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There are a great many ways to do linear (and non-linear) mixed effects modeling in R. The following article 
discusses the use of the lme4 package, because; it has been developed thoroughly over time and provides 
reliable, easy to interpret output for mixed effect models. The motivation for this article comes from the 
growing recognition of the prevalence of nested effects. For those new to R, I would suggest reviewing the 
Research and Statistical Support (RSS) Do-it-Yourself (DIY) Introduction to R short course. A script file 
containing all the commands used in this article can be found here. 
 
1. Mixed Effects Models 
 
Mixed effects models refer to a variety of models which have as a key feature both fixed and random effects.  
The distinction between fixed and random effects is a murky one. As pointed out by Gelman (2005), there are 
several, often conflicting, definitions of fixed effects as well as definitions of random effects. Gelman offers a 
fairly intuitive solution in the form of renaming fixed effects and random effects and providing his own clear 
definitions of each. “We define effects (or coefficients) in a multilevel model as constant if they are identical 
for all groups in a population and varying if they are allowed to differ from group to group” (Gelman, p. 21). 
Other ways of thinking about fixed and random effects, which may be useful but are not always consistent with 
one another or those given by Gelman above, are discussed in the next paragraph.  
 
Fixed effects are ones in which the possible values of the variable are fixed. Random effects refer to variables in 
which the set of potential values can change. Stated in terms of populations, fixed effects can be thought of as 
effects for which the population elements are fixed. Cases or individuals do not move into or out of the 
population. Random effects can be thought of as effects for which the population elements are changing or can 
change (i.e. random variable). Cases or individuals can and do move into and out of the population. Another 
way of thinking about the distinction between fixed and random effects is at the observation level. Fixed effects 
assume scores or observations are independent while random effects assume some type of relationship exists 
between some scores or observations. For instance, it can be said that gender is a fixed effect variable because 
we know all the values of that variable (male & female) and those values are independent of one another 
(mutually exclusive); and they (typically) do not change. A variable such as high school class has random 
effects because we can only sample some of the classes which exist; not to mention, students move into and out 
of those classes each year.  
 
There are many types of random effects, such as repeated measures of the same individuals; where the scores at 
each time of measure constitute samples from the same participants among a virtually infinite (and possibly 
random) number of times of measure from those participants. Another example of a random effect can be seen 
in nested designs, where for example; achievement scores of students are nested within classes and those classes 
are nested within schools. That would be an example of a hierarchical design structure with a random effect for 
scores nested within classes and a second random effect for classes nested within schools. The nested data 
structure assumes a relationship among groups such that members of a class are thought to be similar to others 
in their class in such a way as to distinguish them from members of other classes and members of a school are 
thought to be similar to others in their school in such a way as to distinguish them from members of other 
schools. The example used below deals with a similar design which focuses on multiple fixed effects and a 
single nested random effect.  
 
2. Linear Mixed Effects Models 
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Linear mixed effects models simply model the fixed and random effects as having a linear form. Similar to the 
General Linear Model, an outcome variable is contributed to by additive fixed and random effects (as well as an 
error term). Using the familiar notation, the linear mixed effect model takes the form: 
 

yij = β1x1ij + β2x2ij … βnxnij + bi1z1ij + bi2z2ij … binznij + εij 
 
where yij is the value of the outcome variable for a particular ij case, β1 through βn are the fixed effect 
coefficients (like regression coefficients), x1ij through xnij are the fixed effect variables (predictors) for 
observation j in group i (usually the first is reserved for the intercept/constant; x1ij = 1), bi1 through bin are the 
random effect coefficients which are assumed to be multivariate normally distributed, z1ij through znij are the 
random effect variables (predictors), and  εij is the error for case j in group i where each group’s error is 
assumed to be multivariate normally distributed.      
 
