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Hierarchical Factor Analysis.

Lately, the issue of how to fit a hierarchical factor model b@sie up a few times and therefore,
we thought it might be useful to do an article on the subjecé halve had aR script on theR
short course page for this subject; but perhaps a narratiggiole format might be more helpful.
First, we should note that hierarchical factor models ase khown as higher order factor models
- the term ‘higher order’ is often preferred over ‘hieradli in this situation because ‘higher
order’ better distinguishes these models from any kind efdrichical mixed effects models (e.g.,
hierarchical linear modeling). Second, it is important tdethat we are discussing factor analysis
in this article, which is to say; modeling latent variableusture. As such, we will not be using a
components extraction technique (e.g., principal comptaextraction) and instead will be using
a factor extraction technique (e.g., minimum residualastion, maximum likelihood extraction,
etc.). For more information on the differences between comept extraction and factor extraction,
see the Special Issue (1990) listed in the Reference/Resmsgcaon at the end of this article (all
13 articles of which are available online at the link prodjle

Simulated Data

Using simulated data will allow us to verify we are condugtthe analysis correctly. Simply
put, we should be able to retrieve the parameters (e.ggrfémadings) we used to construct the
data (model). However, given the generation process usetinolating data, the actual data (i.e.
individual score values) will be different each time thestdoelow is run unless we specify a seed
number. To ensure we are able to replicate the exact numbkns,lwe use the ‘set.seed’ function
which specifies a Random Number Generator (RNG). Below, we ang tise ‘psych’ (Revelle,
2013) package, which has dedicated functions for simwgéatirs type of data (e.g., hierarchical
structure). The psych package requires the ‘mvrnorm’ fonc{for creating random deviates
from a multivariate normal distribution) which comes franetMASS’ (Ripley, Venables, Hornik,
Gebhardt, & Firth, 2013) package. We will also use the ‘GRation’ (Bernaards, & Jennrich,
2013) package to apply an oblique rotation strategy wheneg@lio fit the model. Notice below,
the input script is printed in red Courier New font and the atiig printed in dark blue Courier
New font while the text of this article is printed in black TésiNew Roman font.

First, load the necessary packages and set the seed (wHiielow us to replicate the output).

l'ibrary(psych)

I'i brary( MASS)

I'i brary( GPArotation)
set.seed(20130403)

Before we begin simulating the data from a specified modelay e helpful to create a diagram
of the model we want to specify (and use to generate the dafapurse, a latent factor model as-
sumes the Classical Test Theory (CTT) model of measuremeatCThH states that each observed
variable Q; or item response, or question response from a survey) iethit of the combination
of the true scoresT(, the actual latent amount of the thing being measured) ante srors E;
e.g., measurement error, model specification error, sagpias, etc.). In simple equation form,
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the CTT can be stated as:
O=T+F Q)

where theO represents the observed score, which equals the combinaitid (true score) and
E (error). A figure below contains the factor model we will bengsfor this example (note: the
CTT is reinforced by this style of diagram because the arrawesirately reflect the direction of
causality - observed variables, or scores, are a resuliefsitores [latent factor] and errors).
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Next, we create a matrix object which contains the loadirege/ben our three subordinate factors
and our single higher order, or upper level, factor. Hereaveespecifying what those loadings are
going to be (0.60, 0.80, & 0.40).

sub.factor.loads <- matrix(c(.6,.8,.4), nrow = 3)
sub. factor. | oads

Next, we create a matrix object which contains the loadingtsvben our 12 observed variables
(often referred to as items) and our three subordinater&cidhe following matrix can be thought
of as the Pattern Coefficient matrix or simply Pattern matiach column represents one of the
three (subordinate) factors and each row represents ohe oivelve observed variables.

obs.factor.loads <- matrix(c(.8,0,0
.7,0,0,
.6,0,0
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Next, we specify the number of observations and the mearafdr ef the observed variables. Here
we are specifyingi = 1000 observations (i.e. rows of data) and we are using 1Reamean of
each of the observed variable scores, simply replicatifgtidelve times for the twelve observed
variables.

