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Explicit Bayes: Working Concrete Examples to
Introduce the Bayesian Perspective.

We use the ternexplicit because we are going to calculate these exanigylémndwith programing
rather than simply loading a package and using functionstimate parameters. The purpose of using
these explicit methods is to hopefully convey a better ustdading of what it means o Bayesian
statistics.

First, we must present a little bit about Bayesian statistigery, very briefly, Bayesian statistics
requires three elements: a prior, likelihood, and a pastefiihe prior is a distribution specified by the
researcher which representsgiior information regarding the parameter the researcher isatteg to
estimate. The prior represents an educated, best guess@rdimeter (e.g. the mean of the prior) and
the degree of certainty or confidence in that educated, lestsye.g., the variance and shape of the prior
distribution). The prior is specified before (ijgrior) to data collection. The prior is then combined with
the likelihood (a representation of the data at hand) toteraanore informed, empirical distribution of
the parameter being estimated. We call this last distobutineposteriordistribution. The mean of the
posterior is our estimate of the parameter. Interval esémeaan then be calculated from the posterior
which truly will represent the interval which contains thetwal population parameter; we call those
intervalscredible intervalqrather than confidence intervals — whibb nottell you the probability of the
population parameter being contained in this interval).

Let’s say we want to estimatee meanlQ scores on the Weschler Adult Intelligence Scale (WAIS) of
a small town, X.Town, which has a population of 10000 indists. Let’s start by importing the X.Town
data.

x.town.df <- read.table(

"http://www.unt.edu/rss/class/Jon/ExampleData/X.Tow n.sample.txt",
header = TRUE, sep = ", na.strings = "NA", dec = ".")

nrow(x.town.df

[1] 10000

We know from a mountain of normative data and prior resedrahthe U.S. population distribution of
WAIS scores has a meap)(of 100 and a standard deviation)(of 15. This information represents
a best case scenario; where Ww®wthe population distribution and that distribution is nolipalis-
tributed with an identified mean and standard deviation. g&aly, we would not have such great prior
information; so consider an alternative where we have ailfuno prior information accept to know
the WAIS questions / procedures which allow a possible stmrange from 1 to 200. In such a case,
our specification of a prior distribution would mean eachredn that range is equally likely — which
prompts us to specify aniformdistribution (i.e. a distribution in which each value hasemual prob-
ability of being represented). A uniform prior is also knoasman un-informative or un-informed prior.
In both examples below we are using a population of 1000Widdals.

uninformed.prior <- rep(seq(1:200), 50)
length(uninformed.prior)

[1] 10000
summary(uninformed.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 50.75 100.50 100.50 150.20 200.00
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However, with the WAIS and the knowledge of the U.S. popalatiwe can specify a Gaussian (i.e.
normal) distribution as our prior.

informed.prior <- rnorm(10000, mean = 100, sd = 15)
length(informed.prior)

[1] 10000
summary(informed.prior)
Min. 1st Qu. Median Mean 3rd Qu. Max.

37.51 89.93 100.10 100.10 110.40 157.30



hist(informed.prior)

R R Graphics: Device 2 (ACTIVE) =RREN X

File History Resize

Histogram of informed.prior

2500
|

2000

Frequency
1500

1000

500
|

| | | | | | |
40 60 60 100 120 140 160

informed_prior

Clearly; the two example priors above are extremes (i.e. veaise and best case); there are a variety of
other distributions which can be specified as priors (e.g.c@guPoisson, beta, etc.) and the prior is not
required to be symmetrical. For more information on theetsrof distributions, see:
http://en.wikipedia.org/wiki/List of probability distributions

Our research questions are as follows: What is the mean WAI® ¢ the populationn= 10000) of
X.Town; and, does that mean differ from the larger (U.S.)yapon? In more precise terms, what is the
population mean of X.Town WAIS scores and is that misager than the known U.S. population mean.
To be clear, there are two populations we are referring te;ltee population of X.TownN = 10000)
and the larger population of the U.S.


