How to Calculate Empirically Derived Composite or Indicator Scores.
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This month’s article was motivated by the frequent need to calculate composite scores from
multiple variables. Often we have Likert response survey data and want to combine several questions’ or
items’ responses into a composite score; and then use the composite score(s) as a variable of interest in
some traditional analysis. For those unfamiliar, Likert response survey questions have response choices
such as; strongly disagree, disagree, agree, strongly agree. The response choices are typically considered
ordinal; meaning, they represent sequentially ordered categories (e.g. strongly disagree = 1, disagree = 2,
agree = 3, strongly agree = 4). In this context, we typically refer to the words as labels (e.g. “strongly
disagree”) and the numbers as values (e.g. “1”). Occasionally, we are confronted with a client who
wants to simply average each participant’s response values on several questions to arrive at a composite
score for the domain which the questions are believed to be assessing. This is generally a bad idea
because, it treats each question as contributing to the composite score equally — which is often not the
case when one considers the latent variable structure of what one is attempting to measure or assess.

Essentially, we will be using factor analysis to generate the composite scores. In a very real
sense, the best composite scores are factor scores when there is a known, or strongly supported belief in,
structure of the data. There are a few ways to go about generating the composite, or factor, scores based
on what type of structure you believe the data contains (e.g. single factor, multiple correlated factors,
multiple uncorrelated factors, bifactor model, hierarchical factor model, etc.); and how the variables are
measured or scaled (e.g., nominal scaled, ordinal or Likert scaled, interval/ratio scaled, etc.).

The general procedure for generating composite / indicator scores includes the following steps:
(1) convert, or recode, nominal or ordinal (Likert) responses to numeric responses, (2) apply a factor
analysis model which reflects the known structure, or calculated correlation structure, of the variables,
(3) save the factor scores and factor loadings, (4) rescale the factor scores using the factor loadings, the
weighted mean, and the weighted standard deviation of the original data so that the composite scores
reflect (as nearly as possible) the original semantic (i.e., word) meaning of the original data. In this
process, the factor loadings serve as weights for the weighted mean and weighted standard deviation
calculations. The last step of rescaling the composite scores is necessary because it allows us to retain
the meaning of the responses which went into creating the composites. For instance, if we have a
composite score of 3.6 and the four questions’ responses which were used to create that composite were
all 4-point Likert style with the labels and values; strongly disagree = 1, disagree = 2, agree = 3, strongly
agree = 4, then we can say the 3.6 means that the person associated with that score responded more with
strongly agree than they did with agree, disagree, or strongly disagree. The primary benefits of using the
rescaled factor scores as composite scores are that they are considered interval/ratio scaled and they
reflect more closely a true score on the latent construct we were attempting to measure.

Examples



First, import some example data (the data file used below has been simulated).

R R Conscle
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> data.df <- read.table(
"http://www.unt.edu/rss/class/Jon/R_SC/Moduled4/CompositeIndicators 001.t=xt™,

+ header=TRUE, sep=",", na.strings="NA", dec=".", strip.white=TRUE)
> summary (data.df); nrow(data.df)
id city.names gender age education
Min. : 5 Bolder 1346 Femzale: 879 Min. : 15.00 Min. : 2.00
1st Qu.: 2538 Burkley 351 Male ;852 1st Qu.: 30.00 1st Qu.: 7.00
Median 5028 Ditroit 1365 Median : 40.00 Median :10.00
Mean 5005 El Pasio 1333 Mean : 42.82 Mean :10.08
3rd Qu.: 7480 South Beech:336 3rd Qu.: 53.00 3rd Qu.:13.00
Max. 10000 Max. :104.00 Max. :21.00
income gl g2

Min. 27923 agres :415 agree :426

1st Qu.: 70125 disagree :425 disagree 1425

Median 89214 strongly agree :451 strongly agree 1437

Mean BB8256 strongly disagree:440 strongly disagres:43%

3rd Qu.:107016

Max. 164872

a3 a4 a5

agree 1445 agree 1436 hyperactive :339

disagree :417 disagree 1426 lethargic 1341

strongly agree :417 strongly agree 1445 more active :359

strongly disagrees:448 strongly disagrees:424 no difference :345

not very active:347

g6 gl gs
hyperactive 1375 hyperactive 1348 hyperactive 1335
lethargic 1346 lethargic 1361 lethargic 1344
more active 1324 more active : 355 more actiwve 1334
no difference :345 no differsnce :321 no difference :365

