
Fulfilling the Need for Speed: A brief introduction to
parallel processing in the R environment.

As published in Benchmarks RSS Matters, March 2014

http://web3.unt.edu/benchmarks/issues/2014/03/rss-matters

Jon Starkweather, PhD

1

http://web3.unt.edu/benchmarks/issues/2014/03/rss-matters


Jon Starkweather, PhD
jonathan.starkweather@unt.edu

Consultant
Research andStatisticalSupport

http://www.unt.edu

http://www.unt.edu/rss

RSS hosts a number of “Short Courses”.
A list of them is available at:

http://www.unt.edu/rss/Instructional.htm

Those interested in learning more about R, or how to use it, canfind information here:
http://www.unt.edu/rss/class/Jon/R_SC

2

http://www.unt.edu
http://www.unt.edu/rss
http://www.unt.edu/rss/Instructional.htm
http://www.unt.edu/rss/class/Jon/R_SC


Fulfilling theNeed for Speed: A brief introduction
to parallel processing in the R environment.

This month we provide a brief overview of some methods available for applying parallel processing
to the R environment. There are essentially two ways of parallel processing when using R. The first,
and most frequently used, involves utilizing the multiple cores (or processors) within a single computer.
Given the widespread availability of multicore computers on campuses and in research labs now, it is
common to have access to such a machine. There are, and have been for a while, R packages which
allow the user to utilize more than core on such a machine (only one core is used by a default installation
of R). The second method for parallel processing in the R environment involves the use of distributed
computing, such as multiple computers of a network or a High Performance Computer (HPC) - which
has multiple nodes or modules controlled by a central operating system.

The current research culture is saturated with the phraseBig Data; it seems everyone is obsessed with
the size of their data, or the analysis of large data. The current research climate also appears to be rec-
ognizing the complexity which seems ubiquitous in nature — harkening back to ideas long dormant;
such as complexity theory (Weaver, 1948; Waldrop, 1992), general systems theory (Bertalanffy, 1968),
and cybernetics (Wiener, 1965) — meaning it is no longer acceptable to perform a simple textbook
style analysis (e.g. multiple regression analysis, ANOVA,etc.). Often journals are expecting complex,
multidirectional and multidimensional models which account for the complex interrelationships among
variables of interest (moderation, mediation, SEM, HLM, neural networks, etc.) as well as computer
intensive optimization methods for estimating the parameters of these complex models (e.g. MCMC,
estimation maximization / maximum likelihood optimization, genetic optimization, ant colony optimiza-
tion, etc.). It is also well known that computing technology(i.e. processing speeds, memory and storage
device sizes, & data transfer rates) have increased at a rateconsistent with a Power Law, sometimes
called Moore’s Law (Moore, 1965). Therefore, it is no surprise the need for greater computing resources
has led to the development of software which allows researchers to fit complex models to large data sets
while optimizing parameter estimates using all available computing resources - whether those resources
are included in one machine or distributed across multiple machines in a network or HPC setting.

As is the case with most things, the statistical programminglanguage environment R offers a choice
among several packages - each of which provides a method forparallelizing one’s data analysis. Support
for parallel processing in the R environment began with R 2.14.0 (Eddelbuettel, 2013) with the inclusion
of a (then) new ’parallel’ package (Ripley, Tierney and Urbanek, 2014) in all base installations of R
(Hornik, 2014). Below we offer a simple introduction to parallel processing using multiple cores or
processors on a single machine. We then provide some resources for distributed parallel processing (e.g.
in an HPC or network setting).

1 Single Core (default) Processing

In order to demonstrate the benefits of parallel processing,we need a way of measuring the speed with
which R completes a discrete task. Below, we will be using the ‘system.time’ function to measure the
number of seconds between initiation and completion of a submitted function or set of functions. The
‘system.time’ function works by monitoring the computer’sinternal system clock and returning the dif-
ference (in seconds) between the initiation and completionof a process. Below, we use the ‘system.time’
function as a wrapper around any task we are attempting to measure (the speed of that embedded task)

3



and request the function to return the “elapsed” time (in seconds) which is the 3rd element of the output
from that function.

For the purposes of demonstration and simulation; let’s consider an imaginary lock which requires a
three integer combination. We can make the lock easy or difficult to pick by increasing or decreasing the
number of possible choices for each integer of the combination. For example, abrute force search algo-
rithm will quickly find the correct combination if there are only 5 choices (1, 2, 3, 4, 5 with replacement)
for each of the three integers of the combination. However, if there are 50 choices (1, 2, 3, ..., 49, 50
with replacement) for each of the three integers, then it will require significantly more time (and more
computing resources) to solve.