http://en.wikipedia.org/wiki/List_of_probability_distributions

Itis unrealistic to think we would have all 10000 adult o#ties’ data from X.Town; we would generally
have a sample of that town’s data. Note; the 7th column of oo data file contains the WAIS scores.
Here we randomly sampl@& & 1000) cases from the entire X.Town data£ 10000):

wais.sample <- sample(x.town.df[,7], 1000, replace = FALS E)
length(wais.sample)
[1] 1000

1 Traditional Frequentist Perspective: Null Hypothesis Signifcance
Testing (NHST).

In a traditionalfrequentistsetting, we would begin by simply calculating the sample mas our best
estimate of the entire X.Town population mean WAIS score:

M <- mean(wais.sample)
M
[1] 107.6305

and the standard error of that mean if we wanted confideneevads for that estimate (of the entire
X.Town’s mean):

std.err <- sqrt(152 / length(wais.sample))
std.err
[1] 0.4743416

Then using an alpha value (e.g. 0.05) look up the associaitethtvalue (i.e. +/-1.96) in a table; then
calculate the lower and upper bounds of the confidence mtéov our estimate (i.e. the confidence
interval for the estimated mean of X.Town).

lower.bound <- (-1.96 xstd.err) + M
lower.bound
[1] 106.7008
upper.bound <- (+1.96 *std.err) + M
upper.bound
[1] 108.5602

Then, we would run a one sample t-test using our random saafpfeTown adults’ WAIS scores,
comparingthe meanof the sample scoredW; as our best estimate of the entire X.Town’s mean) to
the mean of the U.S. population (mu); using the standard error of the meatd(er) and some pre-
designated probability cutoff (e.g. 0.05) to determindistiaal significance.

t.test(wais.sample, alternative = ’'greater’, mu = 100, con flevel = .95)

One Sample t-test



data: wais.sample

t = 17.0653, df = 999, p-value < 2.2e-16

alternative hypothesis: true mean is greater than 100
95 percent confidence interval:

106.8944 Inf

sample estimates:

mean of X

107.6305

It is important to recall (or review) what the above test isndgo We have drawn a random sample of
data from X.Town and we are testitize meanof that sample against a known (U.S.) population mean
to determine if the sample indeed comes from that populdtien the null hypothesis). Notice we are
using the sample mean € 1000) as a representation of the entire X.Town’s WAIS ss@¥e= 10000).

2 Bayesian Perspective: Bayesian Statistics; Bayesian Inferesc
Bayesian Parameter Estimation.

All three of the above terms are often used to refer to Bayetasam analysis. The examples below were
all adapted from Kaplan (2014). Our example explores thenabprior for the normal sampling model
in which the variance? (sigma squared) is assumed to be known. Thus, the probleme isf@stimating
the meany (mu). Lety denote a data vector of sindy = the sample of 1000 WAIS scores). We assume
thaty follows a normal distribution shown with the equation below

plylp, 0%) = (1/V2x 7+ 0) x eap(=((y — 1)*) /(2% 0?)) (1)
To clarify and show an example in R, we use the following:
mu <- 100
o0 <- 15

y <- wais.sample

We use the word ‘output’ to refer ta(y|u, o) from above; which is read as the probabilityyofjiven a
mean of mu (), and variance of sigma squarett),

output <- (1/sqrt(2 *pi *0)) * exp(-((y - mu)2) / (2 *0"2))
summary(output)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000289 0.047630 0.078600 0.069690 0.096360 0.103000
Next, we specify the prior. We have plenty of confidence that mrior distribution of the mean is

normal with its own mean and variance hyper-paramekeasd?* (using t in R code to refer to tau),
respectively, which for this example are known. The priatrifbution can be written as:

P(ulk, ) = (1/VZx 75 ) x eap(— (1 — k)2)/(2 % ) )



The termp(u|k, t?), can be read as the probability @hiven & andz?.

k <- mean(y); k
[1] 107.6305

t <- sd(y); t

[1] 14.13976

n <- length(y); n
[1] 1000

prior.mean <- (1/sqrt(2 *pi *t72)) * exp(-((mu - k)'2) / (2 *1°2))
prior.mean
[1] 0.02439102