3. Example Data 
 
The example used for this article is fictional data where the interval scaled outcome variable Extroversion 
(extro) is predicted by fixed effects for the interval scaled predictor Openness to new experiences (open), the 
interval scaled predictor Agreeableness (agree), the interval scaled predictor Social engagement (social), and the 
nominal scaled predictor Class (class); as well as the random (nested) effect of Class within School (school). 
The data contains 1200 cases evenly distributed among 24 nested groups (4 classes within 6 schools). The data 
set is available here. 
 
4. Linear Mixed Effects Modeling with package lme4 in R. 
 
4.1. Preparation. 
 
The lme4 (Linear Mixed Effects version 4; Bates & Maechler, 2010) is designed to analyze linear mixed effects 
models. The three primary functions are very similar. Function lmer is used to fit linear mixed models, function 
glmer is used to fit generalized (non-Gaussian) linear mixed models, and function nlmer is used to fit non-linear 
mixed models. For the purpose of this article, the example used involves a linear mixed model and thus, the 
lmer function. First, import the data into R using the read table function.  
 
> lmm.data <- read.table("http://www.unt.edu/rss/class/Jon/R_SC/Module9/lmm.data.txt", 
+    header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE) 
> summary(lmm.data) 
       id             extro            open           agree       
 Min.   :   1.0   Min.   :30.20   Min.   :22.30   Min.   :18.48   
 1st Qu.: 300.8   1st Qu.:54.17   1st Qu.:36.20   1st Qu.:31.90   
 Median : 600.5   Median :60.15   Median :39.98   Median :35.05   
 Mean   : 600.5   Mean   :60.27   Mean   :40.06   Mean   :35.07   
 3rd Qu.: 900.2   3rd Qu.:66.50   3rd Qu.:43.93   3rd Qu.:38.42   
 Max.   :1200.0   Max.   :90.83   Max.   :57.87   Max.   :58.44   
     social       class   school    
 Min.   : 46.31   a:300   I  :200   
 1st Qu.: 89.32   b:300   II :200   
 Median : 99.20   c:300   III:200   
 Mean   : 99.53   d:300   IV :200   
 3rd Qu.:109.83           V  :200   
 Max.   :151.96           VI :200 
 
Next, we need to load the lme4 package. 
 
> library(lme4) 
Loading required package: Matrix 
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Loading required package: lattice 
 
Attaching package: 'Matrix' 
 
The following object(s) are masked from 'package:base': 
 
    det 
 
 
Attaching package: 'lme4' 
 
The following object(s) are masked from 'package:stats': 
 
    AIC 
 
4.2. Running the Analysis. 
 
Now we are prepared and can proceed to fit the model, which is named “lmm.2”, using the lmer function. Some 
of the optional arguments are shown here, each with the default value specified. For example, the family = 
gaussian argument can be used to specify other distributions (e.g. binomial, poisson, etc.). The REML = TRUE 
argument is used to specify that the REstricted Maximum Likelihood criterion be used rather than the log-
likelihood criterion for optimization of parameter estimates. The verbose = FALSE argument suppresses the 
iteration history which if TRUE would display “the iteration number, the value of the deviance (negative twice 
the log-likelihood) and the value of the parameter s which is the standard deviation of the random effects 
relative to the standard deviation of the residuals” (Bates, 2010, p. 4). Also note the form of the formula for 
specifying the model. The formula (from left to right) begins with the outcome variable then the tilde, followed 
by all the predictors. The first five predictors represent fixed effects and then, in parentheses each random effect 
is listed. The random effect specifies the nested effect of class within (or under) school; as class would be 
considered the level one variable and school the level two variable -- which is why the forward slash is used. By 
default, the lmer function will also model the random effect for the highest level variable (school) of the 
nesting. A standard interaction term can be specified using the colon, for example (1|school:class) would 
specify a random effect (the parentheses) for the interaction of school and class (the colon). Likewise, a fixed 
effect interaction could be specified with the colon separating the two variables; for example …+ open:agree + 
open:agree:social + … which would specify the interaction of open and agree, then the interaction of open, 
agree, and social; no parentheses would identify these interactions as fixed effects.  
 
