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Confirmatory Factor Analysis and Structural
Equation Modeling Group Differences:

Measurement Invariance.
This month’s article focuses on an explanation of measurement invariance. This article is specifically

oriented toward the context of detecting group differencesamong latent variables for confirmatory factor
analysis (CFA) models or in a structural equation models (SEM). Social scientists are often concerned
with identifying group differences (e.g. differences between genders, ethnicities, locations, etc.). SEM is
often applied in an effort to model the complex relationships of latent variables between groups for CFA-
type models. Therefore, it is likely that many social scientists would find this article useful as a means
to evaluate group differences among complex latent variable model structures. Attempting to evaluate
or discover group differences among latent variables is necessarily complex due to the underlying factor
models which support the latent models (i.e. SEM). So, it is necessary to recognize such complexity
and evaluate the sequentially imposed constraints on the group differences – which implicitly leads to a
discussion ofmeasurement invariance. An excellent reference for this material is a relatively new book
by Beaujean (2014), particularly chapter 4.

Measurement invariance is not a single unified concept; although generally we can define measure-
ment invariance as stable measurement parameters across multiple groups, settings, and time periods.
Commonly, the parameters referred to in the previous sentence refer to the factor structure (i.e. specific
observed variables to latent variables, etc.), factor loadings, intercepts, and the latent variable means of
a measurement model (i.e. factor model). Typically, there are a series of sequentially imposed mea-
surement constraints, ranked as level 1 (configural invariance), level 2 (weak invariance), level 3 (strong
invariance), and level 4 (strict invariance). Configural invariance refers to theconfigurationor structure
of the factor model (i.e. which observed variables go with which latent factors). Weak invariance refers to
factor loadings (and configuration) being the same between two groups, settings, or time periods. Strong
invariance refers to the intercepts (configuration, and loadings) of the factor model and strict invariance
refers to the latent variable means (configuration, loadings, and intercepts) being the same between two
groups, settings, or time periods.

Testing for measurement invariance consists of a series of statistical hypotheses that assume population
group factor parameters are equal between the groups. Fortunately, there is (of course) a function in R for
testing measurement invariance in CFA and SEM models. The package ‘semTools’ (Pornprasertmanit,
et al., 2015) contains the function ‘measurementInvariance’ which will be demonstrated below. The
‘measurementInvariance’ function takes a ‘lavaan’ package (Rosseel, et al., 2015) model object and raw
data and tests the fit of the object while checking for chi-square (and fit indices) differences between two
(or more) groups.

1 The Examples

First, we import some (simulated) data. Keep in mind, the data is available for readers to duplicate what
is done in this article by using the script shown in the article (script also available here1; data available
here2). The data includes two groups (n1 = 500 & n2 = 502) with (Ni = 1002) responses on (j = 24)

1http://www.unt.edu/rss/class/Jon/Benchmarks/Benchma rksFeb2015.R
2http://www.unt.edu/rss/class/Jon/ExampleData/measIn var_df.txt
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variables (x1, x2, x3, ...x24).

df.1 <- read.table(

"http://www.unt.edu/rss/class/Jon/ExampleData/measI nvar_df.txt",

header = TRUE, sep = ",", na.strings = "NA", dec = ".")

summary(df.1)

