Examination of Cross Validation techniques and the biases they reduce.

Dr. Jon Starkweather, Research and Statistical Support consultant.

The current article continues from last month’s brief examples of how to conduct some cross
validation techniques in the R statistical programming environment. This month we focus more
on what cross validation does and what problems it addresses. For a slight review of the basis of
cross validation techniques, consider the following paragraphs.

When building a prediction model, be it a standard regression model or a more complex model,
the model should not be initially fit to the same data on which prediction error estimates are also
calculated. However, due to practical limitations, it is often not feasible to collect a new data set
on which to evaluate the fit and / or predictive accuracy of a model. Using the same data to
assess model fit / accuracy as was used to initially build the model carries with it the bias of
over-fitting. Over-fitting essentially means the model requires more information than the data
can provide. Over-fitting is one aspect of the larger issue of what statisticians refer to as
shrinkage (Harrell, Lee, & Mark, 1996). When over-fitting occurs, the parameter estimates will
be exaggerated and prediction error estimates will be downwardly biased; meaning, they will
indicate less prediction error and better model fit than is really the case. This results from
evaluation of predicted values against actual outcome values which were used to build the model
(initial fit). One might refer to this as double dipping. For instance, in a standard regression
analysis, the predicted values (y-hat or ¥) are subtracted from the actual values of the outcome
(y) in order to create and then evaluate the residuals. Bias is introduced because the residuals do
not accurately reflect an estimate of prediction error with new data. Using the actual values of
the outcome (y) for both model fit and in the evaluation of prediction error provides a bias view
as to how the model will perform with new values of the predictor variables.

Cross validation is a model evaluation method that is better than simply looking at the residuals.
Residual evaluation does not indicate how well a model can make new predictions on cases it has
not already seen. Cross validation techniques tend to focus on not using the entire data set when
building a model. Some cases are removed before the data is modeled; these removed cases are
often called the testing set. Once the model has been built using the cases left (often called the
training set), the cases which were removed (testing set) can be used to test the performance of
the model on the “‘unseen" data (i.e. the testing set).

The data used in this article was simulated and contains one continuous (interval/ratio) outcome
variable (y) and seven other continuous (interval/ratio) variables (x1, x2, x3, x4, x5, x6, & x7).
All 8 variables have an approximate mean of 10 and are (multivariate) normally distributed.
Initially, a population was created (N = 1,000,000) and from it samples were randomly drawn by
randomly selecting population identification numbers (p.id). The first sample (n = 100) was

drawn and can be read in from the web (as will be shown below). The first sample contains an
additional column for identifying each case of the sample (s.id).

The general idea below is that we are working from a perspective of a researcher or research
team with a theoretically motivated study in which we believe seven measured variables (x1 -
x7) predict the outcome (y). Our goal is to use cross validation to estimate the prediction error of
our model and if warranted, identify a linear model (OLS regression) which offers the lowest
prediction error estimate(s).

Of course, the real goal of this article is to show various approaches to cross validation (and
true validation); as well as showing some of the things which can (and often do) compromise
the validity of model fit estimates and prediction error estimates. Keep in mind throughout; we
use a simple (OLS) linear regression as an example here, but the ideas conveyed here apply to
other types of modeling (e.g. GLM, HLM, SEM, etc.).

Creating the Data

The population (N = 1,000,000) was created using the ‘MASS’ package (Venables & Ripley,
2002) and the ‘mvrnorm’ function to create a multivariate normal variance / covariance matrix
with each of the eight variables centered on a mean of 10. Notice, the first variable was
designated the outcome and the second, third, and fourth variables are the only real predictors —
they have a relationship with the outcome while the other four variables do not. Also, there is no
multicollinearity among the second, third, and fourth variables; whereas, there is
multicollinearity among the other four variables.

[

-
R R Console e B e S|
File Edit Misc Packages Windows Help

N <- 1000000

v

library (MASS)

Sigma <- matrix(ec(i.o0, .80, .50, .20, .00, .00, .00, .00,

.00, .10, .1 8)
X <= mvrnorm{N, Sigma, mu=c {10, TRUE)

e O B B B B . B R

Then, a population identification variable (p.id) was created using the ‘seq’ function for
sequentially labeling the cases from 1 to 1,000,000. Finally, the variables were put into a data
frame and the variables were renamed.

File Edit Misc Packages Windows Help

>
>
>
>
>
>
>
>
>
>
>

p.id <- seq(1i:N)

population.df <- data.frame(p.id, xﬂ
names (population.df) [2] <- "y"

names (population.df) [3] <- "x1"
names (population.df) [4] <- "x2"
names (population.df) [5] <- "x3"
names (population.df) [6] <- "x4"
names (population.df) [7] <- "x5"
names (population.df) [B] <- "x6™
names (population.df) [8] <- "x7"

Next, two samples were drawn by randomly picking population identification numbers.

File Edit Misc Packages Windows Help

> n <- 100

> s.id <- seg(l:n)

samp <- sample (population.df[,1], n, replace = FALSE)
samplel.df <- data.frame(s.id,population.df[samp,])
rm(n, s.id, samp)

>
>
>
>

File Edit Misc Packages Windows Help

> n <- 100

> s.id <- seg(l:n)

samp <- sample (population.df[,1], n, replace = FALSE)
sample2.df <- data.frame(s.id,population.df[samp,])
rm(n, s.id, samp)

VVVY

Then, all three data frames and the workspace were saved out to the desktop and posted on the
web so that they could be read in from the web and offer repeatable results.

