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Hierarchical Factor Analysis.
Lately, the issue of how to fit a hierarchical factor model hascome up a few times and therefore,

we thought it might be useful to do an article on the subject. We have had anR script on theR
short course page for this subject; but perhaps a narrative or article format might be more helpful.
First, we should note that hierarchical factor models are also known as higher order factor models
- the term ‘higher order’ is often preferred over ‘hierarchical’ in this situation because ‘higher
order’ better distinguishes these models from any kind of hierarchical mixed effects models (e.g.,
hierarchical linear modeling). Second, it is important to note that we are discussing factor analysis
in this article, which is to say; modeling latent variable structure. As such, we will not be using a
components extraction technique (e.g., principal components extraction) and instead will be using
a factor extraction technique (e.g., minimum residual extraction, maximum likelihood extraction,
etc.). For more information on the differences between component extraction and factor extraction,
see the Special Issue (1990) listed in the Reference/Resources section at the end of this article (all
13 articles of which are available online at the link provided).

Simulated Data

Using simulated data will allow us to verify we are conducting the analysis correctly. Simply
put, we should be able to retrieve the parameters (e.g., factor loadings) we used to construct the
data (model). However, given the generation process used for simulating data, the actual data (i.e.
individual score values) will be different each time the script below is run unless we specify a seed
number. To ensure we are able to replicate the exact numbers below, we use the ‘set.seed’ function
which specifies a Random Number Generator (RNG). Below, we are using the ‘psych’ (Revelle,
2013) package, which has dedicated functions for simulating this type of data (e.g., hierarchical
structure). The psych package requires the ‘mvrnorm’ function (for creating random deviates
from a multivariate normal distribution) which comes from the ‘MASS’ (Ripley, Venables, Hornik,
Gebhardt, & Firth, 2013) package. We will also use the ‘GPArotation’ (Bernaards, & Jennrich,
2013) package to apply an oblique rotation strategy when we begin to fit the model. Notice below,
the input script is printed in red Courier New font and the output is printed in dark blue Courier
New font while the text of this article is printed in black Times New Roman font.

First, load the necessary packages and set the seed (which will allow us to replicate the output).

library(psych)
library(MASS)
library(GPArotation)
set.seed(20130403)

Before we begin simulating the data from a specified model, it may be helpful to create a diagram
of the model we want to specify (and use to generate the data).Of course, a latent factor model as-
sumes the Classical Test Theory (CTT) model of measurement. The CTT states that each observed
variable (O; or item response, or question response from a survey) is theresult of the combination
of the true scores (T; the actual latent amount of the thing being measured) and some errors (E;
e.g., measurement error, model specification error, sampling bias, etc.). In simple equation form,
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the CTT can be stated as:
O = T + E (1)

where theO represents the observed score, which equals the combination of T (true score) and
E (error). A figure below contains the factor model we will be using for this example (note: the
CTT is reinforced by this style of diagram because the arrows accurately reflect the direction of
causality - observed variables, or scores, are a result of true scores [latent factor] and errors).

Next, we create a matrix object which contains the loadings between our three subordinate factors
and our single higher order, or upper level, factor. Here, weare specifying what those loadings are
going to be (0.60, 0.80, & 0.40).

sub.factor.loads <- matrix(c(.6,.8,.4), nrow = 3)
sub.factor.loads

[,1]
[1,] 0.6
[2,] 0.8
[3,] 0.4

Next, we create a matrix object which contains the loadings between our 12 observed variables
(often referred to as items) and our three subordinate factors. The following matrix can be thought
of as the Pattern Coefficient matrix or simply Pattern matrix.Each column represents one of the
three (subordinate) factors and each row represents one of the twelve observed variables.

obs.factor.loads <- matrix(c(.8,0,0,
.7,0,0,
.6,0,0,
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.5,0,0,
0,.7,0,
0,.6,0,
0,.5,0,
0,.6,0,
0,0,.6,
0,0,.5,
0,0,.7,
0,0,.4), ncol = 3, byrow = TRUE)

obs.factor.loads

[,1] [,2] [,3]
[1,] 0.8 0.0 0.0
[2,] 0.7 0.0 0.0
[3,] 0.6 0.0 0.0
[4,] 0.5 0.0 0.0
[5,] 0.0 0.7 0.0
[6,] 0.0 0.6 0.0
[7,] 0.0 0.5 0.0
[8,] 0.0 0.6 0.0
[9,] 0.0 0.0 0.6
[10,] 0.0 0.0 0.5
[11,] 0.0 0.0 0.7
[12,] 0.0 0.0 0.4