> lmm.2 <- lmer(formula = extro ~ open + agree + social + class + (1|school/class), data 
= lmm.data, family = gaussian, REML = TRUE, verbose = FALSE) 
> summary(lmm.2) 
Linear mixed model fit by REML  
Formula: extro ~ open + agree + social + class + (1 | school/class)  
   Data: lmm.data  
  AIC  BIC logLik deviance REMLdev 
 3548 3599  -1764     3509    3528 
Random effects: 
 Groups       Name        Variance Std.Dev. 
 class:school (Intercept)  2.88365 1.69813  
 school       (Intercept) 95.17339 9.75569  
 Residual                  0.96837 0.98406  
Number of obs: 1200, groups: class:school, 24; school, 6 
 
Fixed effects: 
              Estimate Std. Error t value 
(Intercept) 57.3838787  4.0559632  14.148 
open         0.0061302  0.0049634   1.235 
agree       -0.0077361  0.0056985  -1.358 
social       0.0005313  0.0018523   0.287 
classb       2.0547978  0.9837345   2.089 
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classc       3.7049300  0.9837165   3.766 
classd       5.6657332  0.9837285   5.759 
 
Correlation of Fixed Effects: 
       (Intr) open   agree  social classb classc 
open   -0.048                                    
agree  -0.047 -0.012                             
social -0.045 -0.006 -0.009                      
classb -0.121 -0.002 -0.006  0.005               
classc -0.121 -0.001 -0.005  0.001  0.500        
classd -0.121  0.000 -0.007  0.002  0.500  0.500 
 
4.3. Interpreting the Default Summary Output. 
 
The output (above) begins by showing what was done; a linear mixed model was fit using REML criterion and 
the model (formula) and data are listed. Next, two rows of fit statistics are shown; beginning with the Akaike 
Information Criterion (AIC; Akaike, 1974) followed by the Bayesian Information Criterion (BIC; Schwarz, 
1978), the log-likelihood, the deviance for the maximum likelihood criterion (smaller deviance indicates better 
fit), and the deviance for the REML criterion. Generally I tend to use and recommend the BIC for comparing 
models and assessing fit; the lower the BIC the better the model fits the data (e.g., a BIC of -55.22 indicates a 
better fitting model than one with a BIC of +23.56). One common way to test the model’s fit is to rerun the 
analysis but include only the intercept terms which is often called the null model and compare the BIC of that 
model to the hypothesized (full) model BIC. 
 
The next section of the output provides estimates for the random effects in the form of variances and standard 
deviations. Notice that there are three values shown; the nested effect of class within school, the random effect 
of the higher level variable, school and the residual term which represents error. The variance estimates are of 
interest here because we can add them together to find the total variance (of the random effects) and then divide 
that total by each random effect to see what proportion of the random effect variance is attributable to each 
random effect (similar to R² in traditional regression). So, if we add the variance components: 
 
> 2.88365 + 95.17339 + 0.96837  
[1] 99.02541 
 
Then we can divide this total variance by our nested effect variance to give us the proportion of variance 
accounted for, which indicates whether or not this effect is meaningful.  
 
> 2.88365/99.02541 
[1] 0.02912030 
 
So, we can see that only 2.9% of the total variance of the random effects is attributed to the nested effect. If all 
the percentages for each random effect are very small, then the random effects are not present and linear mixed 
modeling is not appropriate (i.e. remove the random effects from the model and use general linear or 
generalized linear modeling instead). We can see that the effect of school alone is quite substantial (96%): 
 
> 95.17339/99.02541 
[1] 0.9611007 
 
Another way to think about these variance components is in terms used with standard Analysis of Variance 
(ANOVA). The residual variance estimate can be thought of as the within groups variance and each random 
effect variance estimate can be thought of as a between groups estimate (recall the ubiquitous ANOVA 
summary table).  
 
