Fulfilling the Need for Spoeed: A brief introduction to
parallel processing in the R environment.

As published in Benchmarks RSS Matters, March 2014

http://web3. unt. edu/ benchmar ks/ 1 ssues/ 2014/ 03/ rss-matters

Jon Starkweather, PhD

http://web3.unt.edu/benchmarks/issues/2014/03/rss-matters

Jon Starkweather, PhD
j onat han. st ar kweat her @int . edu
Consultant
Research an@tatisticalSupport

A green light to greatness.”

http://ww. unt. edu

Rezearch and Statistical Support
http://ww. unt. edu/rss

RSS hosts a number of “Short Courses”.
A list of them is available at:
http://ww. unt. edu/rss/Instructional.nhtm

Those interested in learning more about R, or how to use itfindrinformation here:
http://ww. unt. edu/rss/class/Jon/ R SC

http://www.unt.edu
http://www.unt.edu/rss
http://www.unt.edu/rss/Instructional.htm
http://www.unt.edu/rss/class/Jon/R_SC

Fulfilling the Need for Soeed: A brief introduction
to parallel processing in the R environment.

This month we provide a brief overview of some methods akléor applying parallel processing
to the R environment. There are essentially two ways of [@rnatocessing when using R. The first,
and most frequently used, involves utilizing the multipteess (or processors) within a single computer.
Given the widespread availability of multicore computenscampuses and in research labs now, it is
common to have access to such a machine. There are, and ravéobe while, R packages which
allow the user to utilize more than core on such a machineg (@mé core is used by a default installation
of R). The second method for parallel processing in the R enuient involves the use of distributed
computing, such as multiple computers of a network or a HiglidPmance Computer (HPC) - which
has multiple nodes or modules controlled by a central opeyalystem.

The current research culture is saturated with the plBagBata; it seems everyone is obsessed with
the size of their data, or the analysis of large data. Thesatinesearch climate also appears to be rec-
ognizing the complexity which seems ubiquitous in nature arkning back to ideas long dormant;
such as complexity theory (Weaver, 1948; Waldrop, 1992)egd systems theory (Bertalanffy, 1968),
and cybernetics (Wiener, 1965) — meaning it is no longer ptatde to perform a simple textbook
style analysis (e.g. multiple regression analysis, ANO®K,). Often journals are expecting complex,
multidirectional and multidimensional models which acebior the complex interrelationships among
variables of interest (moderation, mediation, SEM, HLMura networks, etc.) as well as computer
intensive optimization methods for estimating the paramsedf these complex models (e.g. MCMC,
estimation maximization / maximum likelihood optimizatigenetic optimization, ant colony optimiza-
tion, etc.). Itis also well known that computing technoldgg. processing speeds, memory and storage
device sizes, & data transfer rates) have increased at aoatstent with a Power Law, sometimes
called Moore’s Law (Moore, 1965). Therefore, it is no susprihe need for greater computing resources
has led to the development of software which allows reseasdio fit complex models to large data sets
while optimizing parameter estimates using all availalolenputing resources - whether those resources
are included in one machine or distributed across multiehimes in a network or HPC setting.

As is the case with most things, the statistical programntanguage environment R offers a choice
among several packages - each of which provides a methgdfalielizing one’s data analysis. Support
for parallel processing in the R environment began with R 2.{Eddelbuettel, 2013) with the inclusion
of a (then) new ’parallel’ package (Ripley, Tierney and Urblgn2014) in all base installations of R
(Hornik, 2014). Below we offer a simple introduction to p&shaprocessing using multiple cores or
processors on a single machine. We then provide some resoiarcdistributed parallel processing (e.g.
in an HPC or network setting).

1 Single Core (default) Processing

In order to demonstrate the benefits of parallel processwegieed a way of measuring the speed with
which R completes a discrete task. Below, we will be using flystem.time’ function to measure the
number of seconds between initiation and completion of anstidd function or set of functions. The
‘system.time’ function works by monitoring the computdrigernal system clock and returning the dif-
ference (in seconds) between the initiation and completi@process. Below, we use the ‘system.time’
function as a wrapper around any task we are attempting teunedthe speed of that embedded task)

and request the function to return the “elapsed” time (iroeds) which is the 3rd element of the output
from that function.

For the purposes of demonstration and simulation; let'sictan an imaginary lock which requires a
three integer combination. We can make the lock easy or dliffic pick by increasing or decreasing the
number of possible choices for each integer of the comlanator example, barute force search algo-
rithm will quickly find the correct combination if there aralg 5 choices (1, 2, 3, 4, 5 with replacement)
for each of the three integers of the combination. Howevdhere are 50 choices (1, 2, 3, ..., 49, 50
with replacement) for each of the three integers, then itneduire significantly more time (and more
computing resources) to solve.

So, we first need to create a combination (abbreviated astitdrbelow) for our imaginary lock.