n. obs <- 1000
means <- rep(10, 12)

Next, we can use the ‘sim.hierarchical’ function from pagkgpsych’ to simulate the observed
data based on the model we specified above. Here, we give théhedaname ‘data.df.1’. Notice
below, we are requesting raw scores (raw = TRUE) and we anadpdlve function return those
observed raw scores ($observed).

data.df.1 <- simhierarchical (gl oad sub. fact or. | oads,
fl oad obs. factor. | oads,
n = n.obs,
raw = TRUE,
mu = neans) $obser ved

Now we have our simulated, observed, data. If we run a sumofaoyr data frame, we will see
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the mean of each variable is approximately 10 (as we specibiede).
summar y(dat a. df . 1)

V1 V2 V3 V4
M n. . 7.008 M n. . 6.994 M n. . 6.980 M n. . 6.746
1st Qu.: 9.392 1st Qu.: 9.377 1st Qu.: 9.388 1st Qu.: 9.287
Medi an : 10. 086 Medi an :10. 014 Medi an :10.014 Medi an :10.012

Mean :10. 076 Mean :10. 039 Mean . 10. 026 Mean :9.993
3rd Qu.:10.749 3rd Qu.:10.708 3rd Qu.:10. 658 3rd Qu.:10. 640
MBax. :13. 258 Max. :13. 469 Max. :13. 063 Max. :13.024
V5 V6 V7 V8
M n. . 7.135 M n. : 6.773 M n. . 7.234 M n. : 6.989
1st Qu.: 9.363 1st Qu.: 9.289 1st Qu.: 9.328 1st Qu.: 9.418
Medi an : 9.999 Medi an : 9.999 Medi an : 9. 950 Medi an : 10. 025
Mean :10. 008 Mean :10. 001 Mean 9. 990 Mean :10. 059
3rd Qu.:10. 644 3rd Qu.:10.707 3rd Qu.:10. 668 3rd Qu.:10.689
Max. :13. 476 Max. :13. 231 Max. :12. 765 Max. :13. 651
V9 V10 Vil V12
M n. . 7.438 M n. . 7.011 M n. . 6.493 M n. . 6.884
1st Qu.: 9.334 1st Qu.: 9.319 1st Qu.: 9.389 1st Qu.: 9.314
Medi an : 9.989 Medi an :10.011 Medi an :10. 090 Medi an : 9. 976
Mean :10. 014 Mean : 9.995 Mean :10. 073 Mean :10. 022
3rd Qu.:10.670 3rd Qu.:10. 666 3rd Qu.:10.744 3rd Qu.:10.734
Max. :13. 135 Max. 212,747 Max. :13. 230 Max. :12. 758

Hierarchical Factor Analysis

Next, we can begin fitting our data to the model by applyingchdiaanalysis at the subordinate
level; extracting three factors with an oblique rotatioonfrthe observed (simulated) data. It is
important to realize that an oblique rotation is called forifthe factors are not or were not re-
lated; there would be no reason to suspect a higher ordarfachigher order factors. We start
by obtaining a correlation matrix of the observed varialaled assigning that matrix to an object
(‘FA.L1.mat’ for factor analysis level 1 matrix). Then wercpass that matrix to our factor analysis
function (‘fa’), also supplying the number of factors (tamct), the factor method (i.e. extraction
technique; ‘minres’), the number of observations=(1000), and the rotation strategy (oblimin).

cor.mat <- cor(data.df.1)

FA. L1 <- fa(r = cor.mat, nfactors = 3, fm= "mnres", n.obs = 1000,

rotate = "oblimn")
FA. L1
Factor Analysis using nmethod = mnres
Call: fa(r = cor.mat, nfactors = 3, n.obs = 1000, rotate = "oblimn",



fm= "mnres")

