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Explicit Bayes: Working Concrete Examples to
Introduce the Bayesian Perspective.

We use the termexplicit because we are going to calculate these examplesby handwith programing
rather than simply loading a package and using functions to estimate parameters. The purpose of using
these explicit methods is to hopefully convey a better understanding of what it means todo Bayesian
statistics.

First, we must present a little bit about Bayesian statistics. Very, very briefly, Bayesian statistics
requires three elements: a prior, likelihood, and a posterior. The prior is a distribution specified by the
researcher which represents allprior information regarding the parameter the researcher is attempting to
estimate. The prior represents an educated, best guess at the parameter (e.g. the mean of the prior) and
the degree of certainty or confidence in that educated, best guess (e.g., the variance and shape of the prior
distribution). The prior is specified before (i.e.prior) to data collection. The prior is then combined with
the likelihood (a representation of the data at hand) to create a more informed, empirical distribution of
the parameter being estimated. We call this last distribution theposteriordistribution. The mean of the
posterior is our estimate of the parameter. Interval estimates can then be calculated from the posterior
which truly will represent the interval which contains the actual population parameter; we call those
intervalscredible intervals(rather than confidence intervals – whichdo nottell you the probability of the
population parameter being contained in this interval).

Let’s say we want to estimatethe meanIQ scores on the Weschler Adult Intelligence Scale (WAIS) of
a small town, X.Town, which has a population of 10000 individuals. Let’s start by importing the X.Town
data.

x.town.df <- read.table(

"http://www.unt.edu/rss/class/Jon/ExampleData/X.Tow n.sample.txt",

header = TRUE, sep = ",", na.strings = "NA", dec = ".")

nrow(x.town.df

[1] 10000

We know from a mountain of normative data and prior research that the U.S. population distribution of
WAIS scores has a mean (µ) of 100 and a standard deviation (σ) of 15. This information represents
a best case scenario; where weknow the population distribution and that distribution is normally dis-
tributed with an identified mean and standard deviation. Generally, we would not have such great prior
information; so consider an alternative where we have virtually no prior information accept to know
the WAIS questions / procedures which allow a possible scoreto range from 1 to 200. In such a case,
our specification of a prior distribution would mean each score in that range is equally likely — which
prompts us to specify auniformdistribution (i.e. a distribution in which each value has anequal prob-
ability of being represented). A uniform prior is also knownas an un-informative or un-informed prior.
In both examples below we are using a population of 10000 individuals.

uninformed.prior <- rep(seq(1:200), 50)

length(uninformed.prior)

[1] 10000

summary(uninformed.prior)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 50.75 100.50 100.50 150.20 200.00
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hist(uninformed.prior)

However, with the WAIS and the knowledge of the U.S. population, we can specify a Gaussian (i.e.
normal) distribution as our prior.

informed.prior <- rnorm(10000, mean = 100, sd = 15)

length(informed.prior)

[1] 10000

summary(informed.prior)

Min. 1st Qu. Median Mean 3rd Qu. Max.

37.51 89.93 100.10 100.10 110.40 157.30
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hist(informed.prior)

Clearly; the two example priors above are extremes (i.e. worst case and best case); there are a variety of
other distributions which can be specified as priors (e.g. Cauchy, Poisson, beta, etc.) and the prior is not
required to be symmetrical. For more information on the variety of distributions, see:
http://en.wikipedia.org/wiki/List_of_probability_distributions

Our research questions are as follows: What is the mean WAIS score of the population (n = 10000) of
X.Town; and, does that mean differ from the larger (U.S.) population? In more precise terms, what is the
population mean of X.Town WAIS scores and is that meanlarger than the known U.S. population mean.
To be clear, there are two populations we are referring to here; the population of X.Town (N = 10000)
and the larger population of the U.S.
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It is unrealistic to think we would have all 10000 adult citizens’ data from X.Town; we would generally
have a sample of that town’s data. Note; the 7th column of our XTown data file contains the WAIS scores.
Here we randomly sample (n = 1000) cases from the entire X.Town data (N = 10000):

wais.sample <- sample(x.town.df[,7], 1000, replace = FALS E)

length(wais.sample)