The next section of the output details the estimates of the fixed effects. These estimates are interpreted the same 
way as one would interpret estimates from a traditional ordinary least squares linear regression. They are 
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interpreted as the constant (intercept) and slopes of each fixed effect predictor. The intercept is interpreted as 
the mean of the outcome (extro) when all the predictors have a value of zero. The predictor estimates 
(coefficients or slopes) are interpreted the same way as the coefficients from a traditional regression. For 
instance, a one unit increase in the predictor Openness to new experiences (open) corresponds to a 0.0061302 
increase in the outcome Extroversion (extro). Likewise, a one unit increase in the predictor Agreeableness 
(agree) corresponds to a 0.0077361 decrease in the outcome Extroversion (extro). Furthermore, the categorical 
predictor classb has a coefficient of 2.0547978; which means, the mean Extroversion score of the second group 
of class (b) is 2.0547978 higher than the mean Extroversion score of the first group of class (a). Class (a) was 
automatically coded as the reference category by the lmer function because, like most R functions the category 
with the lower numeric value (or alphabetically first letter) is coded as the reference category. This is very 
important to note because, both SPSS and SAS use the opposite strategy; they code categorical variables so that 
the reference category is the category with the highest numerical value (or alphabetically last letter). This 
difference in strategies means that output from SPSS and SAS will agree but be very different from output 
produced using the lmer function in R. The key differences will be with the intercept term (which will be 
substantially different) and the categorical fixed effects coefficients (which will be similar, but not the same). 
Of course, the really important thing to note is that those differences then produce very different predicted 
values. If interested in getting the three programs to match, simply reverse code the categorical variable values 
in SPSS and SAS versions of the data.  
 
The last section of output simply provides the correlations among the fixed effects variables. This can be used 
to assess multicollinearity. As we can see in our output (above), the predictors are not related; with the obvious 
and expected exception of the categories of class. Therefore, multicollinearlity is not a concern.  
 
4.4. Extracting Elements of the Output. 
 
The default output shown by the summary function (above) has elements which can be extracted and either 
viewed or assigned to an object. There are also several other elements of the lmer object which can be extracted 
and may be useful or meaningful.  
 
To extract the estimates of the fixed effects:  
 
> fixef(lmm.2) 
  (Intercept)          open         agree        social        classb        classc  
57.3838786610  0.0061301543 -0.0077360956  0.0005312872  2.0547977919  3.7049300287  
       classd  
 5.6657331872 
 
To extract the estimates of the random effects: 
 
> ranef(lmm.2) 
$`class:school` 
      (Intercept) 
a:I    -3.4073092 
a:II    0.9313800 
a:III   1.3514649 
a:IV    1.2673700 
a:V     1.2019177 
a:VI   -1.3448235 
b:I     0.3040888 
b:II    0.2722975 
b:III   0.2902197 
b:IV    0.2664209 
b:V     0.3434285 
b:VI   -1.4764554 
c:I     1.3893242 
c:II   -0.2505738 



c:III  -0.3458363 
c:IV   -0.2497661 
c:V    -0.3678312 
c:VI   -0.1753169 
d:I     1.2898957 
d:II   -1.1384331 
d:III  -1.3554610 
d:IV   -1.2252249 
d:V    -0.9876851 
d:VI    3.4169085 
 
$school 
    (Intercept) 
I    -13.991584 
II    -6.115677 
III   -1.967158 
IV     1.940334 
V      6.264193 
VI    13.869891 
 
To extract the coefficients for the random effects intercept (2 groups of school) and each group of the random 
effect factor, which here is a nested set of groups (4 groups of class within 6 groups of school): 
 
> coef(lmm.2) 
$`class:school` 
      (Intercept)        open        agree       social   classb  classc   classd 
a:I      53.97657 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
a:II     58.31526 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
a:III    58.73534 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
a:IV     58.65125 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
a:V      58.58580 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
a:VI     56.03906 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:I      57.68797 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:II     57.65618 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:III    57.67410 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:IV     57.65030 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:V      57.72731 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
b:VI     55.90742 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:I      58.77320 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:II     57.13330 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:III    57.03804 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:IV     57.13411 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:V      57.01605 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
c:VI     57.20856 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:I      58.67377 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:II     56.24545 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:III    56.02842 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:IV     56.15865 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:V      56.39619 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
d:VI     60.80079 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
 