St andar di zed | oadi ngs (pattern matri x) based upon correlation matrix

VR1 VR3 VR2 h2 u2

V1 0.76 0.05 0.01 0.62 0.38
V2 0.73 -0.05 -0.01 0.50 0.50
V3 0.60 -0.01 0.01 0.35 0.65
V4 0.46 0.02 -0.03 0.21 0.79
V5 0.04 0.65 -0.01 0.45 0.55
V6 -0.02 0.52 0.08 0.30 0.70
V7 0.00 0.55 -0.06 0.28 0.72
V8 -0.03 0.58 0.03 0.33 0.67
V9 0.04 0.01 0.62 0.40 0.60
V10 -0.01 0.01 0.49 0.25 0.75
V1l -0.02 0.00 0.68 0.45 0.55
V12 0.00 -0.02 0.43 0.18 0.82
ML MR3 MR2
SS | oadi ngs 1.68 1.36 1.28
Proportion Var 0.14 0.11 0.11
Cumul ati ve Var 0.14 0.25 0. 36
Proportion Explained 0.39 0.31 0.30
Cumul ative Proportion 0.39 0.70 1.00

Wth factor correl ati ons of

VR1
MR3
VR2

ML MR3 MR2
1.00 0.48 0.25
0.48 1.00 0.37
0.25 0.37 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedomfor the null nodel are 66 and the objective func
The degrees of freedomfor the nodel are 33 and the objective function w
The root nmean square of the residuals (RVSR) is 0.01

The df corrected root nean square of the residuals is 0.02

The harnmoni ¢ nunber of observations is 1000 with the enpirical chi squar
The total nunber of observations was 1000 with ME Chi Square = 21.88

Tucker Lew s Index of factoring reliability = 1.011

RMSEA index = 0 and the 90 % confidence intervals are NA 0.007

BIC = -206.08

Fit based upon off diagonal values =1

Measures of factor score adequacy
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M1 M3 M2
Correl ation of scores with factors 0.88 0.84 0.83
Mul tiple R square of scores with factors 0.78 0.71 0.68
M ni num correl ati on of possible factor scores 0.56 0.42 0.37

Notice in the above output, the ‘fa’ function used the Minimm&esidual (“minres”) factor method
(extraction); this is the default. Given the simulated ratf the data, we would get the same sub-
stantive results had we applied the Maximum Likelihood ()nfdictor method (extraction). The
second thing to take note of in the output is that the pattaatrim(i.e. loadings; e.g., V1 = 0.76,
V2=0.73,V3=0.60, V4 =0.46 for Subordinate factor 1) is veirpilar to what we specified when
we simulated the data (e.g., V1 =0.80, V2 =0.70, V3 = 0.60, \M598 for Subordinate factor 1).
These loadings will not be exactly as specified due to thedwari nature of the scores produced
by the 'mvrnorm’ function (i.e. produces multivariate ramd normal deviates - deviation scores);
but the loadings will be very close. The next part of the otitpypay particular attention to is the
factor correlation matrix. Be advised, this correlation mxas not (and will not be) the same as the
correlation matrix resulting from saving factor scores aadelating them. The factor correlation
matrix is commonly referred to as the ‘Phi’ matrix and can kigaeted from the output by name
using the $ operator.

FA. L1. mat <- FA. L1$Phi
FA. L1. mat

[.1] [.2] [, 3]
[1,] 1.0000000 0.4817366 0.2451246
[2,] 0.4817366 1.0000000 0.3673734
[3,] 0.2451246 0.3673734 1.0000000
Next, we can apply the upper level factor analysis to the Ritrimnfrom above; specifying 1 factor
(to be extracted) using the minimum residual (minres) flagtethod (i.e. extraction), specifying
the number of observations € 1000), and no rotation (rotate = "NULL").

