
Model Specification Error…Are you straight, or do you have curves? 
By Dr. Jon Starkweather, Research and Statistical Support consultant 
 
The fact is; most of us have curves, even if we don’t want to acknowledge them. Model 
specification error generally refers to errors of omission and errors of inclusion, meaning; 

omitting crucial variables from the model or 
entering useless variables into the model. However, 
model specification error, or model 
misspecification, can also refer to the model form 
imposed on the data (e.g. general linear model). 
The purpose of this month’s article is to show how 
specification of different models to the same data 
can lead to meaningful differences in the 
interpretation of inferential analysis. The example 
provided is a very simple bivariate regression with 
an exaggerated pattern of data points. It is 
important to note that this example is simple and 
exaggerated specifically to illustrate how choice of 
model can make a difference in the results of an 
analysis. It is worth noting at the outset that with 
larger, more complex data which may contain less 
exaggerated patterns and indeed difficult to identify 
patterns, specification of the most appropriate 
model can become very important. These points are 
mentioned because when contemplating any type 
of model fitting analysis, one is expected to do a 
thorough job of exploring one’s data to discover 
the underlying relationships between variables of 
interest. During the process of initial data analysis 
one will likely discover the underlying pattern(s) in 
the data and proceed with the appropriate type of 
model. All of what follows can be duplicated in 
PASW/SPSS 18. 
 
The current example utilizes two variables (x & y) 
each containing 30 data points (n = 30). The x 
variable is our predictor and the y variable is our 
outcome. If we apply a common linear regression  
 
(1)  y = bx + a 
 
analysis to our data, as is often the default; we find 

a strong negative correlation (r = -.759, p < .001). The model summary table would show a 
moderate effect size or amount of variance accounted for (Adj. R² = .561) and our ubiquitous 
ANOVA table would indicate that this model’s R² is significantly different from zero; or stated 
another way, this model is better than simply using the mean value of x to predict new y scores, 



F(1, 28) = 38.043, p < .001. Remember, linear regression represents a straight line; it can 
increase, decrease, or remain flat—which would indicate no relationship between the two 
variables. At this point, we might be inclined to call it a day and be sufficiently satisfied with 
ourselves and our analysis. We could say our model does a fairly good job and provides us with 
a decent effect size (R²) which indicates that we could predict with reasonable accuracy using our 
linear model:  
 
(2)     y = -.425x + 1.002 
 
However, this would be precisely the pitfall this article is designed to illuminate. As we will see, 
there are a few other models that better characterize this data. For instance, if we simply view a 
scatter plot with our linear best fit regression line, we see clearly there may be other models 
more appropriate for this data. 

 
So, you may ask yourself “how do I better characterize the data?” And, after looking at the 
scatter plot above, you may tell yourself “a quadratic model would fit this data better.” If we 
apply a quadratic regression  
 
(3)     y = b1x² + b2x + a 
 
to our data, we find a distinct and meaningful increase in our effect size (Adj.R² = .847) as well 
as an increase in our F value from the ANOVA table, F(2, 27) = 81.397, p < .001; in fact the F 
value more than doubled. A quadratic regression represents a parabola, which can increase then 
decrease or decrease then increase. So, let’s take a look at the scatter plot again, this time with a 
line representing our quadratic equation 
 
(4)     y = .384x² + -1.617x + 1.638 
 
overlaying our data points.  



 
Once again, we might now raise our chin and proclaim we have done a good job of modeling our 
data. After all, we’ve seen a substantial increase in our R², our F value, and we can see in this 
scatter plot that our model (represented as the line) better fits the data points.  
 
However, being the conscientious folks we are as data analysts and after having seen the 
differences we have thus far; we might be curious to see if we can find another model that better 
fits our data. So, if we apply an exponential regression  
 
(5)     y = bx + a 
 
to our data, we find a further improvement in our effect size (Adj. R² = .948). And with the 
exponential regression, we see our F value growing to enormous proportions, F(1, 28) = 
525.869, p < .001. An exponential regression uses the predictor as an exponent and presents a 
line that can steeply increase or steeply decrease. So, let’s take another look at the scatter plot; 
this time with our exponential equation  
 
(6)     y = -1.341x + 1.300 
 
best fit line overlaying our data points. 



 
Finally, we can stand up and speak with confidence that we have found an appropriate model for 
our data which accounts for 95% of the variance and fits our data very well. However, we may 
still be able to improve upon this with the application of yet another model.  
 
