Cross Validation techniques in R: A brief overview of some methods,
packages, and functions for assessing prediction models.

Dr. Jon Starkweather, Research and Statistical Support consultant

This month’s article focuses on an initial review of techniques for conducting cross validation in
R. Next month, a more in-depth evaluation of cross validation techniques will follow. Cross
validation is useful for overcoming the problem of over-fitting. Over-fitting is one aspect of the
larger issue of what statisticians refer to as shrinkage (Harrell, Lee, & Mark, 1996). Over-fitting
is a term which refers to when the model requires more information than the data can provide.
For example, over-fitting can occur when a model which was initially fit with the same data as
was used to assess fit. Much like exploratory and confirmatory analysis should not be done on
the same sample of data, fitting a model and then assessing how well that model performs on the
same data should be avoided. When we speak of assessing how well a model performs, we
generally think of fit measures (e.g. R?, adj. R?, AIC, BIC, RMSEA, etc.); but, what we really
would like to know is how well a particular model predicts based on new information. This
really gets at the goals of science and how we go about them; observation yields description,
experimentation yields explanation, and all of those utilize statistical models with the goal of
explanation and/or prediction. When predictions are confirmed, evidence is born for supporting a
theory. When predictions fail, evidence is born for rejecting a theory.

Fit measures, whether in the standard regression setting or in more complex settings, are biased
by over-fitting — generally indicating better fit, or less prediction error than is really the case.
Prediction error refers to the discrepancy or difference between a predicted value (based on a
model) and the actual value. In the standard regression situation, prediction error refers to how
well our regression equation predicts the outcome variable scores of new cases based on
applying the model (coefficients) to the new cases’ predictor variable scores. When dealing with
a single sample, typically the residuals are a reflection of this prediction error; where the
residuals are specifically how discrepant the predicted values (y-hat or ¥) are from the actual
values of the outcome (y). However, because of over-fitting, these errors or residuals will be
biased downward (less prediction error) due to the actual outcome variable values being used to
create the regression equation (i.e. the prediction model). Cross validation techniques are one
way to address this over-fitting bias.

Cross validation is a model evaluation method that is better than simply looking at the residuals.
Residual evaluation does not indicate how well a model can make new predictions on cases it has
not already seen. Cross validation techniques tend to focus on not using the entire data set when
building a model. Some cases are removed before the data is modeled; these removed cases are
often called the testing set. Once the model has been built using the cases left (often called the



training set), the cases which were removed (testing set) can be used to test the performance of
the model on the “unseen” data (i.e. the testing set).

The examples below are meant to show how some common cross validation techniques can be
implemented in the statistical programming language environment R. The examples below focus
on standard multiple regression situations using a sample drawn from a simulated population of
true scores. Next month’s article will show how the population was generated and how each
sample was drawn, as well as a more in-depth exploration of how cross validation techniques
address the over-fitting problem.

Example Data

The examples below were designed to be representative of a typical modeling strategy, where the
researcher has theorized a model based on a literature review (and other sources of information)
and has collected a sample of data. The setting for the examples below concerns a model with
seven hypothesized predictors (x1, x2, x3, x4, x5, x6, & x7), each interval/ratio scaled, and one
interval/ratio outcome variable (y). All variables have an approximate mean of 10. The sample
contains two additional columns, one which identifies cases sequentially in the sample (s.id) and
one which identifies cases sequentially in the population from which it was drawn (p.id). The
sample contains 100 cases randomly sampled from a defined population of 1,000,000
individuals.

First, read in the sample data from the web, naming it ‘samplel.df” (df = data.frame), and getting
the ubiquitous ‘head’ and ‘summary’ to get an idea of what the data looks like.
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mw.unt.edu/rss/class/Jon/R_SC/Module$/CrossValidation/cv_samplel.df.txt",

trip.white=TRUE)