FA. L2 <- fa(r = FA L1L. mat, nfactors = 1, fm
rotate="NULL")

"mnres", n.obs = 1000,

FA. L2

Factor Analysis using nethod = mnres

Call: fa(r = FA LlL.mat, nfactors = 1, n.obs = 1000, rotate = "NULL",
fm="mnres")

St andar di zed | oadi ngs (pattern matri x) based upon correlation matrix
MRL  h2 u2

1 0.57 0.32 0.68

2 0.85 0.72 0.28

3 0.43 0.19 0.81

VR1



SS | oadi ngs 1.23
Proportion Var 0.41

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedomfor the null nodel are 3 and the objective funct
The degrees of freedomfor the nodel are O and the objective function wa

The root nean square of the residuals (RWVSR) is O
The df corrected root nean square of the residuals is NA

The harnoni ¢ nunber of observations is 1000 with the enpirical chi squar
The total number of observations was 1000 with MLE Chi Square = 0 wit

Tucker Lew s Index of factoring reliability = -1Inf
Fit based upon off diagonal values =1
Measures of factor score adequacy

VR1
Correl ation of scores with factors 0. 88
Mul tiple R square of scores with factors 0.77

M ni mum correl ati on of possible factor scores 0.53

Notice in the output above, the loadings matrix, or patteatrix, (0.57, 0.85, & 0.43) very closely
resembles the coefficients we specified in creating the @a6®,(0.80, & 0.40). These are the
loadings between the subordinate factors and the uppdiféster.

Factor Scores

Next, we can demonstrate how the correlations among therfacores will be different than
the factor correlations (Phi matrix). Here, we again appby ‘fa’ function but in order to get the
factor scores, we must supply the raw data (data frame) xnasiead of the correlation matrix
— of course, we also need to specify what type of scores we.wdrte we specify standard
regression scores, however; other methods are availagle Bartlett’'s, Anderson’s, etc.).

fa.ll <- fa(r = data.df.1, nfactors = 3, fm= "mnres", n.obs = 1000,
rotate = "oblimn", scores = "regression")
fa.l1
Factor Analysis using nmethod = mnres
Call: fa(r = data.df.1, nfactors = 3, n.obs = 1000, rotate = "oblimn",
scores = "regression”, fm= "mnres")

St andar di zed | oadi ngs (pattern matri x) based upon correlation matrix
VR1 VR3 VR2 h2 u2
V1 0.76 0.05 0.01 0.62 0.38



V2 0.73 -0.05 -0.01 0.50 0.50
V3 0.60 -0.01 0.01 0.35 0.65
V4 0.46 0.02 -0.03 0.21 0.79
V5 0.04 0.65 -0.01 0.45 0.55
V6 -0.02 0.52 0.08 0.30 0.70
V7 0.00 0.55 -0.06 0.28 0.72
V8 -0.03 0.58 0.03 0.33 0.67
V9 0.04 0.01 0.62 0.40 0.60
V10 -0.01 0.01 0.49 0.25 0.75
V11l -0.02 0.00 0.68 0.45 0.55
V12 0.00 -0.02 0.43 0.18 0.82
MRL MR3 MR2
SS | oadi ngs 1.68 1.36 1.28
Proportion Var 0.14 0.11 0.11
Cumul ati ve Var 0.14 0.25 0. 36

Proportion Explained 0.39 0.31 0.30
Cumul ative Proportion 0.39 0.70 1.00

Wth factor correlations of
ML M3 M2

MR1L 1.00 0.48 0.25

MR3 0.48 1.00 0. 37

MR2 0.25 0.37 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedomfor the null nodel are 66 and the objective func
The degrees of freedomfor the nodel are 33 and the objective function w

The root nean square of the residuals (RVSR) is 0.01
The df corrected root nean square of the residuals is 0.02

The harnoni ¢ nunber of observations is 1000 with the enpirical chi squar
The total nunber of observations was 1000 with M.E Chi Square = 21.88

Tucker Lewi s Index of factoring reliability = 1.011
RVMSEA index = 0 and the 90 % confidence intervals are NA 0.007
BIC = -206.08
Fit based upon off diagonal values =1
Measures of factor score adequacy