Next, we specify the number of observations and the mean for each of the observed variables. Here
we are specifyingn = 1000 observations (i.e. rows of data) and we are using 10 as the mean of
each of the observed variable scores, simply replicating ‘10’ twelve times for the twelve observed
variables.

n.obs <- 1000
means <- rep(10, 12)

Next, we can use the ‘sim.hierarchical’ function from package ‘psych’ to simulate the observed
data based on the model we specified above. Here, we give the data the name ‘data.df.1’. Notice
below, we are requesting raw scores (raw = TRUE) and we are having the function return those
observed raw scores ($observed).

data.df.1 <- sim.hierarchical(gload = sub.factor.loads,
fload = obs.factor.loads,
n = n.obs,
raw = TRUE,
mu = means)$observed

Now we have our simulated, observed, data. If we run a summaryof our data frame, we will see
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the mean of each variable is approximately 10 (as we specifiedabove).

summary(data.df.1)

V1 V2 V3 V4
Min. : 7.008 Min. : 6.994 Min. : 6.980 Min. : 6.746
1st Qu.: 9.392 1st Qu.: 9.377 1st Qu.: 9.388 1st Qu.: 9.287
Median :10.086 Median :10.014 Median :10.014 Median :10.012
Mean :10.076 Mean :10.039 Mean :10.026 Mean : 9.993
3rd Qu.:10.749 3rd Qu.:10.708 3rd Qu.:10.658 3rd Qu.:10.640
Max. :13.258 Max. :13.469 Max. :13.063 Max. :13.024

V5 V6 V7 V8
Min. : 7.135 Min. : 6.773 Min. : 7.234 Min. : 6.989
1st Qu.: 9.363 1st Qu.: 9.289 1st Qu.: 9.328 1st Qu.: 9.418
Median : 9.999 Median : 9.999 Median : 9.950 Median :10.025
Mean :10.008 Mean :10.001 Mean : 9.990 Mean :10.059
3rd Qu.:10.644 3rd Qu.:10.707 3rd Qu.:10.668 3rd Qu.:10.689
Max. :13.476 Max. :13.231 Max. :12.765 Max. :13.651

V9 V10 V11 V12
Min. : 7.438 Min. : 7.011 Min. : 6.493 Min. : 6.884
1st Qu.: 9.334 1st Qu.: 9.319 1st Qu.: 9.389 1st Qu.: 9.314
Median : 9.989 Median :10.011 Median :10.090 Median : 9.976
Mean :10.014 Mean : 9.995 Mean :10.073 Mean :10.022
3rd Qu.:10.670 3rd Qu.:10.666 3rd Qu.:10.744 3rd Qu.:10.734
Max. :13.135 Max. :12.747 Max. :13.230 Max. :12.758

Hierarchical Factor Analysis

Next, we can begin fitting our data to the model by applying a factor analysis at the subordinate
level; extracting three factors with an oblique rotation from the observed (simulated) data. It is
important to realize that an oblique rotation is called for —if the factors are not or were not re-
lated; there would be no reason to suspect a higher order factor or higher order factors. We start
by obtaining a correlation matrix of the observed variablesand assigning that matrix to an object
(‘FA.L1.mat’ for factor analysis level 1 matrix). Then we can pass that matrix to our factor analysis
function (‘fa’), also supplying the number of factors (to extract), the factor method (i.e. extraction
technique; ‘minres’), the number of observations (n = 1000), and the rotation strategy (oblimin).

cor.mat <- cor(data.df.1)
FA.L1 <- fa(r = cor.mat, nfactors = 3, fm = "minres", n.obs = 1000,

rotate = "oblimin")
FA.L1

Factor Analysis using method = minres
Call: fa(r = cor.mat, nfactors = 3, n.obs = 1000, rotate = "oblimin",
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fm = "minres")
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR3 MR2 h2 u2
V1 0.76 0.05 0.01 0.62 0.38
V2 0.73 -0.05 -0.01 0.50 0.50
V3 0.60 -0.01 0.01 0.35 0.65
V4 0.46 0.02 -0.03 0.21 0.79
V5 0.04 0.65 -0.01 0.45 0.55
V6 -0.02 0.52 0.08 0.30 0.70
V7 0.00 0.55 -0.06 0.28 0.72
V8 -0.03 0.58 0.03 0.33 0.67
V9 0.04 0.01 0.62 0.40 0.60
V10 -0.01 0.01 0.49 0.25 0.75
V11 -0.02 0.00 0.68 0.45 0.55
V12 0.00 -0.02 0.43 0.18 0.82