In order to do this, we select the number of choices (abbiedias “choi” below) for each of the three
integers of our combination (with replacement). Then, waga 3 integers with replacement from a
sequence of values from 1 to 50 (choices) to create our catbim

choi <- 50; choi

[1] 50

conmbin <- sanple(seq(l:choi), 3, replace = T); conbin

[1] 21 6 19

We can see in the example above, our combination (combiri),i6,219; each selected from a sequence
of 1 to 50.

Next, we create a function (or operation) which we will ussitaulate a computer resource intensive
process. Our testing function is nothing more thénude force search to discover the preset combination
of an imaginary lock — thus the function’s name ‘lockpickfu Brute force refers to the exhaustive,
sequential, search of every possible solution.
| ockpi ck.fun <- function(conbi nati on, choices){

ch <- seq(1: choices)

solution.matrix <- expand.grid(ch, ch, ch)

i <- 0
pi cked <- "FALSE"
whi | e(pi cked == "FALSE") {
I <- 1 +1
draw <- solution.matrix[i,]
i f(conmbination[1l] == drawf 1] & conbination[2] == draw 2] &

conbi nation[3] == draw 3]){
pi cked <- "TRUE"; print("PICKED !")}

}
out <- paste("Nunber of iterations =", i, sep =" ")
return(out)

}

Notice above the function requires two arguments. Firgt,uber supplied vector containing the three
integer combination to the imaginary lock (“combinatian$econd, the user must supply the integer
value representing the number of choices available for @aelger in the three integer combination
(“choices”). We set the number of choices earlier when wateic the combination (50; “choi”). As
stated above, we can increase this number of choices (ceakit) when creating the combination in
order to make the brute force search operation more (or ¢essputer resource intensive.

Next, we show an example of the ‘system.time’ function wheaduwith an application of the above
specified lock picking function — given the combination abdased on 50 choices for each of the 3

combination integers.
systemtine(test.1l <- | ockpick.fun(conbination = conbin, choices = choi))
[1] "PICKED !"

user system el apsed

28. 27 2.61 31.24
test.1
[1] "Nunber of iterations = 45271"

So, we see above our Window's 7 (64-bit) desktop computeringR 3.0.2 (64-bit) used 31.24 seconds
to complete the lock pick function when each of 3 integersengrosen from a sequence of 1 to 50
possible values. Keep in mind, the more resource intense/¢eisk, the greater the benefit from parallel
processing. For instance, the widely used for-loop is netifeevaluating a function (or multiple func-
tions) iteratively. Therefore, in order to make our exampiere demonstrative, we will require three
runs, or iterations, of our lock picking function. To esiablabaseline (in terms of speed), we will
use the ubiquitous for-loop structure. Again, the defandtallation of R uses a single core or processor
(even on machines with multiple processors).

Below you can see we are using the same combination (21, 6nti%)uamber of choices (50) as was
done above, but we are using a for-loop to repeat (or itethge¥olution 3 times. We are doing this so
that the reader will see a more substantial decrease ingsincetime (than if we only applied the lock
pick function once — the example function is rather quick tretefore attempting to parallel process it
offers virtually no benefit).
b.results <- as.list(0)
b.time <- systemtinme(for (i in 1:3){

b.results[[i]] <- Il ockpick.fun(conbination = conbin, choices = choi)

1) [3]

[1] "PICKED !"

[1] "PICKED !"

[1] "PICKED !"

b.results

[[1]]

[1] "Nunber of iterations = 124235"
[[2]]

[1] "Nunber of iterations = 124235"

[[3]]
[1] "Nunber of iterations = 124235"

b.tine
el apsed

253. 33
So, the above output indicates it took our single core (deRuinstallation) 253 seconds to complete 3
iterations of our lock picking function. The “b.time” is sply an object containing the baseline amount
of time required.

2 Multicore Processing

The vast majority of data analysis needs, regardless ofsizgaor analysis complexity, can be satisfied
using a single desktop computer with multiple cores. Sutbistadecreases in processing time can be
observed when comparing the default single core operatitimet same operation when utilizing two or
more cores of the same machine. Again, the larger the jobgriseter the benefit will be when using
multiple cores.

Below we are going to be using the ‘registerDoParallel’ firtiof the ‘doParallel’ package (We-
ston, 2014) to register or recognize our machine’s multqees (this machine has two cores). The
‘doParallel’ package has a three dependent packagesgdoteiterators’, & ‘parallel’), one of which
(‘foreach’)we will be using later to parallelize our 3 itéians of the lock pick function across the multi-
ple cores.