+ head
> head (samp
s.id p-id v x2 x3 x4 x5 x6 x7
297497 10.239325 9.468152 10.704792 10.542263 9.014519 10.102986 10.25590 9.861752
218250 10.467680 11.457565 8.870517 ©.903851 10.312773 5.714411 11.32481 11.280861
808994 11.606858 9.995756 11.690831 11.312753 9.394473 B5.883531 10.00956 9.582854
352628 9.565044 10.092380 B8.9%50241 8.487879 9.634021 §.146134 9.99382 9.561203
371676 9.95045931 9.370441 10.906479 11.628177 11.766006 10.689805 10.84285 11.275871
342721 9.647289% ©9.130054 10.284733 10.106447 8.736%38 ©.837188 10.2%6%98 10.506574
summary (samplel.df)
s.id p.id vy il x2 %3
Min. : 1.00 Min. : 33985 Min. « TLTT0 Min. : 7.651 Min. : 6.607 Min. : 7.543
1st Qu.: 25.75 ist Qu.:299989 1st Qu.: 9.411 1st Qu.: 9.456 1st Qu.: 9.175 1st Qu.: 9.328
Median : 50.50 Median :465996 Median :10.038 Median :10.092 Median :10.050 Median :10.069

NA", dec=".", s

O U s N

Mean : 50.50 Mean :510596 Mean :10.092 Mean :10.15%9 Mean : 9.978 Mean :10.027

3rd Qu.: 75.25 3rd Qu.:710626 3rd Qu.:10.839 3rd Qu.:10.743 3rd Qu.:10.707 3rd Qu.:10.655

Max. :100.00 Max. : 979113 Max. :12.019 Max. :12.589 Max. :12.690 Max. :12.011
x4 x5 X6 =7

Min. s TaB1T Min. : 7.665 Min. : 6.982 Min. : 6.900

1st Qu.: 9.664 ist Qu.: 9.339 1st Qu.: 9.53% 1st Qu.: 9.506
Median :10.287 Median :10.032 Median :10.031 Median :10.127

Mean :10.176 Mean :10.015 Mean :10.083 Mean :10.117
3rd Qu.:10.695 3rd Qu.:10.634 3rd Qu.:10.628 3rd Qu.:10.897
Max. :12.329 Max. :12.392 Max. :12.832 Max. :12.401

The ‘Design’ Package



Next, we specify the model. Typically, we would use the ‘Im’ function from the base ‘stats’
package to specify an Ordinary Least Squares (OLS) regression model. However, here we will
use the ‘ols’ function in the ‘Design’ package (Harrell, 2009). So, first we must load the ‘Design’
package, which has several dependencies.
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> library(Design)|

Loading reguired package: Hmisc

Loading required package: survival

Loading required package: splines

Attaching package: 'Hmisc'

The following object(s) are masked from 'package:survival':
untangle.specials

The following object(s) are masked from 'package:base':
format.pval, round.POSIXt, trunc.POSIXt, units

Design library by Frank E Harrell Jr

Type library(help='Design'), ?DesignOverview, or ?Design.Overview')

to see overall documentation.

Attaching package: 'Design'

The following object(s) are masked from 'package:Hmisc':
strgraphwrap

The following cbject(s) are masked from 'package:survival':

Surv

Now, we can use the ‘ols’ function to specify the model and get a summary of it. Make sure to
set the optional arguments ‘x = TRUE’ and ‘y = TRUE’ as these will save a design matrix of
predictors and a vector of outcome values. These two objects will be used in the cross validation
techniques below. If you are not familiar with the scientific notation of R, the ‘e-00’ refers to a
negative exponent and the ‘e+00’ refers to a positive exponent. For example, 5.234e-03 =
0.005234 and 5.234e+03 = 5234.00.
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> model.l <- ols(y ~ x1 + %2 + %3 + x4 + x5 + %6 + x7, samplel.df, x = TRUE, y = TRUE)
> model.l

Linear Regression Model

ols(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7, data = samplel.df,
x = TRUE, y = TRUE)

n Model L.R. d.£f. RZ Sigma
100 515.3 7 0.9942 0.07509
Residuals:
Min iQ Median 3Q Max

-0.154608 -0.056157 0.004808 0.045365 0.186316

Coefficients:
Value Std. Error t Pr(>|t]

Intercept -2.778%8 0.1659566 -16.389% 0.000e+00
x1l 0.86274 0.008341 103.42% 0.000e+00
x2 0.54708 0.007583 72.050 0.000e+00
x3 0.23564 0.008475 27.803 0.000e+00
x4 -0.1e42% 0.009121 -18.013 0.000e+00
x5 -0.14094 0.009475 -14.874 0.000e+00
x6 0.01887 0.017262 1.093 2.771e-01
x7 -0.08118 0.018421 -4.407 2.836e-05