$school 
    (Intercept)        open        agree       social   classb  classc   classd 
I      43.39230 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
II     51.26820 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
III    55.41672 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
IV     59.32421 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
V      63.64807 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
VI     71.25377 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
 
As you can see above, we can further specify using the “$” to extract just the coefficients for the random effect 
of school (or just the coefficients for the nested effect $class:school): 



 
> coef(lmm.2)$'school' 
    (Intercept)        open        agree       social   classb  classc   classd 
I      43.39230 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
II     51.26820 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
III    55.41672 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
IV     59.32421 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
V      63.64807 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
VI     71.25377 0.006130154 -0.007736096 0.0005312872 2.054798 3.70493 5.665733 
 
To extract the fitted or predicted values based on the model parameters and data, here the predicted values are 
assigned the name yhat: 
 
> yhat <- fitted(lmm.2) 
> summary(yhat) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  39.91   54.43   60.16   60.27   66.35   80.49 
 
To extract the residuals (errors) and summarize them, as well as plot them (they should be approximately 
normally distributed around a mean of zero): 
 
> residuals <- resid(lmm.2)  
> summary(residuals) 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-9.84100 -0.32980  0.00553  0.00000  0.33520 10.48000  
> hist(residuals) 
 



 
 
 
5. Intra Class Correlation 
 
Intra Class Correlation (ICC) represents a measure of reliability, or dependence among individuals (Kreft & 
DeLeeuw, 1998). It allows us to assess whether or not the random effect is present in the data. To get the ICC, 
first create a null model; which for the current example would include just the intercepts (fixed and random) and 
the random effect for the highest level variable of the nested structure (in this example: school).  
 
> lmm.null <- lmer(extro ~ 1 + (1|school), data = lmm.data) 
> summary(lmm.null) 
Linear mixed model fit by REML  
Formula: extro ~ 1 + (1 | school)  



   Data: lmm.data  
  AIC  BIC logLik deviance REMLdev 
 5812 5827  -2903     5811    5806 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 school   (Intercept) 95.8720  9.7914   
 Residual              7.1399  2.6721   
Number of obs: 1200, groups: school, 6 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)   60.267      3.997   15.08 
 
Next, add the random effect variance estimates and then divide the random effect of school’s variance estimate 
by the total variance estimate.  
 
> 95.8720 + 7.1399 
[1] 103.0119 
> 95.8720 / 103.0119 
[1] 0.9306886 
 
So, we see that the ICC is .9306886 (verified below). Another way to get the ICC is with the multilevel package 
(Bliese, 2009). First, conduct a standard one way ANOVA using the base ‘aov’ function.  
 
> aov.1 <- aov(extro ~ school, lmm.data) 
> summary(aov.1) 
              Df Sum Sq Mean Sq F value    Pr(>F)     
school         5  95908 19181.5  2686.5 < 2.2e-16 *** 
Residuals   1194   8525     7.1                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Then load the ‘multilevel’ library so that we can use the ‘ICC1’ and ‘ICC2’ functions.  
 
> library(multilevel) 
Loading required package: nlme 
 
Attaching package: 'nlme' 
 
The following object(s) are masked from 'package:lme4': 
 
    BIC, fixef, lmList, ranef, VarCorr 
 
Loading required package: MASS 
 
Next, we can run the ICC1 function to obtain the Intra Class Correlation (which matches the value from above). 
 
> ICC1(aov.1) 
[1] 0.930689 
 
ICC1 indicates that 93.07% of the variance in 'extro' can be "explained" by school group membership. 
 
We can also get the ICC2, which is a measure of reliability. 
 