So, we first need to create a combination (abbreviated as “combin” below) for our imaginary lock.
In order to do this, we select the number of choices (abbreviated as “choi” below) for each of the three
integers of our combination (with replacement). Then, we sample 3 integers with replacement from a
sequence of values from 1 to 50 (choices) to create our combination.
choi <- 50; choi
[1] 50
combin <- sample(seq(1:choi), 3, replace = T); combin
[1] 21 6 19
We can see in the example above, our combination (combin) is 21, 6, 19; each selected from a sequence
of 1 to 50.

Next, we create a function (or operation) which we will use tosimulate a computer resource intensive
process. Our testing function is nothing more than abrute force search to discover the preset combination
of an imaginary lock — thus the function’s name ‘lockpick.fun’. Brute force refers to the exhaustive,
sequential, search of every possible solution.
lockpick.fun <- function(combination, choices){

ch <- seq(1:choices)
solution.matrix <- expand.grid(ch, ch, ch)
i <- 0
picked <- "FALSE"
while(picked == "FALSE"){

i <- i + 1
draw <- solution.matrix[i,]
if(combination[1] == draw[1] & combination[2] == draw[2] &

combination[3] == draw[3]){
picked <- "TRUE"; print("PICKED!!")}

}
out <- paste("Number of iterations =", i, sep = " ")
return(out)
}

Notice above the function requires two arguments. First, the user supplied vector containing the three
integer combination to the imaginary lock (“combination”). Second, the user must supply the integer
value representing the number of choices available for eachinteger in the three integer combination
(“choices”). We set the number of choices earlier when we created the combination (50; “choi”). As
stated above, we can increase this number of choices (or decrease it) when creating the combination in
order to make the brute force search operation more (or less)computer resource intensive.

Next, we show an example of the ‘system.time’ function when used with an application of the above
specified lock picking function — given the combination above based on 50 choices for each of the 3

4



combination integers.
system.time(test.1 <- lockpick.fun(combination = combin, choices = choi))
[1] "PICKED!!"

user system elapsed
28.27 2.61 31.24

test.1
[1] "Number of iterations = 45271"
So, we see above our Window’s 7 (64-bit) desktop computer running R 3.0.2 (64-bit) used 31.24 seconds
to complete the lock pick function when each of 3 integers were chosen from a sequence of 1 to 50
possible values. Keep in mind, the more resource intensive the task, the greater the benefit from parallel
processing. For instance, the widely used for-loop is method of evaluating a function (or multiple func-
tions) iteratively. Therefore, in order to make our examplemore demonstrative, we will require three
runs, or iterations, of our lock picking function. To establish abaseline (in terms of speed), we will
use the ubiquitous for-loop structure. Again, the default installation of R uses a single core or processor
(even on machines with multiple processors).

Below you can see we are using the same combination (21, 6, 19) and number of choices (50) as was
done above, but we are using a for-loop to repeat (or iterate)the solution 3 times. We are doing this so
that the reader will see a more substantial decrease in processing time (than if we only applied the lock
pick function once — the example function is rather quick andtherefore attempting to parallel process it
offers virtually no benefit).
b.results <- as.list(0)
b.time <- system.time(for (i in 1:3){

b.results[[i]] <- lockpick.fun(combination = combin, choices = choi)
})[3]

[1] "PICKED!!"
[1] "PICKED!!"
[1] "PICKED!!"
b.results
[[1]]
[1] "Number of iterations = 124235"

[[2]]
[1] "Number of iterations = 124235"

[[3]]
[1] "Number of iterations = 124235"

b.time
elapsed
253.33

So, the above output indicates it took our single core (default R installation) 253 seconds to complete 3
iterations of our lock picking function. The “b.time” is simply an object containing the baseline amount
of time required.

5



2 Multicore Processing

The vast majority of data analysis needs, regardless of datasize or analysis complexity, can be satisfied
using a single desktop computer with multiple cores. Substantial decreases in processing time can be
observed when comparing the default single core operation to the same operation when utilizing two or
more cores of the same machine. Again, the larger the job, thegreater the benefit will be when using
multiple cores.

Below we are going to be using the ‘registerDoParallel’ function of the ‘doParallel’ package (We-
ston, 2014) to register or recognize our machine’s multiplecores (this machine has two cores). The
‘doParallel’ package has a three dependent packages (‘foreach’, ‘iterators’, & ‘parallel’), one of which
(‘foreach’)we will be using later to parallelize our 3 iterations of the lock pick function across the multi-
ple cores.
library(doParallel)
Loading required package: foreach
foreach: simple, scalable parallel programming from Revolution Analytics
Use Revolution R for scalability, fault tolerance and more.
http://www.revolutionanalytics.com
Loading required package: iterators
Loading required package: parallel
Next, we register the two cores of our current machine (you could of course, register more cores if your
machine has more than two.
registerDoParallel(cores = 2)
Next, we can run 3 iterations of our lock pick function using the ‘foreach’ function of the ‘foreach’ pack-
age (Weston, 2013). The ‘foreach’ function below looks remarkably like the for loop from above. First,
the number of iterations (i) are specified (1:3), then the ‘dopar’ (do parallel) operator is used to specify
what is supposed to be iterated.
t.time <- system.time(t.results <- foreach(i = 1:3) %dopar%
b.time <- system.time(for (i in 1:3){

lockpick.fun(combination = combin, choices = choi))[3]
t.results
[[1]]
[1] "Number of iterations = 124235"

