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 Multinomial logistic regression is used to predict categorical placement in or the 
probability of category membership on a dependent variable based on multiple independent 
variables. The independent variables can be either dichotomous (i.e., binary) or continuous (i.e., 
interval or ratio in scale). Multinomial logistic regression is a simple extension of binary logistic 
regression that allows for more than two categories of the dependent or outcome variable. Like 
binary logistic regression, multinomial logistic regression uses maximum likelihood estimation 
to evaluate the probability of categorical membership.  
 Multinomial logistic regression does necessitate careful consideration of the sample size 
and examination for outlying cases. Like other data analysis procedures, initial data analysis 
should be thorough and include careful univariate, bivariate, and multivariate assessment. 
Specifically, multicollinearity should be evaluated with simple correlations among the 
independent variables. Also, multivariate diagnostics (i.e. standard multiple regression) can be 
used to assess for multivariate outliers and for the exclusion of outliers or influential cases. 
Sample size guidelines for multinomial logistic regression indicate a minimum of 10 cases per 
independent variable (Schwab, 2002).  

Multinomial logistic regression is often considered an attractive analysis because; it does 
not assume normality, linearity, or homoscedasticity. A more powerful alternative to multinomial 
logistic regression is discriminant function analysis which requires these assumptions are met. 
Indeed, multinomial logistic regression is used more frequently than discriminant function 
analysis because the analysis does not have such assumptions. Multinomial logistic regression 
does have assumptions, such as the assumption of independence among the dependent variable 
choices. This assumption states that the choice of or membership in one category is not related to 
the choice or membership of another category (i.e., the dependent variable). The assumption of 
independence can be tested with the Hausman-McFadden test. Furthermore, multinomial logistic 
regression also assumes non-perfect separation. If the groups of the outcome variable are 
perfectly separated by the predictor(s), then unrealistic coefficients will be estimated and effect 
sizes will be greatly exaggerated.  

There are different parameter estimation techniques based on the inferential goals of 
multinomial logistic regression analysis. One might think of these as ways of applying 
multinomial logistic regression when strata or clusters are apparent in the data. 

Unconditional logistic regression (Breslow & Day, 1980) refers to the modeling of strata 
with the use of dummy variables (to express the strata) in a traditional logistic model. Here, one 
model is applied to all the cases and the stata are included in the model in the form of separate 
dummy variables, each reflecting the membership of cases to a particular stata. 
 Conditional logistic regression (Breslow & Day, 1980; Vittinghoff, Shiboski, Glidden, & 
McCulloch, 2005) refers to applying the logistic model to each of the stata individually. The 
coefficients of the predictors (of the logistic model) are conditionally modeled based on the 
membership of cases to a particular stata. 
 Marginal logistic modeling (Vittinghoff, Shiboski, Glidden, & McCulloch, 2005) refers 
to an aggregation of the stata so that the coefficients reflect the population values averaged 
across the stata. As a rudimentary example, consider averaging each of the conditional logistic 
coefficients, from the previous paragraph, to arrive at set marginal coefficients for all members 
of the population – regardless of stata membership.  



 Variable selection or model specification methods for multinomial logistic regression are 
similar to those used with standard multiple regression; for example, sequential or nested logistic 
regression analysis. These methods are used when one dependent variable is used as criteria for 
placement or choice on subsequent dependent variables (i.e., a decision or flow-chart). For 
example, many studies indicate the decision to use drugs follows a sequential pattern, with 
alcohol at an initial stage followed by the use of marijuana, cocaine, and other illicit drugs.  
 
Example 
 

For the following example a fictitious data set will be used. The data includes a single 
categorical dependent variable with three categories. The data also includes three continuous 
predictors. The data contained enough cases (N = 600) to satisfy the cases to variables 
assumption mentioned earlier. First, import the data using the ‘foreign’ package and get a 
summary.  
 

 
 
Next, we need to identify the outcome variable as a factor (i.e. categorical).  
 



 
 
Next, we need to load the ‘mglogit’ package (Croissant, 2011) which contains the functions for 
conducting the multinomial logistic regression. Note, the ‘mlogit’ packages requires six other 
packages.  
 

 
 
Next, we need to modify the data so that the multinomial logistic regression function can process 
it. To do this, we need to expand the outcome variable (y) much like we would for dummy 
coding a categorical variable for inclusion in standard multiple regression. 
 

 
 



Now we can proceed with the multinomial logistic regression analysis using the ‘mlogit’ 
function and the ubiquitous ‘summary’ function of the results. Note that the reference category is 
specified as “1”.  
 

 
  
The results show the logistic coefficient (B) for each predictor variable for each alternative 
category of the outcome variable; alternative category meaning, not the reference category. The 
logistic coefficient is the expected amount of change in the logit for each one unit change in the 
predictor. The logit is what is being predicted; it is the odds of membership in the category of the 
outcome variable which has been specified (here the first value: 1 was specified, rather than the 
alternative values 2 or 3). The closer a logistic coefficient is to zero, the less influence the 
predictor has in predicting the logit. The table also displays the standard error, t staistic, and the 
p-value. The t test for each coefficient is used to determine if the coefficient is significantly 
different from zero. The Pseudo R-Square (McFadden R^2) is treated as a measure of effect size, 
similar to how R² is treated in standard multiple regression. However, these types of metrics do 
not represent the amount of variance in the outcome variable accounted for by the predictor 
variables. Higher values indicate better fit, but they should be interpreted with caution. The 
Likelihood Ratio chi-square test is alternative test of goodness-of-fit. As with most chi-square 
based tests however, it is prone to inflation as sample size increases. Here, we see model fit is 



significant χ² = 1291.40, p < .001, which indicates our full model predicts significantly better, or 
more accurately, than the null model. To be clear, you want the p-value to be less than your 
established cutoff (generally 0.05) to indicate good fit. To get the expected B values, we can use 
the ‘exp’ function applied to the coefficients.  
 

 
 
The Exp(B) is the odds ratio associated with each predictor. We expect predictors which increase 
the logit to display Exp(B) greater than 1.0, those predictors which do not have an effect on the 
logit will display an Exp(B) of 1.0 and predictors which decease the logit will have Exp(B) 
values less than 1.0. Keep in mind, the first two listed (alt2, alt3) are for the intercepts. 
 

Further reading on multinomial logistic regression is limited. Several authors (Garson, 
2006; Mertler & Vannatta, 2002; Pedhazur, 1997) provide discussions of binary logistic 
regression in the context of graduate level textbooks, which provides insight into multinomial 
because it is a direct extension. Clearly those authors believe that if one is inclined to understand 
binary logistic, then one is also likely to understand multinomial logistic. There is merit in this 
position because one is an extension of the other and both use maximum likelihood (an ogive 
function). However; other authors provide either direct examples of multinomial logistic 
regression (Schwab, 2002; Tabachnick & Fidell, 2001) or a full discussion of multinomial 
logistic regression (Aldrich & Nelson, 1984; Fox, 1984; Hosmer & Lemeshow, 1989; Menard, 
1995).  
 

Until next time, you can tell everybody this is your song… 
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