not very active:341 not wery active:346 not wvery active:353

as glo gll
hyperactive 330 agree :419 agree 1424 E
lethargic 1356 disagree 1428 disagree 1433
more active 1346 strongly agree :436 strongly agree 1437

no difference :352
not very active:347

strongly disagree:448 strongly disagree:437

glz2 gls3 gld
agres 1423 agree 1408 agree :3%6
disagree 1423 disagree 1430 disagree 1430
strongly agree 1442 strongly agree 1447 strongly agree 1447

strongly disagree:443 strongly disagres:446 strongly disagree:458

[1] 1731
>

In this example, we have 3 groups of questions: g1 - g4, g5 - q9, and q10 - q14. The response
choices for q1 - g4 and 10 - g14 were the same: 1 = strongly disagree, 2 = disagree, 3 = agree, 4 =
strongly agree. The response choices for g5 - q9 were: 1 = lethargic, 2 = not very active, 3 =no
difference, 4 = more active, 5 = hyperactive. In this example, we have three groups of questions; each



group measures a particular latent construct (i.e. indirect measurement) and the three latent constructs
are mildly correlated to one another. The above statements represent the known (or strongly supported
hypothesis of) the data's (factor) structure; in this example a model with three mildly correlated factors.

Consider the situation where you have a set of Likert scaled items which you believe are the
result of one continuously scaled latent factor which is not related to any other questions or factors in the
analysis, then you would need to recode the ordinal responses as numeric, then simply run a one factor
model, collect the factor scores, and rescale the factor scores as composites scores which reflect the
original metric. As an example, consider g1, g2, g3, g4 which we believe reflect a single latent
construct.

File Edit Misc Packages Windows Help

> subset.l <- data.df[,7:10]; summary(subset.l)
gl gz a3
agree 415 agree 426 agree 445
disagree 1425 disagree 425 disagree 1417
strongly agrees 451 strongly agrees 437 strongly agrees 417
strongly disagree:440 strongly disagree:435 strongly disagree:448
g4
agree 436
disagree :426

strongly agree 1445
strongly disagree:424

First, recode the responses into numbers which reflect the ordinality of the original responses
(the words). This can be tricky sometimes because R cannot tell if "agree" should be a 1, 2, 3, etc. So,
it's best to impose the values on specific labels using a fairly simple function which returns a subset of
variables containing the recoded data. Here, extract the four columns of the original data and assign
them to an object called “subset.1’, then we submit that object to the recoding function and re-assign the
result to that same name (subset.1).
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> recoding.4.point <- function(data) {
+ new.data <- data.frame (matrix(rep(0, nrow(data)*ncol(data)), ncol = ncolidata)))
+ for (j in 1:ncol (data)){
+ for (i in l:nrow(data)) {
+ if(datali,]] == "strongly disagree”) {new.datali,Jj] <- 1}
+ if(datal[i,J] == "disagree"){new.datal[i,j] <- 2}
+ if(datali,j] == "agree") {new.datali,j] <- 3}
+ if(datal[i,]] == "strongly agree") {new.datal[i,]] <- 4}
+ }
+ }
+ names(new.datz) <- names(data)
+ return(new.data)
+ }
>
>» head(subset.1)
gl g2 a3 g4

1 disagree strongly agree strongly agree disagree
2 strongly agree strongly disagrees agree strongly agree
3 strongly agree strongly disagree agree strongly agree
4 disagree strongly disagrees agree agree
5 strongly agres agree disagree strongly agree
& disagree disagree strongly agree strongly agree
> subset.l <- recoding.4.point(subset.l); head(subset.lﬂ

gl g2 g3 g4
1 2 4 4 2
2 4 1 3 4
3 4 1 3 4
4 2 1 3 3
5 4 3 2 4
6 2 2 4 4
> |

Since we now have a properly re-coded (and numeric) version of the subset/data, we can apply a
one-factor model. Of course, factor analysis assumes a linear relationship between each of the variables
included in the factor model, so it is suggested that linearity be checked among each pair of variables
included.
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> fa.subset.l <- factanal (x = subset.l, factors = 1, scores = "regression")
> fa.subset. 1l

Call:
factanal (x = subset.l, factors = 1, scores = "regression")

Uniguensesses:
gl a2 g3 g4
0.634 0.634 0.670 0.646

Loadings:
Factorl
gl 0.e05
.605
.574
.595

fis}
(]
o oo

Factorl
58 loadings 1.415
Proportion Var 0.354

Test of the hypothesis that 1 factor is sufficient.