MR1 MR3 MR2
SS loadings 1.68 1.36 1.28
Proportion Var 0.14 0.11 0.11
Cumulative Var 0.14 0.25 0.36
Proportion Explained 0.39 0.31 0.30
Cumulative Proportion 0.39 0.70 1.00

With factor correlations of
MR1 MR3 MR2

MR1 1.00 0.48 0.25
MR3 0.48 1.00 0.37
MR2 0.25 0.37 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 66 and the objective function
The degrees of freedom for the model are 33 and the objective function was

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.02

The harmonic number of observations is 1000 with the empirical chi square
The total number of observations was 1000 with MLE Chi Square = 21.88

Tucker Lewis Index of factoring reliability = 1.011
RMSEA index = 0 and the 90 % confidence intervals are NA 0.007
BIC = -206.08
Fit based upon off diagonal values = 1
Measures of factor score adequacy
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MR1 MR3 MR2
Correlation of scores with factors 0.88 0.84 0.83
Multiple R square of scores with factors 0.78 0.71 0.68
Minimum correlation of possible factor scores 0.56 0.42 0.37

Notice in the above output, the ‘fa’ function used the Minimum Residual (“minres”) factor method
(extraction); this is the default. Given the simulated nature of the data, we would get the same sub-
stantive results had we applied the Maximum Likelihood (“ml”) factor method (extraction). The
second thing to take note of in the output is that the pattern matrix (i.e. loadings; e.g., V1 = 0.76,
V2 = 0.73, V3 = 0.60, V4 = 0.46 for Subordinate factor 1) is verysimilar to what we specified when
we simulated the data (e.g., V1 = 0.80, V2 = 0.70, V3 = 0.60, V4 =0.50 for Subordinate factor 1).
These loadings will not be exactly as specified due to the ‘random’ nature of the scores produced
by the ’mvrnorm’ function (i.e. produces multivariate random normal deviates - deviation scores);
but the loadings will be very close. The next part of the output to pay particular attention to is the
factor correlation matrix. Be advised, this correlation matrix is not (and will not be) the same as the
correlation matrix resulting from saving factor scores andcorrelating them. The factor correlation
matrix is commonly referred to as the ‘Phi’ matrix and can be extracted from the output by name
using the $ operator.

FA.L1.mat <- FA.L1$Phi
FA.L1.mat

[,1] [,2] [,3]
[1,] 1.0000000 0.4817366 0.2451246
[2,] 0.4817366 1.0000000 0.3673734
[3,] 0.2451246 0.3673734 1.0000000

Next, we can apply the upper level factor analysis to the Phi matrix from above; specifying 1 factor
(to be extracted) using the minimum residual (minres) factor method (i.e. extraction), specifying
the number of observations (n = 1000), and no rotation (rotate = ”NULL”).

FA.L2 <- fa(r = FA.L1.mat, nfactors = 1, fm = "minres", n.obs = 1000,
rotate="NULL")

FA.L2

Factor Analysis using method = minres
Call: fa(r = FA.L1.mat, nfactors = 1, n.obs = 1000, rotate = "NULL",

fm = "minres")
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2
1 0.57 0.32 0.68
2 0.85 0.72 0.28
3 0.43 0.19 0.81

MR1
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SS loadings 1.23
Proportion Var 0.41

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 3 and the objective function
The degrees of freedom for the model are 0 and the objective function was

The root mean square of the residuals (RMSR) is 0
The df corrected root mean square of the residuals is NA

The harmonic number of observations is 1000 with the empirical chi square
The total number of observations was 1000 with MLE Chi Square = 0 with

Tucker Lewis Index of factoring reliability = -Inf
Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0.88
Multiple R square of scores with factors 0.77
Minimum correlation of possible factor scores 0.53

Notice in the output above, the loadings matrix, or pattern matrix, (0.57, 0.85, & 0.43) very closely
resembles the coefficients we specified in creating the data (0.60, 0.80, & 0.40). These are the
loadings between the subordinate factors and the upper level factor.