Residual standard error: 0.0750% on %2 degrees of freedom
Adjusted R-Sguared: 0.9938

>

Next, we can begin exploring cross validation techniques. The 'validate' function in the 'Design’
package "does resampling validation of a regression model, with or without backward step-down
variable deletion" (Harrell, 2009, p. 187). Here, our examples focus on OLS regression, but the
'validate' function can hand a logistic model as well; as long as the model is fit with the 'Irm'
function (Logistic Regression Model) in the 'Design' package. The key part of the output for this
function is the 'index.corrected' measures of fit -- which corrects for over-fitting. We start with
the default values/arguments for 'validate' which uses the 'boot' method (bootstrapped validation;
Efron, 1983; Efron & Tibshirani, 1993). Bootstrapped validation takes B number of samples of
the original data, with replacement, and fits the model to this training set. Then, the original data
is used as the testing set for validation.

=
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> val.boot <- validate (model.l, method = "boot", B = 40, bw = FALSE, rule = "aic",
+ type = "residual", sls = 0.05, aic = 0, pr = FALSE)
> wval.boot

index.orig training test optimism index.corrected n
R-square 0.994216123 0.99423426 0.993705437 0.0005288253 0.993687298 40
MSE 0.005187536 0.00493656 0.005645568 -0.0007090077 0.005896543 40
Intercept 0.000000000 0.00000000 -0.009016284 0.0090162843 -0.009016284 40
Slope 1.000000000 1.00000000 1.000665178 -0.0006651782 1.000665178 40

> N

Notice in the output above the index corrected estimates are all marginally worse in terms of fit
and / or prediction error. In other words, the index corrected measures do not reflect the
shrinkage caused by over-fitting. The “optimism” (Efron & Tibshirani, 1993, p. 248) is the
difference between the training set estimates and the test set estimates and can be thought of as
the amount of optimism of each initial estimate (e.g. how much the training estimates are
biased).



Next, we can explore the ‘crossvalidation’ method, which uses B number of observations as the
testing set (testing or validating the model) and the rest of the sample for the training set
(building the model).

File Edit Misc Packages Windows Help
> val.cross <- validate (model.l, method = "crossvalidation", B = 40, bw = FALSE, rule = "aic", i
- type = "residual", sls = 0.05, aic = 0, pr = FALSE)
> wval.cross
index.orig training test optimism index.corrected n
R-sguare 0.994216123 0.994228510 -0.06680937 1.061037880 -0.066821757 40
MSE 0.005187536 0.005175911 0.00653804 -0.001362129 0.006549665 40
Intercept 0.000000000 0.000000000 0.13240866 -0.132408663 0.132408663 40
Slope 1.000000000 1.000000000 0.58214115 0.017858848 0.982141152 40
>

Next, we can take a look at the “.632” bootstrapped method which corrects for the bias in
prediction error estimates “based on the fact that bootstrap samples are supported on
approximately .632n of the original data points” (Efron, 1983; Efron & Tibshirani, 1997, p. 552).
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> val.632 <- validate(model.l, method = ".632", B = 40, bw = FALSE, rule = "aic",
+ type = "residual", sls = 0.05, aic = 0, pr = FALSE)

Weights for .632 method (ordinary bootstrap weights 0.025)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0188 0.022% 0.0255 0.0250 0.026% 0.0315
> val.é32
index.orig training test optimism index.corrected n
R-square 0.994216123 0.%94488283 0.9%20860602 0.00085668%¢ 0.9933559434 40
MSE 0.005187536 0.004761727 0.006551268 -0.000861878% 0.006049415 40
Intercept 0.000000000 0.000000000 0.014447216 -0.0091306407 0.009130641 40
ISlope 1.000000000 1.000000000 0.998938150 0.0006710891 0.999328911 40 I
>

The ‘DAAG’ package

Another package which is capable of performing cross validation is the Data Analysis And
Graphing (‘DAAG’) package (Maindonald & Braun, 2011) which also has several dependent
packages.
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> library (DRAG)