The chi sguare statistic is 5.94 on 2 degrees of freedom.
The p-wvalue is 0.0513

> |

Simply use the "$scores" operator on the factor analysis object to extract the factor scores.
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> subset.l.scores <- as.vector(fa.subset.lS5scores)
> summary (subset.l.scores)

Min. 1st Qu. Median Mean 3rd Qu. Mazx.
—1{543000 -0.754000 -0.003227 0.000000 O0.742600 1.538000
>

You'll notice the factor scores have a mean of zero, so in order for them to have (semantic)
meaning, we must convert them back into the scale of the original 1 - 4 responses. To do this, we will
need three things; the new factor scores, the raw data, and the factor loadings. The factor loadings
augment the meaning of the composite scores by providing insight into how each question contributed to
the composite scores. Notice in this example each of the four questions contributed approximately
equally to the composite scores (i.e. the loadings are roughly equal). However, if you have loadings
which are not (roughly) equal, then you must communicate the loadings (and why they are important) to
anyone interpreting or using the composite scores.
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> fal.locadings <- fa.subset.1%locadings[,1]
> fal.loadings

gl g2 a3 a4
O.FO49592 0.604%9515 0.574242¢6 0.5%46235
>

Unfortunately, there is no base level function for calculating the weighted standard deviation (as
there is for the weighted mean). Therefore, we create a small function for calculating the weighted
standard deviation; needed below during the rescaling of the factor scores. The function takes the vector
of values (x) and the weights (w), which are the loadings here, and returns the weighted standard
deviation of the vector of values.
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> weighted.sd <- function(x, w){

+ Sum.w <— sumi{w)

+ sum.wzZ <— sum(w™2)

+ mean.w <-— sum(x * w) / sum(w)

+ ®x.5d.w <— sgrt((sum.w / (sum.w"2 - sum.w2Z)) * sum(w * (x - mean.w)"2))

+ return (x.sd.w)
+ H

The rescaling function below simply puts the scores back into the metric of the original
questions. Keep in mind, some of the final scores may be slightly below '1' and some slightly above '4’;
this is because we modeled the latent 'true scores'. Now, we have one set of scores or one variable,
which contains each participant's score on the latent variable (subset.1 = ss1: g1 - g4).
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> re.scale <- function(f.scores, raw.data, loadings) {

+ fz.scores <- (f.scores + mean(f.scores))/{(sd(f.scores))
- means <—- apply(raw.data, 1, weighted.mean, w = loadings)
+ sds <- apply(raw.data, 1, weighted.sd, w = loadings)

- grand.mean <- meah(means)

+ grand.sd <- mean (sds)

- final.scores <- ((fz.scores * grand.sd) + grand.mean)

- return{final.scores)
+ }
» final.scores.ssl <- re.scale(subset.l.scores, subset.l, fal.loadings)
> summary(final.scores.ssl)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.92813 1.7590 2_.4990 2.5020 3.2340 4.0180
> |

We can go ahead and apply this same general procedure to the other two sets of questions (g5 -
g9 and 10 - q14). However, because g5 - q9 have a 5 point Likert response format, we need a second
recoding function to put those responses into numeric format.
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> recoding.5.point <- function(data) {
+ new.data <- datza.frame (matrixz(rep(0, nrow(data)*ncol (data)), ncol = ncol(data)))

+ for (3 in l:ncolidata)){
+ for (1 in 1l:nrow(data)){
+ if(data[i,j] == "lethargic") {new.datal[i,j] < 1}
+ if(datali,J] == "not very active") {new.datali,j] <- 2}
+ if(datal[i,]] == "no difference") {new.datal[i,]J] <- 3}
+ if(datal[i,j] == "more actiwve") {new.datali,]j] <- 4}
+ if(datali,]] = "hyperactive") {new.datal[i,J] <- 5}
+ H
+ H
+ names (new.data) <- names (data)
+ return{new.data)
+ }
> subset.2 <— recoding.5.point(data.df[,11:15]); summary(subset.Z2)
a5 gt g7 g8 g
Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.00 1st Qu.:2.000 1st Qu.:2.000
Median :3.000 Median :3.000 Median :3.00 Median :3.000 Median :3.000
Mean :3.005 Mean :3.024 Mean $2.99 Mean 2.979 Mean :2.965
3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.00 3rd Qu.:4.000 3rd Qu.:4.000
Max. :5.000 Max. :5.000 Max. :5.00 Max. :5.000 Max. :5.000
> subset.3 <- recoding.4.point(data.df[,16:20]); summary(subset.3)
glo gll glz gl3 gld
Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
Median :2.000 Median :2.000 Median :2.000 Median :2.000 Median :2.000
Mean $2.487 Mean :2.497 Mean :2.465985 Mean $2.4585 Mean :2.481
3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
er. 4,000 Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
>