Combine the prior information with the likelihood of the ddtiven the population variance; sigma
squared¢?] and the sample size]) to create the posterior distribution. Using some algetira poste-
rior distribution can be obtained as:

plply)” NI((k/1) + (n o+ mean(y) /o) /(1/1) + (n/0%)), (1 % 0*) /(0” + (n+£*))]  (3)
Thus, the posterior distribution of mp)is normal with a mean:

posterior.mu <- ((k/t"2)+(n *mean(y)/0°2)) / ((1/t°2)+(n/0"2))
posterior.mu
[1] 107.6305

and variance:

posterior.02 = (t°2 *0"2)/(0"2+(n *1°2))
posterior.02
[1] 0.2247471

So, the posterior distribution can be simulated using tieseparameters (and = 1000); which in R,
should be:

posterior <- rnorm(n = length(y), mean = posterior.mu,
sd = sqrt(posterior.02))
hist(posterior)
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In a traditional frequentist analysis, one would be reqglicereport both the estimated mean (i.e. mean of
the sample) and a confidence interval with lower and uppent®of that mean. However, a frequentist
confidence interval only tells us; if this same study was agge 100 times, we would expect the sample
mean to be between the upper and lower bounds 95 times (¢ a96% confidence interval).dbes not

tell us the probability of the population parameter beinguded in the interval. Here in the Bayesian
setting, we use the posterior distribution and simply tddes quantiles (i.e. probabilities) to compute
the lower and upper bounds ofceedible interval— which does give us the probability that the actual
population parameter is included in this interval.

quantile(posterior, c(.05,.95))
5% 95%



106.8662 108.4625

It is critically important to recognize, the above exam@@mly interested in estimating the mean of
X.Town’s WAIS scores. The example is NOT attempting to eatarthe entire X.Town'’s distribution of
WAIS scores. So let's compare the actual mean of X.Town’s 8#8dores to the sample mean, and the
mean of the posterior distribution (of course, in a real aede situation you would not have the 'actual’
parameter — i.e. mean of the entire population of X.Town).

mean(x.town.df$wais)
[1] 107.8662
mean(wais.sample)
[1] 107.6305
mean(posterior)

[1] 107.6389

Undoubtable readers will notice the virtually identicaliestes provided by the mean of the posterior
(i.e. Bayesian estimate) and simply the mean of the samplef(@quentist estimate); and both of those
are very, very close to the X.Town population mean. Therdveoesery important reasons for this. First,
the Bayesian and Frequentist methods will result in virjudle same parameter estimate(s) with large
samples. The prior is weighted very lightly and the likebldo(a representation of the data at hand)
contributes the bulk of the weight to the estimation whegdasamples are used in a Bayesian analysis.
Second, the data used in the examples above is simulatedrdhtatruly random sample € 1000) was
taken from the entire populatiodN(= 10000). Therefore, our results here have very low bias asutr

of the truly random sample and the fact that 10% of the pojmiatas contained in the sample. Most
research is not conducted on a truly random sample and wersefearch endeavors include 10% of the
population as the sample.

Lastly, hypothesis testing and statistical significaneerat foreign to the Bayesian perspective. For
example, if one were interested in conducting a Bayesstast, you would use something called Bayes
Factors which has been covered on the RSS Do-it-yoursetfdattion to R web sifkand specifically in
Module 1§. Bayes Factors were also discussed in a previous RSS Mamier@a(Adobe.pdf versiﬁv

Until next time;“knowledge is freedom and ignorance is slavery.

— The above quote is attributed to Miles Dewey Davis 11l (192091):
http://www.goodreads.com/author/quotes/54/61.Miles Davis

3 Highly Recommended Reference

Kaplan, D. (2014)Bayesian Statistics for the Social Sciendgsew York: The Guilford Press.

Thttp://www.unt.edu/rss/class/Jon/R_SC/

2l"ltt[Z“IZ//WWW. unt.edu/rss/class/Jon/R_SC/ModulelO/Baye Skactor.R
3http:llweb3.unt.edu/benchmarks/issues/ZOlllOS/rss-m atters
“http://www.unt.edu/rss/class/Jon/Benchmarks/BayesFa ctors JDS Mar2011.pdf
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