> ICC2(aov.1) 
[1] 0.9996278 
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The ICC2 value of .9996 indicates that school groups can be very reliably differentiated in terms of ‘extro’ 
scores. Remember to detach the multilevel package before continuing with the next section. 
 
> detach("package:multilevel") 
 
6. Using function mcmcsamp. 
 
Markov Chain Monte Carlo (MCMC) methods represent a type of bridge between traditional frequentist 
methods and Bayesian methods. MCMC is a type of iterative estimation technique which is used to build an 
empirical distribution of statistical parameter estimates. The MCMC method can be applied to many types of 
statistics; such as a t-test value, an F value, or the multiple parameters of a model such as the linear mixed 
model used here. MCMC methods use prior information to provide initial parameter estimates in order to 
evaluate subsequent iteratively re-modeled parameter estimates (e.g. using Bayesian computational methods). 
The prior information is simply called the prior and is generally taken in the form of a distribution (or several 
distributions if multiple parameters are being estimated). The prior represents a kind of reference point around 
which iteratively produced parameter estimates are evaluated; thus ensuring convergence on the best set of 
estimates possible. The empirical distribution of estimates which gets created during a MCMC method is called 
the posterior distribution, because it is created after the data was originally fitted.  
 
To obtain a simulated empirical distribution or posterior distribution (here with n = 5000) of estimates based on 
the specified lmer model using MCMC methods: 
 
> mcmc.5000 <- mcmcsamp(lmm.2, saveb = TRUE, n = 5000) 
 
To then show the structure of elements of the MCMC object; this simply shows how you can then extract 
elements of the MCMC object using the MCMC object name and “@” (examples are further below):  
 
> str(mcmc.5000) 
Formal class 'merMCMC' [package "lme4"] with 9 slots 
  ..@ Gp      : int [1:3] 0 24 30 
  ..@ ST      : num [1:2, 1:5000] 1.73 9.91 1.68 9.96 1.67 ... 
  ..@ call    : language lmer(formula = extro ~ open + agree + social + class + (1 | 
school/class),      data = lmm.data) 
  ..@ deviance: num [1:5000] 3509 3509 3509 3509 3509 ... 
  ..@ dims    : Named int [1:18] 2 1200 7 30 1 2 0 1 2 5 ... 
  .. ..- attr(*, "names")= chr [1:18] "nt" "n" "p" "q" ... 
  ..@ fixef   : num [1:7, 1:5000] 57.383879 0.00613 -0.007736 0.000531 2.054798 ... 
  .. ..- attr(*, "dimnames")=List of 2 
  .. .. ..$ : chr [1:7] "(Intercept)" "open" "agree" "social" ... 
  .. .. ..$ : NULL 
  ..@ nc      : int [1:2] 1 1 
  ..@ ranef   : num [1:30, 1:5000] -3.407 0.931 1.351 1.267 1.202 ... 
  ..@ sigma   : num [1, 1:5000] 0.984 0.968 1.003 0.996 0.98 ... 
 
To extract the fixed effect parameter estimates from the MCMC object (output of the matrix of 5000 by 7 
parameter estimates not shown): 
 
> mcmc.5000@fixef 
 
To extract the random effect parameter estimates from the MCMC object (output of the matrix of parameter 
estimates not shown): 
 
> mcmc.5000@ranef 
 



Deviance is a measure of fit; the smaller the deviance statistic, the better the model fits the data. To extract and 
summarize the Maximum Likelihood Deviance: 
 
> dev <- as.vector(mcmc.5000@deviance) 
> summary(dev) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   3509    3808    3828    3807    3846    3918 
 
 To show the Highest Posterior Density (HPD) intervals for the parameters of an MCMC distribution (which 
essentially provides confidence intervals for the posterior parameters): 
 
> HPDinterval(mcmc.5000, prob = 0.95) 
$fixef 
                   lower        upper 
(Intercept) 55.648253310 58.975371325 
open        -0.005528170  0.016827333 
agree       -0.020263349  0.005456398 
social      -0.003820699  0.004483850 
classb       0.843105909  3.165402291 
classc       2.509578421  4.816869867 
classd       4.503296720  6.840049292 
attr(,"Probability") 
[1] 0.95 
 