group x1 x2

Min. :1.000 Min. :-3.703924 Min. :-4.24310

1st Qu.:1.000 1st Qu.:-0.843175 1st Qu.:-0.88901

Median :2.000 Median : 0.076019 Median :-0.06182

Mean :1.501 Mean : 0.001051 Mean :-0.05534

3rd Qu.:2.000 3rd Qu.: 0.853784 3rd Qu.: 0.80925

Max. :2.000 Max. : 3.579749 Max. : 3.77787

x3 x4 x5

Min. :-4.015567 Min. :-3.88353 Min. :-3.86466

1st Qu.:-0.886522 1st Qu.:-0.89705 1st Qu.:-0.85205

Median : 0.046421 Median :-0.07672 Median :-0.02942

Mean : 0.004654 Mean :-0.05154 Mean :-0.02075

3rd Qu.: 0.876326 3rd Qu.: 0.82199 3rd Qu.: 0.84022

Max. : 3.503825 Max. : 3.60557 Max. : 2.94853

x6 x7 x8

Min. :-4.82883 Min. :-3.415288 Min. :-3.56686

1st Qu.:-0.86454 1st Qu.:-0.847181 1st Qu.:-0.80358

Median : 0.01619 Median : 0.042244 Median : 0.03872

Mean : 0.02247 Mean : 0.005208 Mean : 0.05161

3rd Qu.: 0.90802 3rd Qu.: 0.853102 3rd Qu.: 0.89892

Max. : 4.06204 Max. : 3.199517 Max. : 4.16097

x9 x10 x11 x12

Min. : 6.656 Min. : 6.187 Min. : 6.298 Min. : 6.081

1st Qu.: 9.251 1st Qu.: 9.261 1st Qu.: 9.213 1st Qu.: 9.257

Median :10.085 Median :10.058 Median :10.041 Median :10.10 7

Mean :10.057 Mean :10.038 Mean :10.041 Mean :10.059

3rd Qu.:10.834 3rd Qu.:10.873 3rd Qu.:10.850 3rd Qu.:10.83 1

Max. :13.628 Max. :13.615 Max. :13.949 Max. :13.481

x13 x14 x15 x16

Min. : 6.077 Min. : 6.471 Min. : 6.450 Min. : 6.463

1st Qu.: 9.202 1st Qu.: 9.210 1st Qu.: 9.171 1st Qu.: 9.223

Median :10.010 Median :10.049 Median :10.022 Median : 9.990

Mean :10.004 Mean :10.008 Mean : 9.979 Mean : 9.991

3rd Qu.:10.796 3rd Qu.:10.795 3rd Qu.:10.808 3rd Qu.:10.78 5

Max. :13.692 Max. :13.386 Max. :13.386 Max. :14.251

x17 x18 x19 x20

Min. : 6.154 Min. : 6.854 Min. : 6.687 Min. : 5.959

1st Qu.: 9.190 1st Qu.: 9.233 1st Qu.: 9.227 1st Qu.: 9.190

Median :10.020 Median :10.033 Median : 9.988 Median : 9.945

Mean : 9.999 Mean :10.019 Mean :10.002 Mean : 9.957

3rd Qu.:10.729 3rd Qu.:10.795 3rd Qu.:10.784 3rd Qu.:10.74 1

4



Max. :13.122 Max. :13.044 Max. :13.510 Max. :12.746

x21 x22 x23 x24

Min. : 6.657 Min. : 6.466 Min. : 6.111 Min. : 6.468

1st Qu.: 9.309 1st Qu.: 9.250 1st Qu.: 9.281 1st Qu.: 9.318

Median :10.036 Median :10.022 Median : 9.984 Median :10.040

Mean :10.025 Mean :10.002 Mean :10.003 Mean :10.050

3rd Qu.:10.742 3rd Qu.:10.735 3rd Qu.:10.760 3rd Qu.:10.78 7

Max. :13.497 Max. :13.164 Max. :12.962 Max. :13.449

Upon initial inspection, the two groups appear to be virtually identical in terms of how the factor model
fits each group’s data.

factanal(df.1[1:500, 2:9], factors = 2) # Group 1.

Call:

factanal(x = df.1[1:500, 2:9], factors = 2)

Uniquenesses:

x1 x2 x3 x4 x5 x6 x7 x8

0.338 0.401 0.323 0.348 0.507 0.485 0.556 0.572

Loadings:

Factor1 Factor2

x1 0.812

x2 0.774

x3 0.823

x4 0.807

x5 0.702

x6 0.716

x7 0.666

x8 0.654

Factor1 Factor2

SS loadings 2.588 1.882

Proportion Var 0.323 0.235

Cumulative Var 0.323 0.559

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 21.21 on 13 degrees of freedom.

The p-value is 0.0689

factanal(df.1[501:1002,2:9], factors = 2) # Group 2.

Call:

factanal(x = df.1[501:1002, 2:9], factors = 2)

Uniquenesses:
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x1 x2 x3 x4 x5 x6 x7 x8

0.371 0.359 0.363 0.317 0.519 0.515 0.541 0.498

Loadings:

Factor1 Factor2

x1 0.793

x2 0.801

x3 0.798

x4 0.826

x5 0.691

x6 0.696

x7 0.677

x8 0.708

Factor1 Factor2

SS loadings 2.594 1.923

Proportion Var 0.324 0.240

Cumulative Var 0.324 0.565

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 16.2 on 13 degrees of freedom.

The p-value is 0.238

Next, we load the ‘lavaan’ and ‘semTools’ packages in order to specify the CFA model and test for the
levels of measurement invariance formally.

library(lavaan)

This is lavaan 0.5-17

lavaan is BETA software! Please report any bugs.

library(semTools)

################################################### ############################

This is semTools 0.4-6

All users of R (or SEM) are invited to submit functions or idea s for functions.