File Edit Misc Packages Windows Help

> write.table (population.df,

+ "C:/Users/jds0282/Desktop/CrossvValidation/cv_population.df.txt",
- sep=",", col.names=TRUE, row.names=FALSE, quote=TRUE, na="NA")
> write.table(samplel.df,

- "C:/Users/jds0282/Desktop/CrossValidation/cv_samplel.df.txt",

+ sep=",", col.names=TRUE, row.names=FALSE, gquote=TRUE, na="NA")
> write.table (sampleZ.df,

+ "C:/Users/jds0282/Desktop/CrossValidation/cv_sample2.df.txt",

+ sep=",", col.names=TRUE, row.names=FALSE, gquote=TRUE, na="NA")
> save.image ("C:\\Users\\jds0282\\Desktop\\CrossValidation\\CrossValidation 003.RData")
> |

Examples

Read in the first sample data file (n = 100) from the web naming it "samplel.df" as below; and
get the ubiquitous 'head' and 'summary' of the data to see what it looks like.

File Edit Misc Packages Windows Help

> samplel.df <- read.table("http://www.unt.edu/rss/class/Jon/R_SC/Module9/CrossValidation/cv_samplel.df.txt",

+ header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)
> head(samplel.df)

s.id p.id y x1 x2 x3 x4 x5 x6 ®7
i 1 297497 10.239%325 95.468152 10.704792 10.542263 9.014519 10.102986 10.295%0 9.861752
2 2 218250 10.467680 11.457565 8.870517 9.%03951 10.312773 9.714411 11.32481 11.280861
3 3 808994 11.606858 ©9.995756 11.690831 11.312753 9.394473 8.883531 10.00956 9.582854
4 4 352628 9.565044 10.052380 8.950241 8.487879 ©.634021 8.146134 9.99382 9.561203
5 S 371676 9.904931 9.370441 10.906479 11.628177 11.768006 10.689805 10.84285 11.275871
6 6 342721 9.647289 95.130054 10.284733 10.106447 8.736938 9.837188 10.29698 10.506574
> summary(samplel.df

s.id p.-id v x1 e x3

Min. : _1:00 Min. : 33985 Min. % Tl Min. : 7651 Min. : 6.607 Min. : 7.543

1st Qu.: 25.75 1st Qu.:299989 1st Qu.: 9.411 1st Qu.: 9.456 lst Qu.: 9.175 ist Qu.: 9.328
Median : 50.50 Median :465996 Median :10.038 Median :10.092 Median :10.050 Median :10.069

Mean : 50.50 Mean :5105%6 Mean :10.0%2 Mean :10.159%9 Mean : 9.978 Mean :10.027

3xd Qui: “715:25 3rd Qu.:710626 3rd Qu.:10.83% 3rd Qu.:10.743 3xd Qu.:10.707 3rd Qu.:10.655

Max. :100.00 Max. 979113 Max. £12.019 Max. :12.589 Max. :12.690 Max. :12.011
x4 x5 x6 x7

Min. : 72817 Min. : 7.665 Min. : 6.982 Min. : 6.900

1st Qu.: 9.664 1st Qu.: 9.339 lst Qu.: 9.539 1st Qu.: 9.506
Median :10.287 Median :10.032 Median :10.031 Median :10.127

Mean :10.176 Mean :10.015 Mean :10.083 Mean +10.117
3rd Qu.:10.695 3rd Qu.:10.634 3rd Qu.:10.628 3rd Qu.:10.897
Max. :112.329 Max. :12.392 Max. :12.832 Max. :12.401
]|

Fit the original sample 1 data to the linear model and calculate the Average Residual Squared
Error for all cases in the sample (baseline [and biased] prediction error estimate: RSE.n).

File Edit Misc Plcges Windows Help

> sampl.lm <- Im(y ~ x1 + 22 + =23 + x4 + x5 + x6 + x7, samplel.df)
> summary(sampl.lm)

Call:
Im(formula = y ~ x1 + %2 + x3 + x4 + x5 + x6 + x7, data = samplel.df)

Residuals:
Min ip Median 3Q Max
-0.154608 -0.056157 0.004808 0.045365 0.186316

Coefficients:
Estimate Std. Error t walue Pr(>|t])

(Intercept) -2.778%77 0.169566 -16.389 < 2e-16 **¥

x1 0.862742 0.008341 103.429 < 2e-16 *¥*

x2 0.547078 0.007593 72.050 < 2e-16 *¥*

x3 0.235641 0.008475 27.803 < 2e-16 ***

x4 -0.1642%0 0.009121 -18.013 < 2e-16 ***

x5 -0.14093% 0.009475 -14.874 < 2e-16 **~*

%6 0.018872 0.017262 1.093 0.277

x7 -0.081176 0.018421 -4.407 2.84e-05 #ww

Signif. codes: 0 '“***’ (.001 ‘**’ 0.01 ‘*’ 0.05 *." 0.1 " 1

Residual standard error: 0.07509 on 92 degrees of freedom
Multiple R-squared: 0.95942, Adjusted R-squared: 0.9938
F-statistic: 225% on 7 and %2 DF, p-value: < 2.2e-16

> RSE.n <- (sum((samplel.dfSy - sampl.lm$fitted.values)"2))/nrow(samplel.df)
> RSE.n

[1] 0.005187536

> |

These initial estimates (generated above) indicate superb model fit (R-squared & Adj. R-
squared) and an extremely small prediction error estimate (RSE.n); however, they are all
compromised by over-fitting. If you are not familiar with the scientific notation of R, the ‘e-00’
refers to a negative exponent and the ‘e+00’ refers to a positive exponent. For example, 5.234e-
03 =0.005234 and 5.234e+03 = 5234.00.

Split-half Cross Validation

Split-half cross validation (also called: split-sample or hold-out validation) involves simply
dividing the data into two halves; one the training set, on which the model is fit, and one the
testing set, on which the model is evaluated.

Divide the sample data into two halves, the training set and the testing set.