[1] 1000

1 Traditional Frequentist Perspective: Null Hypothesis Significance
Testing (NHST).

In a traditionalfrequentistsetting, we would begin by simply calculating the sample mean as our best
estimate of the entire X.Town population mean WAIS score:

M <- mean(wais.sample)

M

[1] 107.6305

and the standard error of that mean if we wanted confidence intervals for that estimate (of the entire
X.Town’s mean):

std.err <- sqrt(15ˆ2 / length(wais.sample))

std.err

[1] 0.4743416

Then using an alpha value (e.g. 0.05) look up the associated critical value (i.e. +/-1.96) in a table; then
calculate the lower and upper bounds of the confidence interval for our estimate (i.e. the confidence
interval for the estimated mean of X.Town).

lower.bound <- (-1.96 * std.err) + M

lower.bound

[1] 106.7008

upper.bound <- (+1.96 * std.err) + M

upper.bound

[1] 108.5602

Then, we would run a one sample t-test using our random sampleof X.Town adults’ WAIS scores,
comparingthe meanof the sample scores (M; as our best estimate of the entire X.Town’s mean) to
the mean of the U.S. population (mu:µ); using the standard error of the mean (std.err) and some pre-
designated probability cutoff (e.g. 0.05) to determine statistical significance.

t.test(wais.sample, alternative = ’greater’, mu = 100, con f.level = .95)

One Sample t-test
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data: wais.sample

t = 17.0653, df = 999, p-value < 2.2e-16

alternative hypothesis: true mean is greater than 100

95 percent confidence interval:

106.8944 Inf

sample estimates:

mean of x

107.6305

It is important to recall (or review) what the above test is doing. We have drawn a random sample of
data from X.Town and we are testingthe meanof that sample against a known (U.S.) population mean
to determine if the sample indeed comes from that population(i.e. the null hypothesis). Notice we are
using the sample mean (n = 1000) as a representation of the entire X.Town’s WAIS scores (N = 10000).

2 Bayesian Perspective: Bayesian Statistics; Bayesian Inference;
Bayesian Parameter Estimation.

All three of the above terms are often used to refer to Bayesiandata analysis. The examples below were
all adapted from Kaplan (2014). Our example explores the normal prior for the normal sampling model
in which the varianceσ2 (sigma squared) is assumed to be known. Thus, the problem is one of estimating
the meanµ (mu). Lety denote a data vector of sizen (y = the sample of 1000 WAIS scores). We assume
thaty follows a normal distribution shown with the equation below:

p(y|µ, σ2) = (1/
√
2 ∗ π ∗ σ) ∗ exp(−((y − µ)2)/(2 ∗ σ2)) (1)

To clarify and show an example in R, we use the following:

mu <- 100

o <- 15

y <- wais.sample

We use the word ‘output’ to refer top(y|µ, σ2) from above; which is read as the probability ofy, given a
mean of mu (µ), and variance of sigma squared (σ2).

output <- (1/sqrt(2 * pi * o)) * exp(-((y - mu)ˆ2) / (2 * oˆ2))

summary(output)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000289 0.047630 0.078600 0.069690 0.096360 0.103000

Next, we specify the prior. We have plenty of confidence that our prior distribution of the mean is
normal with its own mean and variance hyper-parameters,k andt2 (using t in R code to refer to tau:τ ),
respectively, which for this example are known. The prior distribution can be written as:

p(µ|k, t2) = (1/
√
2 ∗ π ∗ t2) ∗ exp(−((µ− k)2)/(2 ∗ t2)) (2)
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The termp(µ|k, t2), can be read as the probability ofµ givenk andt2.

k <- mean(y); k

[1] 107.6305

t <- sd(y); t

[1] 14.13976

n <- length(y); n

[1] 1000

prior.mean <- (1/sqrt(2 * pi * tˆ2)) * exp(-((mu - k)ˆ2) / (2 * tˆ2))

prior.mean

[1] 0.02439102

Combine the prior information with the likelihood of the data(given the population variance; sigma
squared [σ2] and the sample size [n]) to create the posterior distribution. Using some algebra, the poste-
rior distribution can be obtained as:

p(µ|y)˜ N [((k/t2) + (n ∗mean(y)/σ2))/((1/t2) + (n/σ2)), (t2 ∗ σ2)/(σ2 + (n ∗ t2))] (3)