M1 M3 M2
Correl ation of scores with factors 0.88 0.84 0.83
Multiple R square of scores with factors 0.78 0.71 0.68
M ni mum correl ati on of possible factor scores 0.56 0.42 0.37
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Next, we extract the factor scores from the (lower case) tdexes| factor analysis output (fa.l1)
using the $ operator and assign them to the ‘fa.l1.sc’ obj&fetcan also correlate those scores and
notice how different those correlations are from the factorelations matrix (Phi matrix).

fa.l1l.sc <- data.frane(fa.l 1$scores)
cor(fa.l1.sc)

X1 X2 X3
X1 1. 0000000 0.6004052 0.3217752
X2 0.6004052 1.0000000 0.4805090
X3 0.3217752 0.4805090 1.0000000

As a result of these differences (between the factor scarelations and the factor correlations),
the upper level factor loadings are going to be more biasedduite different than what we speci-
fied when generating the data and when we did the upper lestelfanalysis with the correct [Phi]

matrix of association). To verify this, we apply the factoadysis to the factor scores themselves.

fa.l12 <- fa(r = fa.l1l.sc, nfactors =1, fm= "mnres", n.obs = 1000,
rotate = "oblimn", scores = "regression")
fa.l 2
Factor Analysis using nmethod = mnres
Call: fa(r = fa.ll.sc, nfactors = 1, n.obs = 1000, rotate = "oblimn",
scores = "regression”, fm= "mnres")

St andar di zed | oadi ngs (pattern matri x) based upon correlation matrix

MR1 h2 uz2
X1 0.63 0.40 0.60
X2 0.95 0.90 0.10
X3 0.51 0.26 0.74

VR1
SS | oadi ngs 1.56
Proportion Var 0.52
Test of the hypothesis that 1 factor

The
The

degrees of freedom for the null
degrees of freedom for the nodel

The
The

root mean square of the residual
df corrected root nean square of

The
The

har noni ¢ nunber of observations
total nunmber of observati ons was

11

is sufficient.

nodel are 3 and the objective funct
are 0 and the objective function wa

s (RWSR) is O

the residuals is NA

is 1000 with the enpirical chi squar
1000 with MLE Chi Square = 0 wit



Tucker Lewis Index of factoring reliability = -Inf
Fit based upon off diagonal values =1
Measures of factor score adequacy

MR1
Correl ation of scores with factors 0. 95
Multiple R square of scores with factors 0.91

M ni mum correl ati on of possible factor scores 0.81

The output above shows the higher order factor loading2(®@®5, & 0.51) are substantively
different (i.e. more biased) than what we would expect (00680, & 0.40); and what we found
farther above using the factor correlation, or Phi, matis{, 0.85, & 0.43).

Upper Level Factor Scores

Unfortunately, the ‘fa’ function cannot return the factooses when supplied a correlation ma-
trix as was done originally (i.e. FA.L2). So, in order to edate the upper level factor scores and
save them for use in further analyses (e.g., Structural muiodeling), we must use the factor
correlation matrix (Phi matrix) to generate some lower l€8eactor) raw data on which we can
then apply the upper level (1 factor) analysis - which wilbal us to save the higher level factor
scores for future use. Below, we demonstrate this by firsigusie ‘mvrnorm’ function; supplying
it with the number of cases/rows the data should have (equbaketnumber of rows of the original
data [nrow(data.df.1)]), the mean we want each of the thaetfs to have [three means of zero:
rep(0,3)], and the all-important matrix to which the datawdld conform [FA.L1.mat (which is the
Phi matrix from above)]. The ‘empirical = TRUE’ argument gilprequests that the data conform
exactly to the matrix we supply. Once the data has been cheatecan do a summary of the data
frame and check the correlations to see if they indeed matRhi matrix from above; and they
do.