Loading regquired package: MASS

Loading reguired package: rpart

Loading reguired package: randomForest

randomForest 4.6-2

Type rfNews() to see new features/changes/bug fixes.
Attaching package: 'randomForest'

The following cbject(s) are masked from 'package:Hmisc':

combine

Attaching package: 'DAAG'

The following object(s) are masked from 'package:MASS':
hills

The following object(s) are masked from 'package:Design':
vif

The following object(s) are masked from 'package:survival':

lung

>

The ‘DAAG’ package contains three functions for k — fold cross validation; the ‘cv.Im’ function
is used for simple linear regression models, the ‘CVIm’ function is used for multiple linear
regression models, and the ‘CVbinary’ function is used for logistic regression models. The k —
fold method randomly removes k — folds for the testing set and models the remaining (training
set) data. Here we use the commonly accepted (Harrell, 1998) 10 — fold application.
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Analysis of Variance Table

Response: y

> wval.daag <- CVim(df = samplel.df, m = 10, form.lm = formula(y ~ x1 + %2 + %3 + x4 + x5 + x6 + x7)) =
Df Sum Sg Mean Sgqg F wvalue Pr(>F)
x1 1 48.7 48.7 8631.8 < 2e-16 *=**
x2 1 30.8 30.8 5471.0 < 2e-16 *¥*
x3 1 5.1 5.1 900.1 < 2e-16 ***
x4 1 1.8 1.8 312.4 < 2e-16 *¥%
x5 1 2.5 2.5 438.3 < 2e-16 ***
X6 1 0.2 0.2 41.2 6.0e-09 *w*
x7 1 0.1 0.1 19.4 2.B8e-05 *w*
Residuals 92 0.5 0.0 3
signif. codas: I “RRE 9 _0Q1 YRS QT YRR gUD5 LR 0.1 MR L
fold 1
Observations in test set: 3 8 16 18 39 42 45 62 63 100
X3 X8 X1e X18 X39 X42 X45 X62 X63 X100
Predicted 11.5141 9.9671 ©9.3781 8.8386 9.4042 9.7155 10.0094 9.277 92.079 9.4779
¥ 11.6069 9.9490 9.3040 8.8825 9.3647 9.6782 10.0593 ©9.178 8.966 9.4293

Residual 0.0928 -0.0182 -0.0741 0.0439 -0.0395 -0.0373 0.0499 -0.099 -0.113 -0.0487

Sum of squares = 0.047 Mean square = 0.0047 n = 10

fold 2
Observaticns in test set: 4 9 10 19 30 47 55 78 82 93
x4 X8 X10 X19 X30 X47 X55 X78 X682 X93
Predicted 9.5047 11.785 10.0616 10.3095 10.7081 10.776 11.0915 8.2624 8.021 8.7%06
v 9.5650 11.829 10.0821 10.3614 10.6913 10.612 11.0314 8.2295 7.909 8.8210
Residual 0.0604 0.044 0.0206 0.0519 -0.0168 -0.163 -0.0601 -0.0329 -0.112 0.0304
Sum of squares = 0.054 Mean square = 0.0054 n = 10
fold 3
Observations in test set: 35 54 56 73 74 77 87 88 89 99
X35 X54 X56 X73 x74 X77 x87 X8e %89 %99
Predicted 11.287 11.0791 9.713 11.2339 9.395 9.108 10.8626 9.7615 11.293 9.7556
11.16% 11.0216 9.847 11.2197 9.421 9.301 10.7678 9.7507 11.155 9.7173
Residual -0.116 -0.0575 0.134 -0.0142 0.026 0.193 -0.0948 -0.0108 -0.139% -0.0383
Sum of sgquares = 0.1 Mean sguare = 0.01 n =10
fold 4
Observations in test set: 2 21 24 41 50 64 71 75 80 95
X2 X21 X24 x41 X50 X64 X71 X75 X80 X95
Predicted 10.5363 10.00998 10.274 8.8239 10.88 9.4221 9.8130 10.1583 10.3260 11.0276
y 10.4€77 10.01757 10.417 8.7942 10.84 9.4606 9.7438 10.1024 10.3483 11.0132

Resirdnal -0 NERA N NNT7SR N 147 -0 N297 -N N4 N N3RARS -N NRA? -N NSS9 N N?23 -0 N144