'ibrary(doParallel)

Loadi ng requi red package: foreach

foreach: sinple, scalable parallel progranm ng from Revol uti on Anal ytics
Use Revolution R for scalability, fault tol erance and nore.
http://ww.revol utionanal ytics.com

Loadi ng required package: iterators

Loadi ng requi red package: parall el

Next, we register the two cores of our current machine (yaudof course, register more cores if your
machine has more than two.

regi sterDoParal |l el (cores = 2)

Next, we can run 3 iterations of our lock pick function usihg tforeach’ function of the ‘foreach’ pack-
age (Weston, 2013). The ‘foreach’ function below looks reqhbly like the for loop from above. First,
the number of iterations (i) are specified (1:3), then theatd(do parallel) operator is used to specify
what is supposed to be iterated.

t.tinme <- systemtinme(t.results <- foreach(i
b.time <- systemtinme(for (i in 1:3){

1:3) %lopar %

| ockpi ck. fun(conbi nati on = conbin, choices = choi))[3]
t.results
[[1]]
[1] "Nunber of iterations = 124235"
[[2]]
[1] "Nunber of iterations = 124235"
[[3]]
[1] "Nunber of iterations = 124235"
t.tinme
el apsed

200. 91

So we can see our multicore processing — using two cores —eghonly 201 seconds to complete the
3 iterations of our lock picking function. In order to comedhis with the baseline time, we can perform
a simple percentage transformation using the ‘b.time’élas time) and ‘t.time’ (test time) objects:
(b.time - t.tine)/b.tinme

el apsed

0. 2069238

We can report a 21% decrease in processing time when usirigteach’ multicore processing method
compared to the baseline single core processing method.eXdraple above may seem to provide a
rather paltry improvement; however, consider a task whadtes 12 hours with a single core and may
only take 2.4 hours to complete with two cores — and that'siasasg the same 20% increase in speed.
Again, recall the larger the job (i.e. the more intensivettsk), the greater the benefit of using multiple
cores.

3 Distributed Computing

It is not feasible to provide an example of parallel proaggsvith an HPC within the space limitations
for this document. However, those interested in utilizing UNT HPC (called Talon or Talon 2.0) are
encouraged to visit the HPC web Hita order to set up an account (required for use of HPC andaetlat
resources). There are a variety of R packages designedilitataause of R in an HPC environment. In
fact, there is an entire CRAN Task View devoted to high perfaroeacomputing (Eddelbuettel, 2013).
The HPC Task View provides descriptions of packages and thections which are related to high
performance computing (e.g. package snow: Simple Netwbviarkstations; “provides an abstraction
layer by hiding the communications details.”). Readers ongly encouraged to review the Task View
prior to contacting UNT’s HPC service personnel.

4 Conclusions

Obviously, the main idea of this article it to make researstsmvare of the multiple tools available to
working with very large data, very complex models, and otteenputer resource intensive analysis. The
R community has risen to the challengebnf) data and continues to do so. Most data analysis needs
can be satisfied using a single desktop computer with meltpres (or processors) - which are readily
available on campus. A simple example was provided to shewethder how easy it is to utilize multiple
cores to speed up analysis. For more information on what Ricaplease visit the Research and Statis-
tical Support Do-It-Yourself Introduction toRourse website. An Adobe.pdf version of this article can
be found hef

Until next time;l’msorry Dave. I'mafraid | can’'t do that.

References & Resources

Bertalanffy, L. (1968) General system theory: Foundations, development, applications. New York:
George Braziller Inc.

Ihttp: 77 hpc. unt. edu/
2http: /7 www. unt . edu/ rss/ cl ass/ Jon/ R ST
Sht tp: // www. unt . edu/ rss/rssmatt er si ndex. ht m

http://hpc.unt.edu/
http://www.unt.edu/rss/class/Jon/R_SC/
http://www.unt.edu/rss/rssmattersindex.htm

Eddelbuettel, D. (2013). CRAN Task View: High-Performancd Barallel Computing with R.
Available at:
http://cran.r-project.org/web/views/ H ghPertormnceConputi ng. ht m

Hornik, K. (2014). R FAQ (section 5.1.1 R Add-On Packages$st bf packages which are included
with an R distribution. Available ahtt p://cran.r-proj ect. org/faqgs. htm

Moore, G. E. (1965). Cramming more components onto intedreteuits. Electronics Magazine, p 4.

Ripley, B., Tierney, L., & Urbanek, S. (2014). Package pataN&anual available at:
http://stat.ethz.ch/ R-nanual / R-devel /library/parallel/doc/parallel. pdf

Waldrop, M. M. (1992) Complexity: The emerging science at the edge of order and chaos. New York:
Touchstone (a division of Simon & Schuster Inc.).

Weaver, W. (1948). Science and Complex#ynerican Scientist, 36(4), 536-44.

Weston, S., [Revolution Analytics]. (2014). Package dolRdrdocumentation available at CRAN:
http://cran.r-project.org/web/ packages/doParall el/1 ndex. htni

Weston, S., [Revolution Analytics]. (2013). Package fored2ocumentation available at CRAN:
http://cran.r-project.org/ web/ packages/toreach/ 1 ndex. ht m

Wiener, N. (1948)Cybernetics: Control and communication in the animal and the machine. Cambridge,
MA: MIT Press.

This article was last updated on April 1, 2014.

This document was created usiAgeX

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/faqs.html
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
http://cran.r-project.org/web/packages/doParallel/index.html
http://cran.r-project.org/web/packages/foreach/index.html

	Single Core (default) Processing
	Multicore Processing
	Distributed Computing
	Conclusions