################################################### ############################

cfa.model <- ’

f1 =˜ x1 + x2 + x3 + x4

f2 =˜ x5 + x6 + x7 + x8

f1 ˜˜ 0 * f2

’

measurementInvariance(cfa.model, data = df.1, group = "gr oup")

Measurement invariance tests:

Model 1: configural invariance:

chisq df pvalue cfi rmsea bic

48.209 40.000 0.175 0.997 0.020 19980.029
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Model 2: weak invariance (equal loadings):

chisq df pvalue cfi rmsea bic

51.489 46.000 0.268 0.998 0.015 19941.851

[Model 1 versus model 2]

delta.chisq delta.df delta.p.value delta.cfi

3.280 6.000 0.773 -0.001

Model 3: strong invariance (equal loadings + intercepts):

chisq df pvalue cfi rmsea bic

56.353 52.000 0.315 0.999 0.013 19905.257

[Model 1 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

8.145 12.000 0.774 -0.001

[Model 2 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

4.864 6.000 0.561 0.000

Model 4: equal loadings + intercepts + means:

chisq df pvalue cfi rmsea bic

1222.336 54.000 0.000 0.622 0.208 21057.420

[Model 1 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1174.127 14.000 0.000 0.375

[Model 3 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1165.983 2.000 0.000 0.376

Evaluating the output of the ‘measurementInvariance’ function necessarily starts with configual invari-
ance (model 1) which assumes the factor pattern is equal for both groups. Next, the second hypothesis is
evaluated; weak invariance (model 2) which evaluates the chi-square change (or delta:∆) and associated
p-value; as well as the change in the Comparative Fit Index (CFI). The output for the comparison be-
tween model 1 and model 2 indicates no statistically significant change in the chi-square value, and the
CFI does not change very much either - which indicates the loadings of the two groups areclose enough.
When the loadings are essentially the same, then weak measurement invariance is supported. The next
hypothesis, strong invariance (model 3), is then evaluated. Model 3 involves testing the hypothesis that
the loadingsand interceptsare the same, or statistically equivalent, for both groups.The output shows
that the first comparison, model 1 to model 3, is not statistically significant (p = 0.774); meaning the
chi-square value is not significantly different between those two models. The second comparison, model
2 to model 3, also is not statistically significant (p = 0.561). In other words, when the loadings and
intercepts are constrained to be equal, the model fit is not significantly different than the actual model
fit across the two groups. Therefore, strong measurement invariance is supported. However, when we
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evaluate the final hypothesis of measurement invariance, strict invariance (model 4), we find that the
latent variablemeansappear to be different – based on the chi-square change; indicating a significant
difference between the groups’ fit. There are several piecesof output which show this difference. First,
numerically / visually compare the chi-square values for model 3 (χ2 = 56.353, df = 52, p = 0.315)
and model 4 (χ2 = 1222.336, df = 54, p < 0.000); which is a substantial change in chi-square. Also,
notice how much the CFI changed from model 3 (cfi = 0.999) to model 4 (cfi = 0.622); while model 2
(cfi = 0.998) and model 1 (cfi = 0.997) are both very close to model 3. These differences (in chi-square
& CFI) are also revealed in the two model comparisons. Comparing the change in fit between model 1
and model 4, we observe a significant chi-square change (χ2

∆
= 1174.127, df∆ = 14, p∆ < 0.000).

Furthermore, comparing the change in fit between model 3 and model 4, we observe another significant
chi-square change (χ2

∆
= 1165.983, df∆ = 2, p∆ < 0.000). The appropriate conclusion is; we do not

have strict measurement invariance.
The utility of the ‘measuremenInvariance’ function extends beyond straightforward CFA and it can be

applied to SEM settings as well. For instance, following theAnderson and Gerbing (1988) two stage ap-
proach to SEM, we can specify the measurement model of a SEM and use the ‘measurementInvariance’
function to check the levels (or models) of measurement invariance.

cfa.model <- ’

f1 =˜ x1 + x2 + x3 + x4

f2 =˜ x5 + x6 + x7 + x8

f3 =˜ x9 + x10 + x11 + x12 + x13 + x14 + x15

f4 =˜ x16 + x17 + x18 + x19 + x20

f5 =˜ x21 + x22 + x23 + x24

f1 ˜˜ 0 * f2

f1 ˜˜ f3

f1 ˜˜ f4

f1 ˜˜ f5

f2 ˜˜ f3

f2 ˜˜ f4

f2 ˜˜ f5

f3 ˜˜ f4

f3 ˜˜ f5

f4 ˜˜ f5

’

measurementInvariance(cfa.model, data = df.1, group = "gr oup")