File Edit Misc Packages Windows Help

> nrow(samplel.df)

[1] 100

> training.set <- samplel.df([1:50,
> head(training.set)

s.id p.id vy x1 x2 x3 x4 x5 x6 x7
297497 10.239325 9.468152 10.704792 10.542263 9.014519 10.102986 10.29590 9.861752
218250 10.467680 11.457565 8.870517 9.%03951 10.312773 9.714411 11.32481 11.280861
808994 11.606858 ©9.995756 11.650831 11.312753 .394473 8.883531 10.00956 9.582854
352628 9.565044 10.092380 ©8.950241 8.487879 .634021 8.146134 9.959382 9.561203
371676 9.904931 9.370441 10.906479 11.628177 11.768006 10.689805 10.0684285 11.275871
342721 9.647289 9.130054 10.284733 10.106447 8.736938 9.837188 10.29698 10.506574
> testing.set <- samplel.df[51:100,]
> head (testing.set)

s.id p.id v il x2 x3 x4 x5 x6 x7
51 51 183190 9.532576 9.803391 9.898863 9.591129 9.510771 11.179013 10.527221 11.149856
52 52 767464 9.171071 8.7986%94 9.751533 10.122447 5.713885 B.816620 9.67689%93 ©9.025118
53 53 144760 10.753408 10.584856 11.020712 11.188528 12.294643 11.255245 12.831842 11.743183
54 54 704173 11.021633 10.555549 11.191503 11.271303 10.560586 11.475620 10.903804 10.929445
55 55 679179 11.031378 10.49476% 11.158354 10.454756 10.892952 9.890623 B.584673 9.00499%
SGI 56 382746 9.847144 10.825381 8.316025 10.048572 10.086709% 10.110882 11.503425 11.061784
>

oL W
o U s N

Specify/fit the model with the training set.

File Edit Misc Packages Windows Help

> model.l <- Ilm(y ~ x1 + X2 + x3 + x4 + x5 + %6 + x7, data = training.set)
> summary (model.l)

Call:
Im(formula = y ~ x1 + X2 + %3 + x4 + x5 + x6 + x7, data = training.set)
Residuals:

Min iQ Median 3Q Max

-0.148511 -0.057115 0.009986 0.050032 0.153606

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -2.768627 0.271758 -10.188 6.42e-13 ***

x1 0.858630 0.013389 €4.131 < 2e-16 ***

x2 0.542511 0.011220 48.351 < 2e-16 ***

x3 0.244069 0.012332 19.792 < 2e-16 ***

x4 -0.154081 0.012962 -11.887 5.05e-15 *&*

x5 —-0.148143 0.014783 -10.021 1.05e-12 ***

x6 -0.004515 0.029521 -0.151 0.8808

x7 -0.061135 0.031044 -1.969 0.0555

Signif. codes: 0 **¥%F 0 _Q01 ‘“** Q.01 ‘%' 0.05 ‘*." 0.1 v " 1

Residual standard error: 0.07938 on 42 degrees of freedom
Multiple R-squared: 0.9831, Adjusted R-squared: 0.9592
F-statistic: 865.1 on 7 and 42 DF, p-value: < 2.2e-16

> |

Apply the specified model (coefficients) to predictor values from the testing set to predict (model
based) outcome values of the testing set.

File Edit Misc Packages Windows Help

> attach(testing.set)
> model.l1lScoefficients

(Intercept) x1 x2 x3 x4 x5 x6 x7
-2.768627071 0.858629942 0.542510968 0.244069326 -0.154081005 -0.148142918 -0.004514858 -0.061134844
> y.hat <- model.lScoefficients[1l] + model.lSccefficients[2]*x1l + model.lScoefficients[3]*x2 +
+ model.lS5coefficients[4]*x3 + model.l%coefficients[5]*x4 + model.lScoefficients[6]*x5 +
+ model.l$coefficients[7] *x6 + model.lScoefficients[8] *x7

> |

Compare these predicted values to the actual values of the outcome in the testing set.

File Edit Misc Packages Windows Help

> t.test(y.hat, y, paired = TRUE)
Paired t-test

data: vy.hat and y
t = 1.1791, df = 49, p-value = 0.244
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.008740101 0.033560446
sample estimates:
mean of the differences
0.01241017

> cor.test (y.hat, y)
Pearson's product-moment correlation

data: vy.hat and y
t = 94.4683, df = 48, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
$5 percent confidence interval:
0.9952602 0.9984871
sample estimates:
cor
0.9973215

> library(car)|

Loading regquired package: MASS
Loading reguired package: nnet
Loading required package: survival
Loading required package: splines
> fcatterplot{y.hat, y)

>

File History Resize

The results above look great; no difference between the two (paired) means, the correlation is
virtually +1....perhaps a bit too good to be true?

Calculating the average cross validation sums of squares.

R R conzole

File Edit Misc Packages Windows Help

> cv.ss <- sum((y - y-.hat)“*2)/length(y)
> Ccv.ss

[1] 0.005581758

> |

Compare the 'cv.ss' to the Average Residual Squared Error (RSE.n). Notice, they are virtually the
same, with RSE.n slightly biased (estimating less prediction error). The difference would be

more pronounced with real data; here we have no measurement error and the effects sizes are
massive.

ﬁ—n Console

File Edit Misc Packages Windows Help

> RSE.n
[1] 0.005187536

> cv.ss

[1] 0.005581758
2|

Leave One Out Cross Validation

The Leave One Out Cross Validation (LOOCYV) strategy in its most basic form, simply takes one
observation out of the data and sets it aside as the 'testing set' like what was done above. Then
the model is applied to the training set of n - 1 cases (i.e. the data minus the single testing set
case). The resulting coefficients are applied to the testing set case to produce a predicted value
which in turn is then compared to the actual value (of y) of that single case. Below, we avoid the
most basic form of LOOCYV and instead iteratively conduct the procedure across all cases (i.e.
each case is 'left out' once).

Setting up the initial conditions and creating an empty vector to store the values of y.hat for each
iteration; then running the LOOCYV iteratively with a ‘for-loop’.