[[2]]
[1] "Number of iterations = 124235"

[[3]]
[1] "Number of iterations = 124235"

t.time
elapsed
200.91

So we can see our multicore processing — using two cores — required only 201 seconds to complete the
3 iterations of our lock picking function. In order to compare this with the baseline time, we can perform
a simple percentage transformation using the ‘b.time’ (baseline time) and ‘t.time’ (test time) objects:
(b.time - t.time)/b.time

elapsed

6



0.2069238
We can report a 21% decrease in processing time when using the‘foreach’ multicore processing method
compared to the baseline single core processing method. Theexample above may seem to provide a
rather paltry improvement; however, consider a task which takes 12 hours with a single core and may
only take 2.4 hours to complete with two cores — and that’s assuming the same 20% increase in speed.
Again, recall the larger the job (i.e. the more intensive thetask), the greater the benefit of using multiple
cores.

3 Distributed Computing

It is not feasible to provide an example of parallel processing with an HPC within the space limitations
for this document. However, those interested in utilizing the UNT HPC (called Talon or Talon 2.0) are
encouraged to visit the HPC web site1 in order to set up an account (required for use of HPC and related
resources). There are a variety of R packages designed to facilitate use of R in an HPC environment. In
fact, there is an entire CRAN Task View devoted to high performance computing (Eddelbuettel, 2013).
The HPC Task View provides descriptions of packages and their functions which are related to high
performance computing (e.g. package snow: Simple Network of Workstations; “provides an abstraction
layer by hiding the communications details.”). Readers are strongly encouraged to review the Task View
prior to contacting UNT’s HPC service personnel.

4 Conclusions

Obviously, the main idea of this article it to make researchers aware of the multiple tools available to
working with very large data, very complex models, and othercomputer resource intensive analysis. The
R community has risen to the challenge ofbig data and continues to do so. Most data analysis needs
can be satisfied using a single desktop computer with multiple cores (or processors) - which are readily
available on campus. A simple example was provided to show the reader how easy it is to utilize multiple
cores to speed up analysis. For more information on what R cando, please visit the Research and Statis-
tical Support Do-It-Yourself Introduction to R2 course website. An Adobe.pdf version of this article can
be found here3.

Until next time;I’m sorry Dave. I’m afraid I can’t do that.

References & Resources

Bertalanffy, L. (1968).General system theory: Foundations, development, applications. New York:
George Braziller Inc.

1http://hpc.unt.edu/
2http://www.unt.edu/rss/class/Jon/R_SC/
3http://www.unt.edu/rss/rssmattersindex.htm

7

http://hpc.unt.edu/
http://www.unt.edu/rss/class/Jon/R_SC/
http://www.unt.edu/rss/rssmattersindex.htm


Eddelbuettel, D. (2013). CRAN Task View: High-Performance and Parallel Computing with R.
Available at:
http://cran.r-project.org/web/views/HighPerformanceComputing.html

Hornik, K. (2014). R FAQ (section 5.1.1 R Add-On Packages): List of packages which are included
with an R distribution. Available at:http://cran.r-project.org/faqs.html

Moore, G. E. (1965). Cramming more components onto integrated circuits.Electronics Magazine, p 4.

Ripley, B., Tierney, L., & Urbanek, S. (2014). Package parallel. Manual available at:
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

Waldrop, M. M. (1992).Complexity: The emerging science at the edge of order and chaos. New York:
Touchstone (a division of Simon & Schuster Inc.).

Weaver, W. (1948). Science and Complexity.American Scientist, 36(4), 536-44.

Weston, S., [Revolution Analytics]. (2014). Package doParallel. Documentation available at CRAN:
http://cran.r-project.org/web/packages/doParallel/index.html

Weston, S., [Revolution Analytics]. (2013). Package foreach. Documentation available at CRAN:
http://cran.r-project.org/web/packages/foreach/index.html

Wiener, N. (1948).Cybernetics: Control and communication in the animal and the machine. Cambridge,
MA: MIT Press.

This article was last updated on April 1, 2014.

This document was created using LATEX

8

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/faqs.html
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
http://cran.r-project.org/web/packages/doParallel/index.html
http://cran.r-project.org/web/packages/foreach/index.html

	Single Core (default) Processing
	Multicore Processing
	Distributed Computing
	Conclusions