Measurement invariance tests:

Model 1: configural invariance:

chisq df pvalue cfi rmsea bic

492.800 486.000 0.406 0.999 0.005 61241.402

Model 2: weak invariance (equal loadings):

chisq df pvalue cfi rmsea bic

508.302 505.000 0.450 1.000 0.004 61125.619
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[Model 1 versus model 2]

delta.chisq delta.df delta.p.value delta.cfi

15.502 19.000 0.690 0.000

Model 3: strong invariance (equal loadings + intercepts):

chisq df pvalue cfi rmsea bic

528.129 524.000 0.441 1.000 0.004 61014.161

[Model 1 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

35.329 38.000 0.594 0.000

[Model 2 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

19.827 19.000 0.405 0.000

Model 4: equal loadings + intercepts + means:

chisq df pvalue cfi rmsea bic

1732.314 529.000 0.000 0.855 0.067 62183.796

[Model 1 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1239.513 43.000 0.000 0.145

[Model 3 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1204.184 5.000 0.000 0.145

It is also possible to specify a structural model of a SEM and check for measurement invariance; as show
below.

str.model <- ’

f1 =˜ x1 + x2 + x3 + x4

f2 =˜ x5 + x6 + x7 + x8

f3 =˜ x9 + x10 + x11 + x12 + x13 + x14 + x15

f4 =˜ x16 + x17 + x18 + x19 + x20

f5 =˜ x21 + x22 + x23 + x24

f4 ˜ f1

f3 ˜ f2

f5 ˜ f2 + f3

f1 ˜˜ 0 * f2

f1 ˜˜ f3

f1 ˜˜ f5

f2 ˜˜ f4

f3 ˜˜ f4

f4 ˜˜ f5

’
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measurementInvariance(str.model, data = df.1, group = "gr oup")

Measurement invariance tests:

Model 1: configural invariance:

chisq df pvalue cfi rmsea bic

492.800 486.000 0.406 0.999 0.005 61241.402

Model 2: weak invariance (equal loadings):

chisq df pvalue cfi rmsea bic

508.302 505.000 0.450 1.000 0.004 61125.619

[Model 1 versus model 2]

delta.chisq delta.df delta.p.value delta.cfi

15.502 19.000 0.690 0.000

Model 3: strong invariance (equal loadings + intercepts):

chisq df pvalue cfi rmsea bic

528.129 524.000 0.441 1.000 0.004 61014.161

[Model 1 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

35.329 38.000 0.594 0.000

[Model 2 versus model 3]

delta.chisq delta.df delta.p.value delta.cfi

19.827 19.000 0.405 0.000

Model 4: equal loadings + intercepts + means:

chisq df pvalue cfi rmsea bic

1732.314 529.000 0.000 0.855 0.067 62183.796

[Model 1 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1239.513 43.000 0.000 0.145

[Model 3 versus model 4]

delta.chisq delta.df delta.p.value delta.cfi

1204.184 5.000 0.000 0.145

The output above for both the measurement model and the structural model of the SEM show very sim-
ilar results to what was observed with the initial CFA measurement invariance results. This is because
only the first two latent factors (f1 & f2) contain group differences; while the remaining elements in the
SEM do not display group differences (i.e. f3, f4, & f5 measurement structures). For those interested in
duplicating everything done in this article (and seeing theresults of the SEM fit with groups specified);

10



please see the RSS Do-it-yourself Introduction to R web site3 and specifically here4 in Module 9.
Lastly, it is very important to realize the example above used simulated data in order to demonstrate

many aspects of measurement invariance. The examples aboveused a relatively small data set (n = 1002).
Large sample sizes typically seen when conducting SEM are likely to provide statistically significant chi-
square change statistics (chi-square is very sensitive to large sample sizes). Large sample sizes reduce
the utility of the chi-square test. The implication being, that with large samples it would be very unlikely
to establish measurement invariance using the chi-square change statistics. Therefore, Vandenber and
Lance (2000) recommend using a CFI change of 0.2 as representative of a meaningful difference between
models fit (p. 47).

Until next time;“have I told you about Sammy Jankis?”
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