Some output (folds) has been omitted.

fold 9
Observations in test set: 6 11 22 34 37 44 51 53 65 7%

X6  X11 X22 X34 X37 X44 X51 X53 X65 X7%
Predicted 9.6250 11.57 9.265 9.8877 10.9623 8.97 9.5057 10.6938 11.6039 9.8000

¥ 9.6473 11.70 9.154 9.9035 11.0038 9.14 9.5326 10.7534 11.6992 9.8147
Residual 0.0223 0.13 -0.111 0.0158 0.0415 0.17 0.026% 0.05%6 0.0953 0.0147
Sum of squares = 0.074 Mean square = 0.0074 n = 10 L
fold 10
Observations in test set: 1 20 2% 32 38 52 6% 72 81 51
X1 X20 X258 X32 X38 X52 XE% Xx72 X8l X981
Predicted 10.2170 10.765 9.353 9.8876 9.%0237 9.13%0 9.145% 9.3839% 10.6522 10.824
¥ 10.2393 10.632 9.379 9.9687 9.9%0626 9.1711 9.2300 9.4207 10.7054 10.955

Residual 0.0223 -0.133 0.026 0.0811 0.00389 0.0321 0.0841 0.0369 0.0532 0.131

Sum of squares = 0.055 Mean square = 0.0055 n = 10
Overall ms
0.00624

>

Here, at the bottom of the output we get the cross validation residual sums of squares (Overall
MS); which is a corrected measure of prediction error averaged across all folds. The function
also produces a plot (below) of each fold’s predicted values against the actual outcome variable
(y); with each fold a different color.
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The ‘boot’ package

Lastly, we can use the ‘boot’ package (Ripley, 2010) for cross validation of generalized linear
models (e.g. binomial, Gaussian, poisson, gamma, etc.). Bootstrapping can be used to correct for
some of the bias associated with the other cross validation techniques.
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> library(boot)
Attaching package: 'boot!'
The following cbject(s) are masked from 'package:survival':

aml

> |

First, we must fit the model. Our example below is really an OLS regression model, but if we
specify ‘family = gaussian’ then it is the same as using ‘Im’. If we had a logistic model, then we would
specify ‘family = binomial(link = logit)’ to fit the logistic model.

[R R Console [
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> model.2 <- glm(y ~ x1 + x2 + x4 + x5 + x6 + x7, samplel.df, family = gaussian)
> summary (model.2)

call:
glm(formula = v ~ x1 + x2 + x4 + x5 + X6 + x7, family = gaussian,
data = samplel.df)

Deviance Residuals:
Min iQ Median 3Q Max
-0.5173 -0.1635 0.0071 0.1343 0.4584

Coefficients:
Estimate Std. Error t wvalue Pr(>|t])

(Intercept) -0.6058 0.4589 -1.32 0.19006

x1 0.818¢ 0.0250 32.78 < 2e-1lg **»*

x2 0.5777 0.0229 25.21 < 2e-16 *¥~*

x4 -0.1748 0.0278 -6.29 1.0e-08 w»**

x5 -0.1014 0.0286 -3.55 0.00061 ww*

%6 0.2171 0.0479 4.53 1.8e-05 ww*

x7 -0.2745 0.0520 -5.28 B8.6e-07 ¥¥*

Signif. codes: 0 Y¥**%' (0.001 ***f Q.01 ‘*’ 0.05 *.” 0.1 " 1

(Dispersion parameter for gaussian family taken to be 0.0524)
Null deviance: £89.68%6 on 99 degrees of freedom
Residual deviance: 4.8774 on 93 degrees of freedom

AIC: -2.269

Number of Fisher Scoring iterations: 2

> .

The ‘cv.glm’ function “estimates the k — fold cross validation prediction error for generalized
linear models” (Ripley, 2010). If k — fold is set to the number of cases (rows), then a complete
Leave One Out Cross Validation (LOOCV) is done. The LOOCV method is intuitively named;
essentially, one case is left out as the testing set and the rest of the data is used as the training set.
If this process is repeated so that each case is given a chance as the testing case, then we have the
complete LOOCYV method. The 'cv.glm' function returns a 'delta’ which shows (first) the raw
cross-validation estimate of prediction error and (second) the adjusted cross-validation estimate.
The adjustment is designed to compensate for the bias introduced by not using leave-one-out
cross-validation. The default for ‘cv.glm’ is complete LOOCV.