$ST 
         lower    upper 
[1,] 0.7267248 1.018011 
[2,] 0.8629657 3.426454 
attr(,"Probability") 
[1] 0.95 
 
$sigma 
        lower   upper 
[1,] 1.014880 1.21526 
attr(,"Probability") 
[1] 0.95 
 
$ranef 
            lower       upper 
 [1,]  -6.8912029  -3.1898835 
 [2,]  -1.2099349   1.4023157 
 [3,]  -0.1084854   2.2773701 
 [4,]   0.2550491   2.6539355 
 [5,]   0.7257380   3.3318154 
 [6,]  -1.4673513   2.0908638 
 [7,]  -3.2369864   0.3176006 
 [8,]  -1.8458023   0.7151407 
 [9,]  -1.1854551   1.1665241 
[10,]  -0.6519829   1.6672193 
[11,]  -0.1414238   2.5049994 
[12,]  -1.4623917   2.0688023 
[13,]  -2.2266973   1.3912863 
[14,]  -2.3333123   0.2616849 
[15,]  -1.7605533   0.6277444 
[16,]  -1.1287503   1.2296900 
[17,]  -0.8618493   1.7422243 
[18,]  -0.2751656   3.3046945 
[19,]  -2.3236627   1.2985081 
[20,]  -3.3204482  -0.7280814 
[21,]  -2.7984293  -0.3895353 
[22,]  -2.0954523   0.2725904 
[23,]  -1.4421025   1.1768267 



[24,]   3.2136308   6.7736435 
[25,] -13.9539192 -10.1167238 
[26,]  -6.6835666  -3.5847653 
[27,]  -3.2718712  -0.2672930 
[28,]   0.1375870   3.1094643 
[29,]   3.8363158   6.9669211 
[30,]   9.9230090  13.8334339 
attr(,"Probability") 
[1] 0.95 
 
As with some of the objects above, we can use the “$” to extract elements of the HPD interval output; here 
extracting just the intervals for the fixed effects ($fixef):  
 
> HPDinterval(mcmc.5000, prob = 0.95)$fixef 
                   lower        upper 
(Intercept) 55.648253310 58.975371325 
open        -0.005528170  0.016827333 
agree       -0.020263349  0.005456398 
social      -0.003820699  0.004483850 
classb       0.843105909  3.165402291 
classc       2.509578421  4.816869867 
classd       4.503296720  6.840049292 
attr(,"Probability") 
[1] 0.95 
 
6. Alternatives 
 
As mentioned at the beginning of this article, there are other R packages available and in development for doing 
mixed effect modeling (linear and otherwise) or multilevel modeling; some of these alternatives are also 
capable of doing MCMC methods on the fitted model. A few of those alternatives are HGLMMM, 
MCMCglmm, and multilevel. However, the lme4 package represents the long term (and continued) 
development of the nlme package for mixed effects modeling which has been developed and used for more than 
10 years.  
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Until next time; Freedom is just another word for nothing left to lose… 
 

http://www.unt.edu/rss/class/Jon/MiscDocs/Schwarz_1978.pdf
http://cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf
http://cran.r-project.org/web/packages/lme4/vignettes/PLSvGLS.pdf
http://cran.r-project.org/doc/contrib/Bliese_Multilevel.pdf
http://www.unt.edu/rss/class/Jon/MiscDocs/Draper_1995.pdf
http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-mixed-models.pdf
http://www.unt.edu/rss/class/Jon/MiscDocs/Hofmann_2000.pdf
http://www.unt.edu/rss/class/Jon/MiscDocs/Raudenbush_1995.pdf
http://www.unt.edu/rss/class/Jon/MiscDocs/Raudenbush_1993.pdf
http://www.unt.edu/rss/class/Jon/MiscDocs/Rogosa_1995.pdf