File Edit Misc Packages Windows Help

> n <=0

> y.hat <- as.wvector(0)

> for (i in 1 : nrow(samplel.df)) {

G 3 n<- 1+ n

+ model <- Im(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = samplel.df[-n,])

- y.hat[i] <- modelScoefficients[l] + modelScoefficients([2]*samplel.df[n,4] +

- modelScoe ients[3] *samplel.df[n,5] + modelS%coefficients[4]*samplel.df[n,6] +
+ model$coe ients[5] *samplel.df[n,7] + model$coefficients[6]*samplel.df[n,8] +
+ modelScoefficients[7] *samplel.df[n,9] + modelScoefficients[8]*samplel.df[n,10]
+ }l

>

Calculating the average cross validation sums of squares and comparing it to our baseline RSE.n;
again, both are very close to zero; with the cv.ss indicating an even smaller estimate of prediction
error.

File Edit Misc Packages Windows Help

> cv.ss <- sum((samplel.dfSy - y.hat)“2)/1000
> CV.s88

[1] 0.0006070758

> RSE.n

[1|} 0.005187536

>

Bootstrapped LOOCV

Here, we create 10 bootstrapped samples (sample WITH replacement from the original sample)
and apply the LOOCYV from above to each of the 10 bootstrapped samples; each time saving the
y.hat values and then calculating the errors (cv.ss) as well as the correlation between y.hat and

the actual values of y in each bootstrapped sample. Typically, more than 10 bootstrapped
samples would be required to reach a stable estimate; for example purposes, we use only 10 here.

Creating three empty objects for storing the output values; then run the for-loop.

File Edit Misc Packages Windows Help

> errors <- as.data.frame (matrix(0, ncol = 10, nrow = 50)) i
> cv.ss <- as.vector(0)

> corr.yhat <- as.wvector(0)

>for (i in 1 = 10){

+ boot.id <- sample (samplel.df$s.id, 50, replace = TRUE)

+ boot.sample <- data.frame (samplel.df[boot.id,])

+ n<-0

+ y.hat <- as.wvector (0)

+ for (k in 1l:nrow(boot.sample)) {

+ n<=1+mn

¥ model <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = boot.sample[-n,])

+ y.hat[k] <- model$Scoefficients[1l] + modelS$coefficients([2]*boot.sample(n,4] +

+ modelS$coefficients[3] *boot.sample[n,5] + modelScoefficients([4]*boot.sample[n,6] +
+ model$coefficients[5] *boot.sample(n,7] + model$Scoefficients[6]*boot.sample(n,8] +
+ model$coefficients[7] *boot.sample[n, 9] + modelScoefficients[8]*boot.sample[n,10]
+ }

+ errors[,i] <- boot.sample$y - y.hat

+ cv.ss[i] <- (sum(boot.sample$y - y.hat)*2)/50

+ corr.yhat[i] <- cor(boot.sample$y, y.hat)

bt

>

Summary of the errors for each of the 10 iterations (loops); each vector corresponds to each
loop/bootstrapped sample.

File Edit Misc Packsges Windows Help

> summary (errors)

vl v2 v3 vé V5
Min. :-0.1764885 Min. :-0.166096 Min. :-0.16378S Min. :-0.219415 Min. :-0.211913
ist Qu.:-0.0712985 ist Qu.:-0.042399 1st Qu.:-0.047569 1st Qu.:-0.065178 1st Qu.:-0.064804
Median :-0.000871% Median :-0.010176 Median :-0.008932 Median : 0.007586 Median :-0.029720

Mean :=-0.0014%68 Mean :=0.001436 Mean :=0.001562 Mean :=0.003047 Mean :=0.003012
3rd Qu.: 0.0714475 3rd Qu.: 0.049594 3rd Qu.: 0.077336 3rd Qu.: 0.068355 3rd Qu.: 0.067220
Max. : 0.1986662 Max. : 0.173689 Max. : 0.215780 Max. : 0.174627 Max. : 0.192277

vé v? Ve V9 vio
Min. :-0.145993 Min. :-0.2107229 Min. :-0.1405947 Min. :-0.1554108 Min. :-0.1510409

1st Qu.:-0.057849 1st Qu.:-0.070016l 1lst Qu.:-0.0532896 1st Qu.:-0.025643¢6 1st Qu.:-0.0446621
Median : 0.0018%8 Median : 0.0132802 Median : 0.0051424 Median :-0.0024489 Median : 0.0197861

Mean 0.000227 Mean :-0.0007376 Mean :—0.0006105 Mean :-0.0001666 Mean :-0.0002541
3rd Qu.: 0.043717 3rd Qu.: 0.0561143 3rd Qu.: 0.041329%0 3rd Qu.: 0.0227421 3rd Qu.: 0.0476740
Max : 0.140738 Max. : 0.1537669 Max. : 0.1167966 Max. : 0.1642784 Max. : 0.1357129
> |

Comparison of the average cross validation sums of squares for each of the 10 loops (cv.ss) to
the Average Residual Squared Error (RSE.n) from each iteration and the bootstrapped average of
the cv.ss across iterations (an average of the averages).

R R consce
File Edit Misc Packages Windows Help

> RSE.n

[1] 0.005187536

> ¢cv.ss
[1] 1.120235e-04 1.030956e-04 1.219923e-04 4.640630e-04 4.534687e-04 2.577242e-06 2.719503e-05 1.863842e-05
[¢] 1.387626e-06 3.228684e-06

> mean (cv.ss)

[1ﬂ 0.0001307674

>

All 10 bootstrapped estimates (and their average) are lower than the RSE.n. The average of the
averages across iterations provides the more robust estimate of prediction error.

Correlations between y and y.hat for each of the 10 iterations; all of which are all nearly 1.0.

File Edit Misc Packages Windows Help

> corr.yhat
[1] 0.9963000 0.9947795 0.9964685 0.9949824 0.9958151 0.9970609 0.5962155 0.9979315 0.9965142 0.9977084
>

Bootstrapped (cross validation): Estimates of Prediction Error (Efron &
Tibshirani, 1993).