First, we run the common 10 — fold cross validation. Below, the majority of seed information is
cut off the end of the figure.
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> val.l0.fold <- cv.glm(data = samplel.df, glmfit = model.2, K = 10)
> val.l1l0.fold
Scall

cv.glm(data = samplel.df, glmfit = model.2, K = 10)

SK
[1] 10
Sdelta
1 1
0.0572 0.0567
S$seed
[1] 403 100 1118745441 1531885299 2763106 2140198868 1789174487 -845059891
[9] -1092788124 -695153078 -320332875 1768072975 1625781270 388718272 642795651 1378608289 L
[17] -456324464 -949634706 376543001 762448811 -707143270 1098218844 1309676639 -302363595 1
[25] -1069787188 -1354539742 237698429 12950895063 -814237794 -266332584 2135062203 -2033086119
[33] 25004776 -705146090 -1756965743 21025%3859 -1873443758 -1654256346 -1047834329 -14428725%63
[41] -707344268 2118155898 966616741 -1075465025 229050182 559293804 -1608157197 -116530583¢9
raca =1 &£AT70ANN _T£8anNAENAND 1TE2TAGNAT =27TNAEERTIETY 184844027230 _1a899%2ACGa%280 scasa2621 =1E8££86E11E

Next, we run the complete LOOCV method, specifying k as the number of rows in the sample
data (nrow). Again, below the majority of the seed numbers have been left off the figure.
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> val.loocv <~ cv.glm(data = samplel.df, glmfit = model.2, K = nrow(samplel.df})
> val.loocv
Scall

cv.glm(data = samplel.df, glmfit = model.2, K = nrow(samplel.df)

SK
[1] 100
Sdelta
1 1
0.0567 0.0567
Sseed
[1] 403 200 1118745441 1531885299 2763106 2140198868 1789174487 -845059891

[9] -1092788124 -695153078 -320332875 1768072975 1625781270 388718272 642795651 1378608289
[17] -456324464 -949634706 376543001 762448811 -707143270 1098218844 1309676639 -302363595
[25] -1068787188 -1394539742 237658429 1250895063 -B8142377%4 -266332584 2139062203 -203308611°%

m

[33] 25004776 -705146090 -1756965743 2102593859 -1873443758 -1654296348 -1047834329 -1442872963
[41]1 -707344268 21168199898 966616741 -1075465025 229050182 559293904 -1608157197 -1169305839
[49] -16478400 -1680050402 1531439081 -2105537253 -1848449238 -1822459828 699682831 -1586685115
[57] -1104835332 1457453906 -1691345715 2114509959 -1991874706 -1152748728 -549462709 1936425129
FAGRT1 —1NATECATA —27G121270  1AN1GITENS 2/7T7GR16S —RGNAGA  178G1R2CAN _PAARPET?1T —RATIGARA2S

Obviously the delta numbers match because we used the LOOCV method. Recall, the first delta
value is the raw cross validation estimate of prediction error and the second is the adjusted cross
validation estimate; which is supposed to adjust for the bias of not using the LOOCV method.

Conclusions

Three packages were employed to demonstrate some relatively simple examples of conducting
cross validation in the R programming language environment. Cross validation refers to a group
of methods for addressing the some over-fitting problems. Over-fitting refers to a situation when
the model requires more information than the data can provide. One way to induce over-fitting is
by specifying the model with the same data on which one assesses fit or prediction error. The
examples here were conducted using simulated data. Rather strikingly, you may have noticed,
the estimates of prediction error were not terribly different from the full sample (over-fitted)
estimates, even though this sample was considerable small (n = 100) in comparison to its parent
population (N = 1,000,000). These results might lead one to think cross validation and over-



fitting are not things one needs to be concerned with. However, there are a few reasons our
estimates here were not more starkly different than the full sample estimates and you might be
surprised to find that some of our predictor variables are not at all related to the outcome
variable. Next month’s article will reveal the secrets behind those statements. However, cross
validation and over-fitting are serious concerns when dealing with real data and should be
considered in each study involving modeling.
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