.846	0.846	0.00835	0.031	0.861
v /	0.760	0.760	0.01558	0.733	0.765
Ψ9	0.896	0.896	0.02030	0.886	0.905
v10	0.838	0.838	0.01008	0.820	0.853
v11	0.759	0.758	0.01425	0.735	0.780
v12	0.781	0.782	0.01203	0.762	0.802
v13	0.923	0.923	0.00453	0.916	0.930
v14	0.905	0.905	0.00490	0.897	0.913
v15	0.856	0.857	0.00922	0.841	0.872
v16	0.815	0.814	0.01043	0.796	0.829
v17	0.943	0.943	0.00283	0.938	0.947
v18	0.910	0.909	0.00521	0.901	0.918
v19	0.860	0.859	0.00871	0.845	0.872
v20	0.813	0.813	0.01042	0.796	0.831
patr	ns Origin	al Maan Bo	ot Std Err	or nora	05 0000 05
f1-5	53 0 6	74 Mean.BO	73 0 01	51 0 6	48 0.698
		0.0	/5 0.01		40 0.000
•					

R Consol	e					
File Edit	Misc Package	s Windows Help	Vignettes			
			_			
loadin	as					
104011	riginal	Mean, Boot	Std.Error	perc.05	perc.95	
v1	0.939	0.939	0.00357	0.933	0.945	
v2	0.922	0.921	0.00566	0.912	0.930	
v3	0.826	0.826	0.01168	0.806	0.844	
v4	0.761	0.759	0.01683	0.731	0.786	
v5	0.902	0.903	0.00522	0.895	0.912	
v6	0.846	0.846	0.00835	0.831	0.861	
v7	0.760	0.760	0.01558	0.733	0.785	
v8	0.673	0.673	0.02030	0.640	0.705	
v9	0.896	0.896	0.00598	0.886	0.905	
v10	0.838	0.838	0.01008	0.820	0.853	
v11	0.759	0.758	0.01425	0.735	0.780	
V12	0.781	0.782	0.01203	0.762	0.802	
V13	0.923	0.923	0.00455	0.916	0.930	
v14 v15	0.905	0.905	0.00490	0.09/	0.913	
v16	0.815	0.814	0.00922	0.041	0.829	
v17	0.943	0.943	0.00283	0.938	0.947	
v18	0.910	0.909	0.00521	0.901	0.918	
v19	0.860	0.859	0.00871	0.845	0.872	
v20	0.813	0.813	0.01042	0.796	0.831	
paths						
	Origina	l Mean.Boo	t Std.Err	or perc.	05 perc.9	. 95
f1->f3	0.67	4 0.67	0.01	51 0.6	48 0.69	598
f2->f3	0.53	6 0.53	36 0.01	70 0.5	0.56	563
f2->f4	0.52	4 0.52	0.01	52 0.5	0.55	551
f3->f4	0.50	4 0.50	0.01	51 0.4	76 0.52	523
f3->f5	0.47	0.47	0.01	78 0.4	48 0.50	503
f4->f5	0.51	.0 0.51	10 0.01	74 0.4	85 0.53	538
rsd Or	iginal M	lean Root	td Error	oorg 05 1	oorg 95	
f3	0 742	0 741	0 01346	0 721	0 763	
f4	0.811	0.811	0.00891	0.796	0.826	
f5	0.869	0.869	0.00612	0.859	0.879	
total.	efs					
	Origina	l Mean.Boo	t Std.Err	or perc.	05 perc.9	. 95
f1->f2	0.00	0.00	0.00	00 0.0	0.00 0.00	000
f1->f3	0.67	4 0.67	0.01	51 0.6	48 0.69	598
f1->f4	0.34	0 0.33	38 0.01	36 0.3	14 0.35	358
f1->f5	0.49	0.49	93 0.01	47 0.4	69 0.51	515
f2->f3	0.53	6 0.53	36 0.01	70 0.5	0.56	563
f2->f4	0.79	0.79	0.01	12 0.7	76 0.81	314
f2->f5	0.66	0.66	51 0.01	36 0.6	38 0.68	583
f3->f4	0.50	4 0.50	0.01	51 0.4	76 0.52	523
13->15	0.73	4 0.73	0.01	14 0.7	13 0.74	/49
I4->15	0.51	.0 0.51	0.01	/4 0.4	5 0.53	338
*						

Interpretation was excluded from this article because the output of the functions covered is considered fairly intuitive. However, if one would like more information on interpreting PLS models, see Chin (2010).

Until next time, I'll drive my Chevy to the leeve..

References & Resources

- Chin, W. W. (2010). How to write up and report PLS analyses. In Esposito, V., et al. (eds.), *Handbook of Partial Least Squares* (pp. 655 – 688). New York: Springer-Verlag.
- Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. *British Journal of Management*, 17, 263 – 282.
- Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron, OH: University of Akron Press.
- Garson, D. (2011). Partial Least Squares. Statnotes. Accessed May 9, 2011; from: http://faculty.chass.ncsu.edu/garson/PA765/pls.htm
- Haenlein, M., & Kaplan, A. (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283 -- 297. Available at: <u>http://www.stat.umn.edu/~sandy/courses/8801/articles/pls.pdf</u>
- Lohmoller, J. (1989). Latent variable path modeling with partial least squares. New York: Springer-Verlag.
- Marcoulides, G. A., & Saunders, C. (2006). PLS: A silver bullet? MIS Quarterly, 30, iii ix.
- Sanchez, G. (2010). Package 'plspm'. Available at CRAN: <u>http://cran.r-project.org/web/packages/plspm/index.html</u>
- Tenenhaus, M., Vinzi, V. E., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159 -- 205. Available at: <u>www.sciencedirect.com</u>
- Trinchera, L. (2007). Unobserved heterogeneity in structural equation models: A new approach to latent class detection in PLS path modeling. Doctoral dissertation. Available at: http://www.fedoa.unina.it/view/people/Trinchera, Laura.html