The bootstrapped cross validation approach represents a robust method of estimating the
prediction error for a model. Each bootstrapped sample (sampling WITH replacement from the
original sample) has the model fit to it and the subsequent coefficients are then used to predict
outcome scores of the original sample as well as the outcome scores of the bootstrapped sample.
Naturally, the errors associated with the original sample estimates will be larger than the errors
associated with the bootstrapped sample estimates; because, the bootstrapped sample was used to
fit the model and generate the coefficients. Then, using the DIFFERENCE between the original
sample errors and the bootstrapped sample errors provides us with an estimate of bias or
"optimism" (Efron & Tibshirani, 1993, p. 248). Finally, the average optimism (average of each
optimism from all the bootstrapping) can be added to the original sample RSE.n; which corrects
it and provides a more accurate estimate of average prediction error.

Setting initial conditions and creating an empty data frame to store results. The little ‘n’ sets the
number of cases in each bootstrapped sample and the capital ‘N’ sets the number of bootstrapped
samples to draw. The ‘prediction.error’ data frame stores the original sample errors, the
bootstrapped sample errors, and the optimism value from each iteration or loop.

-
R RConsole
File Edit Misc Packages Windows Help

> n <- 100
> N <- 200

> prediction.errors <- as.data.frame (matrix(0, ncol = 3, nrow = N))
>

Run the bootstrapped cross validation loop.

o
IR R Console]
TFiI: Edit Misc Packages Windows Help

> for (i am 1 : W)

+ boot.id <- sample(samplel.dfSs.id, n, replace = TRUE)
boot.sample <- data.frame (samplel.df[boot.id,]
model <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = boot.sample)
samp.fv <- modelScoefficients[1l] + modelScoefficients[2]*samplel.df$xl +
modelScoefficients[3] *samplel.df$x2 + modelScoeff nts[4] *samplel.df$x3 +

modelScoe cients[5] *samplel.df$x4 + modelScoefficients[6]*samplel.dfSx5 +

W o

4+ 4+ ++ e

modelScoefficients[7] *samplel.df$x6 + modelS$coefficients[8] *samplel.df$x7
s.error <- sum((samplel.dfSy - samp.fv)”"2)/n
+ b.error <- sum((boot.sampleSy - modelSfitted.values)”2)/n
optimism <- s.error - b.error

predicticn.errors[i,] <- c(s.error, b.error, optimism)

V+t++

The 'prediction.errors' data frame contains the following: the original sample-based prediction
error estimate (average cross validation sums of squares), the bootstrapped sample-based
prediction error estimate (average cross validation sums of squares), and the optimism estimate
(difference between the previous two); 'prediction.errors' contains all 3 for each N = 200
iterations (bootstraps).

> names (prediction.errcors) [1] <- "Sample.Error.Estimates”
> names (prediction.errors) [2] <- "Boot.Error. Estimates”
> names (prediction.errors) [3] <- "Optimism"

> summary (prediction.errors)

Sample.Error.Estimates Boot.Error. Estimates Optimism

Min. :0.005213 Min. :0.003000 Min. :-0.0012029
1st Qu.:0.005453 1st Qu.:0.0043%96 1st Qu.: 0.0003085
Median :0.005567 Median :0.004838 Median : 0.0007585
Mean :0.005617 Mean :0.004847 Mean : 0.0007696
3rd Qu.:0.005726 3rd Qu.:0.005281 3rd Qu.: 0.0012385
Max. :0.006751 Max. 0.006684 Max. 0.0026862

> |

Averages of each and a comparison to the RSE.n.

File Edit Misc Packages Windows Help

> avg.s.pe <- mean(prediction.errors[,1])
> avg.s.pe
[1] 0.005616914
> avg.b.pe <- mean(prediction.errors[,2])
> avg.b.pe
[1] 0.004847358
> avg.optimism <- mean(prediction.errors([,3])
> avg.optimism
[1] 0.0007695554
> RSE.n
[1ﬂ 0.005187536
>

The improved bootstrapped prediction error estimate, which adds a bias correction to the original
RSE.n; because, RSE.n is biased downwardly (i.e. predicted error estimate is smaller [less error]
than it really should be due to overfitting). See Efron, 1993, p. 237 - 249.

-

File Edit Misc Packages Windows Help

> avg.optimism + RSE.n
[1] 0.0059570%1

> |

Real Cross Validation

'Real cross validation' = collecting another sample of data from the same population and using
the new data (measured with the same instruments) to "validate" the model's accuracy. Of
course, in actual research it is often impossible to do this, because of funding, time constraints,
etc. Collecting new data: here, this is very easy because we have simulated the data by first
generating a simulated population and then sampling from it to build the model. This is why our
estimates are very 'unbiased' above; most of the prediction error estimates (regardless of cross
validation technique) have produced very similar estimates (virtually the same near-zero
estimates of prediction error).

Collecting (drawing) a new sample from the population. Here; read in the second sample from
the web, naming it "sample2.df".

File Edit Misc Packages Windows Help

> sample2.df <- read.table("http://www.unt.edu/rss/class/Jon/R_SC/Module%/CrossValidation/cv_sample2.df.txt",

+ header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)
> head (sample2.df)

. id p.id y x1 x2 x3 x4 x5 x6 x7
1 1 582317 10.501239 9.992421 10.2B7485 9.812357 9.248713 8.622629 7.979130 7.829725
2 2 209790 10.522875 10.005652 10.278167 10.955029 10.173412 9.961691 7.876121 8.218935
3 3 248466 10.729997 11.288404 10.135821 9.367200 10.407756 11.996042 8.507795 9.236061
4 4 932425 10.830438 11.150997 9.922778 9.234003 10.843946 9.300424 8.399428 B8.460402
5 S 431021 10.117095 9.960406 10.558703 10.214714 10.614445 10.637828 8.977879 9.691200
6 6 719027 9.806795 9.262890 11.454777 9.304795 9.736196 10.629906 11.759719 11.921484
> summary (sample2.df)

s.id p.id y x1 x2 x3

Min. : 1.00 Min. 5 ‘2272 Min. : 6.482 Min. : 6.548 Min. : 7.024 Min. .590

T
ist Qu.: 25.75 1st Qu.:2098173 1st Qu.: 9.333 1st Qu.: 9.627 ist Qu.: 9.479 ist Qu.: 9.289
Median : 50.50 Median :386911 Median :10.227 Median :10.135 Median :10.090 Median : 9.844
Mean : 50.50 Mean 1443510 Mean :10.030 Mean :10.048 Mean : 9.960 Mean : 9.998
3rd Qu.: 75.25 3rd Qu.:662813 3rd Qu.:10.757 3rd Qu.:10.629 3rd Qu.:10.533 3rd a.:10.573
Max. :100.00 Max. 1994411 Max. :12.115 Max. :12.355 Max. :12.359 Max. :13.202
x4 x5 x6 x7