Thus, the posterior distribution of mu (µ) is normal with a mean:

posterior.mu <- ((k/tˆ2)+(n * mean(y)/oˆ2)) / ((1/tˆ2)+(n/oˆ2))

posterior.mu

[1] 107.6305

and variance:

posterior.o2 = (tˆ2 * oˆ2)/(oˆ2+(n * tˆ2))

posterior.o2

[1] 0.2247471

So, the posterior distribution can be simulated using thesetwo parameters (andn = 1000); which in R,
should be:

posterior <- rnorm(n = length(y), mean = posterior.mu,

sd = sqrt(posterior.o2))

hist(posterior)
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In a traditional frequentist analysis, one would be required to report both the estimated mean (i.e. mean of
the sample) and a confidence interval with lower and upper bounds of that mean. However, a frequentist
confidence interval only tells us; if this same study was repeated 100 times, we would expect the sample
mean to be between the upper and lower bounds 95 times (if using a 95% confidence interval). Itdoes not
tell us the probability of the population parameter being included in the interval. Here in the Bayesian
setting, we use the posterior distribution and simply take the quantiles (i.e. probabilities) to compute
the lower and upper bounds of acredible interval— which does give us the probability that the actual
population parameter is included in this interval.

quantile(posterior, c(.05,.95))

5% 95%
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106.8662 108.4625

It is critically important to recognize, the above example is only interested in estimating the mean of
X.Town’s WAIS scores. The example is NOT attempting to estimate the entire X.Town’s distribution of
WAIS scores. So let’s compare the actual mean of X.Town’s WAIS scores to the sample mean, and the
mean of the posterior distribution (of course, in a real research situation you would not have the ’actual’
parameter — i.e. mean of the entire population of X.Town).

mean(x.town.df$wais)

[1] 107.8662

mean(wais.sample)

[1] 107.6305

mean(posterior)

[1] 107.6389

Undoubtable readers will notice the virtually identical estimates provided by the mean of the posterior
(i.e. Bayesian estimate) and simply the mean of the sample (i.e. frequentist estimate); and both of those
are very, very close to the X.Town population mean. There aretwo very important reasons for this. First,
the Bayesian and Frequentist methods will result in virtually the same parameter estimate(s) with large
samples. The prior is weighted very lightly and the likelihood (a representation of the data at hand)
contributes the bulk of the weight to the estimation when large samples are used in a Bayesian analysis.
Second, the data used in the examples above is simulated dataand a truly random sample (n = 1000) was
taken from the entire population (N = 10000). Therefore, our results here have very low bias as a result
of the truly random sample and the fact that 10% of the population was contained in the sample. Most
research is not conducted on a truly random sample and very few research endeavors include 10% of the
population as the sample.

Lastly, hypothesis testing and statistical significance are not foreign to the Bayesian perspective. For
example, if one were interested in conducting a Bayesiant-test, you would use something called Bayes
Factors which has been covered on the RSS Do-it-yourself Introduction to R web site1 and specifically in
Module 112. Bayes Factors were also discussed in a previous RSS Matters article3 (Adobe.pdf version4).

Until next time;“knowledge is freedom and ignorance is slavery.”

— The above quote is attributed to Miles Dewey Davis III (1926- 1991):
http://www.goodreads.com/author/quotes/54761.Miles_Davis

3 Highly Recommended Reference

Kaplan, D. (2014).Bayesian Statistics for the Social Sciences. New York: The Guilford Press.

1http://www.unt.edu/rss/class/Jon/R_SC/
2http://www.unt.edu/rss/class/Jon/R_SC/Module10/Baye sFactor.R
3http://web3.unt.edu/benchmarks/issues/2011/03/rss-m atters
4http://www.unt.edu/rss/class/Jon/Benchmarks/BayesFa ctors_JDS_Mar2011.pdf
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