Factor Scores

Next, we can demonstrate how the correlations among the factor scores will be different than
the factor correlations (Phi matrix). Here, we again apply the ‘fa’ function but in order to get the
factor scores, we must supply the raw data (data frame) matrix instead of the correlation matrix
— of course, we also need to specify what type of scores we want. Here we specify standard
regression scores, however; other methods are available (e.g., Bartlett’s, Anderson’s, etc.).

fa.l1 <- fa(r = data.df.1, nfactors = 3, fm = "minres", n.obs = 1000,
rotate = "oblimin", scores = "regression")

fa.l1

Factor Analysis using method = minres
Call: fa(r = data.df.1, nfactors = 3, n.obs = 1000, rotate = "oblimin",

scores = "regression", fm = "minres")
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 MR3 MR2 h2 u2
V1 0.76 0.05 0.01 0.62 0.38
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V2 0.73 -0.05 -0.01 0.50 0.50
V3 0.60 -0.01 0.01 0.35 0.65
V4 0.46 0.02 -0.03 0.21 0.79
V5 0.04 0.65 -0.01 0.45 0.55
V6 -0.02 0.52 0.08 0.30 0.70
V7 0.00 0.55 -0.06 0.28 0.72
V8 -0.03 0.58 0.03 0.33 0.67
V9 0.04 0.01 0.62 0.40 0.60
V10 -0.01 0.01 0.49 0.25 0.75
V11 -0.02 0.00 0.68 0.45 0.55
V12 0.00 -0.02 0.43 0.18 0.82

MR1 MR3 MR2
SS loadings 1.68 1.36 1.28
Proportion Var 0.14 0.11 0.11
Cumulative Var 0.14 0.25 0.36
Proportion Explained 0.39 0.31 0.30
Cumulative Proportion 0.39 0.70 1.00

With factor correlations of
MR1 MR3 MR2

MR1 1.00 0.48 0.25
MR3 0.48 1.00 0.37
MR2 0.25 0.37 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 66 and the objective function
The degrees of freedom for the model are 33 and the objective function was

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.02

The harmonic number of observations is 1000 with the empirical chi square
The total number of observations was 1000 with MLE Chi Square = 21.88

Tucker Lewis Index of factoring reliability = 1.011
RMSEA index = 0 and the 90 % confidence intervals are NA 0.007
BIC = -206.08
Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1 MR3 MR2
Correlation of scores with factors 0.88 0.84 0.83
Multiple R square of scores with factors 0.78 0.71 0.68
Minimum correlation of possible factor scores 0.56 0.42 0.37
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Next, we extract the factor scores from the (lower case) lower level factor analysis output (fa.l1)
using the $ operator and assign them to the ‘fa.l1.sc’ object. We can also correlate those scores and
notice how different those correlations are from the factorcorrelations matrix (Phi matrix).

fa.l1.sc <- data.frame(fa.l1$scores)
cor(fa.l1.sc)

X1 X2 X3
X1 1.0000000 0.6004052 0.3217752
X2 0.6004052 1.0000000 0.4805090
X3 0.3217752 0.4805090 1.0000000

As a result of these differences (between the factor score correlations and the factor correlations),
the upper level factor loadings are going to be more biased (i.e. quite different than what we speci-
fied when generating the data and when we did the upper level factor analysis with the correct [Phi]
matrix of association). To verify this, we apply the factor analysis to the factor scores themselves.

fa.l2 <- fa(r = fa.l1.sc, nfactors = 1, fm = "minres", n.obs = 1000,
rotate = "oblimin", scores = "regression")

fa.l2

Factor Analysis using method = minres
Call: fa(r = fa.l1.sc, nfactors = 1, n.obs = 1000, rotate = "oblimin",

scores = "regression", fm = "minres")
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2
X1 0.63 0.40 0.60
X2 0.95 0.90 0.10
X3 0.51 0.26 0.74

MR1
SS loadings 1.56
Proportion Var 0.52

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 3 and the objective function
The degrees of freedom for the model are 0 and the objective function was

The root mean square of the residuals (RMSR) is 0
The df corrected root mean square of the residuals is NA

The harmonic number of observations is 1000 with the empirical chi square
The total number of observations was 1000 with MLE Chi Square = 0 with
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Tucker Lewis Index of factoring reliability = -Inf
Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0.95
Multiple R square of scores with factors 0.91
Minimum correlation of possible factor scores 0.81

The output above shows the higher order factor loadings (0.62, 0.95, & 0.51) are substantively
different (i.e. more biased) than what we would expect (0.60, 0.80, & 0.40); and what we found
farther above using the factor correlation, or Phi, matrix (0.57, 0.85, & 0.43).

Upper Level Factor Scores

Unfortunately, the ‘fa’ function cannot return the factor scores when supplied a correlation ma-
trix as was done originally (i.e. FA.L2). So, in order to calculate the upper level factor scores and
save them for use in further analyses (e.g., Structural Equation Modeling), we must use the factor
correlation matrix (Phi matrix) to generate some lower level (3 factor) raw data on which we can
then apply the upper level (1 factor) analysis - which will allow us to save the higher level factor
scores for future use. Below, we demonstrate this by first using the ‘mvrnorm’ function; supplying
it with the number of cases/rows the data should have (equal to the number of rows of the original
data [nrow(data.df.1)]), the mean we want each of the three factors to have [three means of zero:
rep(0,3)], and the all-important matrix to which the data should conform [FA.L1.mat (which is the
Phi matrix from above)]. The ‘empirical = TRUE’ argument simply requests that the data conform
exactly to the matrix we supply. Once the data has been created, we can do a summary of the data
frame and check the correlations to see if they indeed match the Phi matrix from above; and they
do.