Min. : 6.951 Min. : 7.453 Min. 7:113 Min. : 7.416

ist Qu.: $.366 lst Qu.: 9.275 1st Qu.: 9.325 1st Qu.: 9.20%9

Median :10.084 Median :10.018 Median : 9.936 Median :10.091
9
0
2

Mean ¥ 9993 Mean = 9.978 Mean . 955 Mean : 9,978
3rzd Qu.:10.812 3rd Qu.:10.677 3rd Qu.:10.683 3rd Qu.:10.697
Max. :13.145 Max. £12.163 Max. :12.328 Max. :12.234
> |

Now we can use the original sample's linear model coefficients, applied to the new (2nd)
sample's data (predictor variables), to 'predict' values on the outcome variable (y) of the new
(2nd) sample data set. Then we can compare the "predicted' values (y.hat) with the actual values
(y) from the new data. Recall the first sample’s linear model.

ile Edit Misc Packages Windows Help

> summary (sampl.lm)

call:
Im(formula = y ~ x1 + %2 + x3 + x4 + x5 + x6 + x7, data = samplel.df)

Residuals:
Min 1Q Median 3Q Max
-0.154608 -0.05€157 0.004808 0.045365 0.186316

Coefficients:
Estimate Std. Error t wvalue Pr(>|t])

(Intercept) -2.778877 0.165566 -16.385 < 2e-16 **~*
x1 0.862742 0.008341 103.429 < 2e-16 ***
x2 0.547078 0.007593 72.050 < 2e-16 #w*¥
%3 0.235641 0.008475 27.803 < 2e-16 w**¥*
x4 -0.1642%90 0.009121 -18.013 < Z2e-16 ***
x5 -0.14083¢9 0.009475 -14.874 < 2e-16 **¥
x6 0.018872 0.017262 1.093 0.277

x7 -0.081176 0.018421 -4.407 2.84e-05 **~*

Signif. codes: 0 ‘*%%/ (0,001 ‘¥** 0.01 ‘** 0.05 *." 0.1 * " 1

Residual standard error: 0.07509 on 92 degrees of freedom
Multiple R-squared: 0.9942, Adjusted R-squared: 0.9938
F-statistic: 2259 on 7 and %2 DF, p-value: < 2.2e-16

> sampl.lmScoefficients

(Intercept) x1 x2 %3 x4 %5 %6 x7
—2[?7897?47 0.86274221 0.54707821 0.23564062 -0.164289%5 -0.14093930 0.01887163 -0.08117551
>

Applying the coefficients to the new predictor variable data to create the 'predicted' values of the
outcome (y.hat).

File Edit Misc Packages Windows Help

> y.hat <- sampl.lm$coefficients[1l] + sampl.lm$coefficients[2]*sample2.df$x1 + sampl.lmScoefficients[3]*sampl$

+ sampl.lmScoefficients[4] *sample2.df$x3 + sampl.lmScoefficients[5] *sample2.dfSx4 +
+ sampl.lmScoefficients[6] *sample2.df$x5 + sampl.lm$Scoefficients([7] *sample2.dfSx6 +
+ sampl.lm$Scoefficients[8] *sample2.dfS$x7
> summary (y.hat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.39 9.33 10.18 10.02 10.79 11.87
> |

Comparison of the 'predicted’ values (y.hat) to the actual (new) values of the outcome
(sample2.df$y).

File Edit Misc Packages Windows Help

> summary (y.hat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.39 9.33 10.18 10.02 10.79 11.97
> summary (sample2.dfSy)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
6.482 9.333 10.230 10.030 10.760 12.110
> mean (y.hat)
[1] 10.02455
> mean (sample2.df$y)
[1] 10.03038
> var (y.hat)
[1] 1.065014
> var (sample2.dfSy)
[1] 1.069242
> sd(y.hat)
[1] 1.033%32
> sd(sample2.dfSy)
[1] 1.034042
> t.test(y.hat, sample2.dfSy, paired = TRUE)

Paired t-test

data: y.hat and sample2.dfSy
t = -0.8159, df = 99, p-value = 0.4165
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.020007830 0.008348458
sample estimates:
mean of the differences
-0.005829686

> cor.test(y.hat, sample2.dfS$y)
Pearson's product-moment correlation

data: y.hat and sample2.dfS$y
t = 142.9%945, df = 98, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9964470 0.9983956
sample estimates:
cor
0.9976122

s

The following creates two histograms (in one graphics window); showing y.hat and y.