Next, we create a single function which will take the numeric data and apply the 1 factor model,
extract the factor scores, extract the factor loadings, and apply the re-scaling function. This function
returns a list object which includes two elements: the rescaled scores and the factor loadings.
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> get.scores.fun <- function (data) {

+ fact «- factanal (data, factors = 1, scores = "regression")

+ f.scores <- fact$scores([,1]

+ f.loads <- factSloadings[,1]

+ rescaled.scores <- re.scale(f.scores, data, f.loads)

+ output.list <- list(rescaled.scores, f.loads)

+ names (output.list) <- c("rescaled.scores","factor.loadings")
+ return (output.list)

+ H

> |

Now, we can apply the above function to subset.2 and subset.3.
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> scores.and.locadings.2 <— get.scores.fun(subset.Z2)
> scores.and.loadings.25factor.loadings

gs gb a7 gt g2
0.6280197 0.6445726 0.6321581 0.6234082 0.6199569
> scores.and.loadings.3 <- get.scores.fun(subset.3)
> scores.and.loadings.35factor.loadings

glo gll glz2 gl3 gl4
D.F160466 0.6226077 0.6152795 0.6227423 0.5866833
>

Notice the factor loadings from above are all roughly equal. Next, we can extract the rescaled factor
scores.
[ R Console
Edét Misc Packages Windows Help

File
> final.scores.ssZ <- scores.and.loadings.Z25rescaled.scores
> summary{final.scores.ss2)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
d {91 ) 2.200 3.001 2.994 =R A ) 4,992
> final.scores.ss3 <- scores.and.loadings.35rescaled.scores
> summary(final.scores.ss3)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.9663 1.8020 2.4270 2.4920 3.1920 4.0340

Now, we can create a data frame which contains just the composite scores for each subset or section of
the questionnaire.
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il > composite.data «<- data.frame(final.scores.ssl, final.scores.ss2, final.scores.ss$

> names (composite.data) <- c("composite.l", "composite.Z2", "composite.3")
> summary (composite.data)
composite.l composite.2 composite.3
Min. =0 .9813 Min. :1.007 Min. :0.9663
1ist .1 .7589 1st Qu.z2.200 st Qu..:l . B023
Median :2.49%8% Median :3.001 Median :2.4269
Mean =2.5020 Mean =2. 8994 Mean :2.4919
3rd Qu.:3.2340 3rd Qu.:z=3.797% 3rd Qu.:3.1919
fo. :4.0184 Max. :4.992 Max. =4 .0337
5

Keep in mind, because the three composite score variables are likely to be related, we could have
chosen to run a single factor analysis specifying three latent factors (rather than doing three separate
factor analyses). However, if a single model was applied, each question would have a loading for each
latent factor and those loadings might be substantial. If those cross-loadings were substantial, then they
might call into question the factor structure (i.e. question 2 was supposed to load on factor 1, but instead
loaded most on factor 3....). Furthermore, if we know these three latent variables, represented by the
three composite score vectors, supported a global or general factor in a hierarchical fashion; then we



would use these three composite score vectors in another one factor model to calculate the composite
scores for that general factor.

Conclusions

Generating composite scores using weighted factor scores is an extremely useful skill to have in
one’s repertoire. The composite scores can be used as independent or dependent variables in more
traditional analysis (e.g. linear regression). However, the example above provides only an introduction
to calculating these composite scores. When data does not display the necessary linear relationship
required of factor analysis, one might explore the use of correspondence analysis, optimal scaling, or
data transformations. The best defense against violations of assumptions, such as linearity, are a sound
design and careful planning which can often ensure the data one collects is capable of providing the
information one is seeking.
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