L2.df <- data.frame(mvrnorm(n = nrow(data.df.1), rep(0,3),
FA.L1.mat, empirical = TRUE))

summary(L2.df)

X1 X2 X3
Min. :-4.375742 Min. :-3.54389 Min. :-2.83910
1st Qu.:-0.688568 1st Qu.:-0.68134 1st Qu.:-0.74282
Median :-0.002373 Median : 0.01529 Median :-0.01382
Mean : 0.000000 Mean : 0.00000 Mean : 0.00000
3rd Qu.: 0.691442 3rd Qu.: 0.69003 3rd Qu.: 0.68826
Max. : 3.776186 Max. : 2.76209 Max. : 3.65736

cor(L2.df)

X1 X2 X3
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X1 1.0000000 0.4817366 0.2451246
X2 0.4817366 1.0000000 0.3673734
X3 0.2451246 0.3673734 1.0000000

Next, we can then use the newly created ‘raw’ data (L2.df [data frame]) to apply the upper level
(1 factor) model. The key point here is; we can save the upper level factor scores because we are
supplying ‘raw’ data we just created - and that raw data exactly conforms to the Phi matrix.

FA.L2.2 <- fa(r = L2.df, nfactors = 1, fm = "minres", n.obs = 1000,
rotate="NULL", scores = "regression")

FA.L2.2

Factor Analysis using method = minres
Call: fa(r = L2.df, nfactors = 1, n.obs = 1000, rotate = "NULL", scores =

fm = "minres")
Standardized loadings (pattern matrix) based upon correlation matrix

MR1 h2 u2
X1 0.57 0.32 0.68
X2 0.85 0.72 0.28
X3 0.43 0.19 0.81

MR1
SS loadings 1.23
Proportion Var 0.41

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 3 and the objective function
The degrees of freedom for the model are 0 and the objective function was

The root mean square of the residuals (RMSR) is 0
The df corrected root mean square of the residuals is NA

The harmonic number of observations is 1000 with the empirical chi square
The total number of observations was 1000 with MLE Chi Square = 0 with

Tucker Lewis Index of factoring reliability = -Inf
Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0.88
Multiple R square of scores with factors 0.77
Minimum correlation of possible factor scores 0.53

Note in the output above the loadings between the lower level(3) factors and the upper level (1)
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factor are identical to what was produced when the factor analysis was done on the (lower level
3) factor correlation, or Phi, matrix. Now we can extract thefactor scores from the output object
using the $ operator and the ‘scores’ name. Below we assign those factor scores to the object
‘L2.scores’ and create a summary of those scores. Notice, the factor scores are centered on zero
(i.e. standardized) because the latent factor has an unknown metric.

L2.scores <- FA.L2.2$scores
summary(L2.scores)

MR1
Min. :-2.95558
1st Qu.:-0.57108
Median :-0.01473
Mean : 0.00000
3rd Qu.: 0.57839
Max. : 2.56140

Of course, if our goal from the start was to get these (upper level, 1 factor) factor scores, then we
would have simply created the ’raw’ data after the first factor analysis and supplied it to the second
factor analysis while requesting the scores. The script below accomplishes this goal without all the
comments, explanation, and output.

fa1 <- fa(r = data.df.1, nfactors = 3, fm = "minres", n.obs = 1000
rotate = "oblimin")

fa1.df <- data.frame(mvrnorm(n = nrow(data.df.1), rep(0,3),
fa1$Phi, empirical = TRUE))

fa2 <- fa(r = fa1.df, nfactors = 1, fm = "minres", n.obs = 1000,
rotate = "none", scores = "regression")

fa2.sc <- fa2$scores

Conclusions

It is important to note that the examples above involve a relatively simple factor structure, how-
ever; the general procedures would be the same for more complex structures (i.e. multiple upper
level factors, or multiple upper levels - levels 1, 2, 3, 4, etc.). The importance of having knowledge
of these procedures in one’s repertoire should be apparent,given the frequency of hierarchical
measurement structures in the social sciences. Next month,we will show how to use the upper
level factor scores in a larger (Structural Equation) modelby incorporating them into a structural
model with other latent variables.

Until next time, happy computing...
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