File Edit Misc Packages Windows Help

oldpar <- par(oma=c(0,0,3,0), mfrow=c(2,1))

hist(y.hat, col = "lightgreen”, xlim = c(6,14), main = "Histogram of 'y.hat'", xlab = "Mean = 10.025, SD = §
abline (v = mean(y.hat), col = "blue”, lwd = 2, lty = "dashed")

hist (sample2.df$y, col = "lightblue”, xlim = c(6,14), main = "Histogram of new 'y'", xlab = "Mean = 10.030,§%
abline (v = mean(sample2.dfSy), col = "darkgreen"™, lwd = 2, lty = "dashed")

par (oldpar)

VVVVVVY

'R R Graphics: 2 (ACTIVE
| File History Resize

Histogram of 'y.hat'

o _ 1
o |
|
i -
2
S o
U’ -
o
L
l"} —
O —
[I I 1
6 8 10 12 14
Mean = 10.025, SD = 1.034
Histogram of new 'y'
Q
[op]
&
& o
=3 o~
o
@
Lt o _|
O pia l—|— —— |
[I I 1
6 8 10 12 14

Mean = 10.030, SD = 1.034

So, clearly our model (based on the original sample) is doing an excellent job of predicting new
values of 'y' based on new values of all the predictors. This is due to a few advantages of
simulating or creating the data in the manner we did: the variables have zero measurement error
and the cases were randomly sampled from a defined (and constant) population (i.e. zero
sampling error/bias); although, because this data is simulated, there is a slight chance the same
case(es) may appear in multiple samples. However, that was not the case here; meaning, each
case is unique to sample 1 or sample 2. This is largely due to the overwhelmingly large

population size (N = 1000000) in relation to sample sizes (n = 100).

Furthermore, our samples have greater than a 10 to 1 ratio of cases to variables. Simply put, our
sample sizes (n = 100 each), though not large, are adequate because; for each of our § variables

we have at least 10 cases -- it would obviously be better to have a 20 to 1 (or even higher) ratio;
but, 10 to 1 is about the lowest acceptable ratio. However, one should also remember that the
sample size in relation to the population size is important. The smaller the sample (in comparison
to the population), the more likely the sample, even a random sample, will contain bias.

In a 'real-world' setting, it is not uncommon to have violations of one, or more of the above
conditions -- any one of which would bias the estimate of RSE.n; meaning the model would have
more prediction error than the RSE.n would indicate.

Two other threats to the accuracy of estimating prediction errors for a model are model
specification error and model search error. Model specification error can happen in three ways;
(1) using the wrong model 'form' (e.g. using a linear model rather than a quadratic model when
the quadratic more accurately represents the data), (2) errors of omission (leaving crucial
variables out of the model), and (3) errors of inclusion (including non-essential variables in the
model). Model search error is related to the first type of model specification error mentioned
above. Model search error refers to the bias associated with the method of selecting a model
form. In other words, model search error refers to the uncertainty of picking the model form you
did; which can contribute to the prediction error. The term model search error is used as a
reflection of the search for the best model or best set of models (e.g. Bayesian Model
Averaging). It is important to note that cross validation techniques do not address the problem of
model search nor do they address model specification error of the first type (i.e. using the wrong
model form). Errors of inclusion can increase multicollinearity and cause bias in model fit

estimates, prediction error estimates, and individual parameter estimates (i.e. coefficients). To
clarify this last point, notice that throughout the above results, our model has performed almost
perfectly with respect to model fit (R-squared & Adj. R-squared), small residuals (errors), and
very small predicted error estimates. However, closer inspection of the sample(s) data (and the
population data) will reveal two related faults with our model.

First, we have model specification errors of inclusion; four of our predictors are not related to the
outcome (AT ALL!), which means they have no business being included in the model. The only
thing they do is artificially increase fit measures (R-squared & Adj. R-squared). Second, these
four variables are even more disruptive because they bring with them multicollinearity
(intercorrelations among themselves and to a lesser extent with the actual 3 predictors); a
condition which decreases the validity of the coefficients in terms of interpreting variable
importance.

To ‘see’ the relationships referred to above, simply take a look at the correlation matrix of ‘y’
and all the ‘x’ variables. Below, both sample correlation matrices are displayed with rounding
two places after the decimal (if interested in seeing the matrices without rounding use this:
cor(samplel.df],3:10]) and this: cor(sample2.df],3:10])

File Edit Misc Packages Windows Help
> round({cor (samplel.df[,3:10]), 2)

Y ®i %2 %3 x4 x5 x6 x7
Yy 1.00 0.74 0.56 0.13 0.07 0.07 -0.01 0.00
x1 ©0.74 1.00 -0.04 -0.20 0.16 0.25 0.15 0.22
x2 0.56 -0.04 1.00 0.09 0.12 0.06 -0.11 -0.06
x3 0.13 -0.20 0.09 1.00 0.01 -0.02 0.14 -0.05
x4 0.07 0.16 0.12 0.01 1.00 0.01 0.13 0.06
x5 0.07 0.25 0.06 -0.02 0.01 1.00 0.25 0.43
x6 -0.01 0.15 -0.11 0.14 0.13 0.25 1.00 0.87
x7 0.00 0.22 -0.06 -0.05 0.06 0.43 0.87 1.00
> round(cor (sample2.df[,3:10]), 2)

¥ x1 x2 x3 x4 x5 x6 x7
b4 1.00 0.80 0.49 0.29 -0.07 0.02 -0.12 -0.09
xl 0.80 1.00 -0.05 0.17 0.06 0.19 0.01 0.07
x2 0.49 -0.05 1.00 -0.01 0.01 -0.06 -0.16 -0.08
x3 ©0.29 0.17 -0.01 1.00 0.23 0.21 0.26 0O.16
x4 -0.07 0.06 0.01 0.23 1.00 -0.05 0.18 0.07
x5 0.02 0.19 -0.06 90.21 -0.05 21.00 0.25 0.48
x6 -0.12 0.01 -0.16 0.26 0.18 0.25 1.00 0.84
x?|—0.09 0.07 -0.08 0.16 0.07 0.48 0.84 1.00
>

If we examine the true population values we see that indeed, only x1, x2, and x3 are related to y;
the other four variables (x4, x5, x6, & x7) do not contribute to y and they do add
multicollinearity to our model (further confusing the results). However, in order to review the
population, we must read in the original work space (because the internet connection will time
out if attempting to read in the data directly due to the large number of cases; N = 1,000,000).