So, if we apply a cubic regression 
 
(7)     y = b1x3 + b2x2 + b3x + a 
 
to our data, we find a slightly higher effect size (Adj. R² = .965) and a slightly smaller (but still 
massive) F value, F(3, 26) = 269.732, p < .001. A cubic regression can steeply increase, steeply 
decrease, increase then decrease, or decrease then increase. If we use our cubic regression line 
 
(8)     y = -.319x3 + 1.868x2 + -3.486x + 2.160 
 
to graphically display our model’s fit on the data in a scatter plot, then we can see it fits slightly 
better than the previous model.  



 
It appears as though we have squeezed every ounce of R² from our data as possible. However, 
there are other types of models; even for regression in PASW/SPSS—such as Logarithmic, 
Inverse, Power, Compound, S, Logistic, and Growth. For a comparison of each; one can utilize 
the ‘Curve Estimation…’ function in PASW/SPSS by clicking on  Analyze  Regression  
Curve Estimation… just remember it may be beneficial to click on the ‘Display ANOVA table’ 
box in the ‘Curve Estimation’ dialog box. Clicking that box will show the model summary table, 
ANOVA summary table and coefficients table for each type of model being compared. Without 
checking that box, one gets a global ‘Model Summary and Parameter Estimates’ table such as 
this: 

Model Summary and Parameter Estimates 

Dependent Variable:y 

Equation Model Summary Parameter Estimates 

R Square F df1 df2 Sig. Constant b1 b2 b3 

Linear .576 38.043 1 28 .000 1.002 -.425   
Quadratic .858 81.397 2 27 .000 1.638 -1.617 .384  
Cubic .969 269.732 3 26 .000 2.160 -3.486 1.868 -.319

Exponential .949 525.869 1 28 .000 1.300 -1.341   

The independent variable is x. 
This global table can be a bit confusing if one compares how PASW designates each of the 
coefficients in comparison to how they are notated in the equations above. Notice in particular 
the coefficients in the table for the cubic model; where the table lists b1 and b3 which correspond 
to the third and first coefficients from left to right in the equation. This is why it is recommended 
to always check the box to display the ANOVA table; which also displays a more intuitive 
coefficients table for each model being compared—as the example below shows for the cubic 
model. 
 



Model Summary 

R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

.984 .969 .965 .092

The independent variable is x. 
 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

Regression 6.824 3 2.275 269.732 .000 

Residual .219 26 .008   
Total 7.043 29    

The independent variable is x. 
 

Coefficients 

 Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

x -3.486 .210 -6.228 -16.606 .000 

x ** 2 1.868 .156 10.661 11.973 .000 

x ** 3 -.319 .033 -5.298 -9.634 .000 

(Constant) 2.160 .076  28.271 .000 

 
Notice with this style of coefficients table the coefficients are designated not with b1, b2, b3; but 
rather with the exponents, such as x, x**2, x**3, which clarifies where each coefficient should 
go in the cubic regression equation. Also, the model summary table for each model provides not 
just R², but also Adj. R².  
 
Please note we have been using Adj. R² throughout this article as a metric for comparing our 
models because it is readily available, easy to interpret, and is extremely well known. Most are 
familiar with the shrinkage which makes Adj. R² preferable over R². However, when comparing 
models, Adj. R² is not much better than the base R². One rule of thumb is, if there is a .10 or 10% 
difference between Adj. R² and R² then overfitting is a concern (Harrell, Lee, & Mark, 1996). 
Therefore; it is recommended the Akaike’s information criterion (AIC; Akaike, 1974) or the 
Bayesian information criterion (BIC; Schwarz, 1978) be used instead—both of which are much 
more appropriate for assessing a model’s worth and comparing multiple model’s fit (Kass & 
Raftery, 1995).  
 
Although a bit confusing, the following scatter plot was produced using the ‘Curve 
Estimation…’ function and reflects each of the four models reviewed here.  



 
Please also note that this article does not intend to represent the complete range of techniques 
available for extracting the maximum information from a set of data or a regression analysis 
approach to data. There are other types of regression analysis and techniques available that may 
allow the researcher to extract a more complete picture of the phenomena of interest from the 
data. Regression analysis examples include but are not limited to; Tobit, Quantile, Partial Least 
Square, Binary Logistic, Multinomial Logistic, Ordinal, Probit, 2-Stage Least Square, as well as 
re-sampling techniques for reducing bias such as bootstrapping. If there is one message this 
author hopes the reader will take from this article, it is this; do not fall into the trap of 
complacency and rely exclusively on the default settings or analysis of your software, be 
thorough and un-intimidated by the plethora of non-traditional data analytic techniques at your 
disposal.  
 
Until next time, remember; this land is your land, this land is my land… and I’ll be at Alice’s 
Restaurant. 
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