L2.df <- data.frame(nvrnorm(n = nrowdata.df.1), rep(0,3),
FA.L1.mat, enpirical = TRUE))
summary(L2. df)

X1 X2 X3
M n. 1 -4.375742 M n. :-3.54389 M n. :-2.83910
1st Qu.:-0.688568 1st Qu.:-0.68134 1st Qu.:-0.74282
Medi an :-0.002373 Medi an : 0.01529 Medi an :-0.01382
Mean : 0. 000000 Mean : 0.00000 Mean : 0.00000
3rd Qu.: 0.691442 3rd Qu.: 0.69003 3rd Qu.: 0.68826
Max. : 3.776186 Max. : 2.76209 Max. . 3.65736
cor(L2.df)
X1 X2 X3
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X1 1.0000000 0.4817366 0.2451246
X2 0.4817366 1.0000000 0.3673734
X3 0.2451246 0.3673734 1.0000000

Next, we can then use the newly created ‘raw’ data (L2.dfgddetme]) to apply the upper level
(1 factor) model. The key point here is; we can save the umgyed factor scores because we are
supplying ‘raw’ data we just created - and that raw data éxacinforms to the Phi matrix.

FA.L2.2 <- fa(r = L2.df, nfactors =1, fm= "mnres", n.obs = 1000,

rotate="NULL", scores = "regression")
FA. L2.2
Factor Analysis using nethod = mnres
Call: fa(r = L2.df, nfactors = 1, n.obs = 1000, rotate = "NULL", scores =
fm= "mnres")

St andar di zed | oadi ngs (pattern matri x) based upon correlation matrix
VR1 h2 u2

X1 0.57 0.32 0.68

X2 0.85 0.72 0.28

X3 0.43 0.19 0.81

MR1
SS | oadi ngs 1.23
Proportion Var 0.41

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedomfor the null nodel are 3 and the objective funct
The degrees of freedomfor the nodel are 0 and the objective function wa

The root nean square of the residuals (RVSR) is O
The df corrected root nean square of the residuals is NA

The harnoni ¢ nunber of observations is 1000 with the enpirical chi squar
The total nunber of observations was 1000 with MLE Chi Square = 0 wt

Tucker Lewi s Index of factoring reliability = -Inf
Fit based upon off diagonal values =1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0. 88
Mul tiple R square of scores wth factors 0.77

M ni mum correl ati on of possible factor scores 0.53

Note in the output above the loadings between the lower IB)diactors and the upper level (1)
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factor are identical to what was produced when the factolyaisawas done on the (lower level
3) factor correlation, or Phi, matrix. Now we can extract thetor scores from the output object
using the $ operator and the ‘scores’ name. Below we assigetfaztor scores to the object
‘L2.scores’ and create a summary of those scores. Notiegfatttor scores are centered on zero
(i.e. standardized) because the latent factor has an umkneatric.

L2. scores <- FA. L2.2$scores
summar y(L2. scores)

MRL

Mn. :-2.95558
1st Qu.:-0.57108
Medi an :-0.01473

Mean :0.00000
3rd Qu.: 0.57839
VaxX. : 2.56140

Of course, if our goal from the start was to get these (uppel,ld factor) factor scores, then we
would have simply created the raw’ data after the first faetwalysis and supplied it to the second
factor analysis while requesting the scores. The scripmpaccomplishes this goal without all the
comments, explanation, and output.

fal <- fa(r = data.df.1, nfactors = 3, fm= "mnres", n.obs = 1000
rotate = "oblimn")
fal.df <- data.frame(nvrnornm(n = nrow(data.df.1), rep(0, 3),
fal$Phi, enpirical = TRUE))
fa2 <- fa(r = fal.df, nfactors =1, fm= "mnres", n.obs = 1000,
rotate = "none", scores = "regression")
fa2.sc <- fa2$scores

Conclusions

It is important to note that the examples above involve aively simple factor structure, how-
ever; the general procedures would be the same for more earaplctures (i.e. multiple upper
level factors, or multiple upper levels - levels 1, 2, 3, 4,etThe importance of having knowledge
of these procedures in one’s repertoire should be appagemt the frequency of hierarchical
measurement structures in the social sciences. Next maethyill show how to use the upper
level factor scores in a larger (Structural Equation) mdxjeincorporating them into a structural
model with other latent variables.

Until next time, happy computing...
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