R R Console.
File Edit Misc Packages Windows Help
> connection <- url ("http://www.unt.edu/rss/class/Jon/R_SC/Module9/CrossValidation/CrossvValidation_003.RData”
> load(connection)
> round (cor (population.df[,2:9]), 2)
Y x1 x2 x3 x4 x5 x6 x7
y 1.0 0.80 0.50 0.20 0.00 0.00 0.00 0.00
x1 0.8 1.00 0.00 0.00 0.15 0.15 0.05 0.10
x2 0.5 0.00 1.00 0.00 0.10 0.05 0.10 0.15
x3 0.2 0.00 0.00 1.00 0.10 0.15 0.15 0.05
x4 0.0 0.15 0.10 0.10 1.00 0.15 0.25 0.25
x5 0.0 0.15 0.05 0.15 0.15 1.00 0.35 0.55
x6 0.0 0.05 0.10 0.15 0.25 0.35 1.00 0.85
x7 0.0 0.10 0.15 0.05 0.25 0.55 0.85 1.00
Warning message:
Clrsing unused connection 3 (gzcon(http://www.unt.edu/rss/class/Jon/R_SC/Module9/CrossValidation/Crossvalidat$
>

To compare the ‘true’ population model with the mis-specified model, run both on the
population. Be advised, this takes a minute or so due to the 1,000,000 cases.

File Edit Misc Packages Windows Help

> pop.1lm <- lm(y ~ x1 + x2 + x3, population.df)
> summary (pop.1lm)

Call:
Im(formula = y ~ x1 + %2 + x3, data = population.df)

Residuals:
Min iQ Median 3Q Max
-1.28465 -0.17852 -0.00006 0.17850 1.31010

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) -5.0000000 0.00459%902 -1089.3 €2e-16 *&x

x1 0.8000000 0.0002€46 3023.7 <2@-16 ***
x2 0.5000000 0.0002646 1889.¢8 <2e-16 *=**
%x3 0.2000000 0.00028646 755.9 <28-16 ***

Signif. codes: 0 YRRk 0 001 teEr g 0] AR .05 Y. 0.1 v %

Residual standard error: 0.2646 on 9599996 degrees of freedom
Multiple R-squared: 0.93, Adjusted R-squared: 0.93
F-statistic: 4.42%e+06 on 3 and 999596 DF, p-value: < 2.2e-16

> bad.model <- Im(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, population.df)
> summary (bad.model)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = population.df)

Residuals:
Min 10 Median 30 Max
-0.29%3255 -0.0436%1 0.000008 0©0.043602 0.2%1613

Coefficients:
Estimate Std. Error t valus Pr(>|t])
(Intercept) =-2.666e+00 1.2%0e-03 -2066.1 <2e=16 %%

x1 8.522e-01 6.610e-05 12891.7 <2e-16 **¥*
x2 5.344e-01 6.58le-05 8121.0 <2e-16 ww*
x3 2.344e-01 6.7%92e-05 3451.6 <2e-16 ***
x4 -1.711e-01 6.79%9%e-05 -2517.0 <2e-16 ***
x5 -1.224e-01 §.282e-05 -1477.5 <2e-16 ***
x6 4.094e-02 1.325e-04 30%9.0 <2e-16 *w¥*
x7 -1.018e-01 1.487e-04 -684.5 <2e-16 ww¥
Signif. codes: 0 ‘¥%*’ (_001 ‘**’ 0.01 ‘*' 0.05 '." 0.1 * " 1

Residual standard error: 0.06468 on 999952 degrees of freedom
Multiple R-squared: 0.9958, AEdjusted R-sguared: 0.99%58
F-statistic: 3.4e+07 on 7 and 995992 DF, p-value: < 2.2e-16

> |

Based on the results of the ‘bad.model’ it appears superior; smaller residuals, larger R-squared
and Adj. R-squared, and smaller residual standard errors. But, we ‘know’ those are biased
because the correlation matrix(-ces) shows us what is *truly* related to the outcome (y) and what
is not. Of course, the p-values cannot be relied upon due to the enormous number of cases.

References & Resources

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and Researchers (2nd ed.).
Hoboken, NJ: John Wiley & Sons, Inc.

Efron, B. (1983). Estimating the error rate of a prediction rule: Some improvements on cross-
validation. Journal of the American Statistical Association, 78, 316 - 331.

Efron, B, & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman &
Hall.

Efron, B., & Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap
method. Journal of the American Statistical Association, 92(438), 548 - 560.

Harrell, F., Lee, K., & Mark, D. (1996). Tutorial in Biostatistics: Multivariable prognostic
models: Issues in developing models, evaluating assumptions and adequacy, and
measuring and reducing errors. Statistics in Medicine, 15, 361 — 387. Available at:
http://www.yaroslavvb.com/papers/steyerberg-application.pdf

Harrell, F. (1998). Comparisons of strategies for validating binary logistic regression models.
Available at: http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RmS/logistic.val.pdf

Harrell, F. E. (2001). Regression modeling strategies: With applications to linear models,
logistic regression, and survival analysis. New York: Springer-Verlag, Inc.

Harrell, F. E. (2009). Package 'Design'. Available at CRAN: http://cran.r-
project.org/web/packages/Design/index.html

Maindonald, J., & Braun, W. J. (2011). Package 'DAAG'. Available at CRAN: http://cran.r-
project.org/web/packages/DA AG/index.html

Moore, A. (2008). Cross-Validation: tutorial slides. Available at:
http://www.autonlab.org/tutorials/overfit.html

Ripley, B. (2010). Package "boot'. Available at CRAN: http://cran.r-
project.org/web/packages/boot/index.html

Schneider, J. (1997). Cross validation. Availabe at:
http://www.cs.cmu.edu/~schneide/tut5/node42.html

Venables, W. N., & Ripley, B. D. (2002). Package ‘MASS’. Available at CRAN: http://cran.r-
project.org/web/packages/MASS/index.html

Wikipedia. (2011). Cross-validation (statistics). Available at: http://en.wikipedia.org/wiki/Cross-
validation %?28statistics%29

