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Sharpening Occam’s Razor: Using Bayesian Model
Averaging in R to Separate the Wheat from the Chaff.

Bayesian Model Averaging (BMA) is a method of variable selection which quantifies the value of mul-
tiple models so that the analyst can select the most appropriate model for a given outcome variable. The
metrics used for comparison of competing models are the Bayesian Information Criterion (BIC; Schwarz,
1978) and the posterior probability (of a particular model being the correct model). The best model, dis-
plays the lowest BIC (e.g. a BIC of -121.00 is preferred over a BIC of 21.00) and the highest posterior
probability. In the simplest situation (linear regression), each model is characterized by a group of pre-
dictors for the outcome variable. When BMA is applied to all available predictors, and given an outcome
variable of interest, it produces a posterior distribution of the outcome variable which is a weighted av-
erage of the posterior distributions of the outcome for each likely model (Raftery, Painter, & Volinsky,
20051). Essentially, BMA is used to determine which predictors should be included in a regression model
or general linear model (GLM), or extensions of the GLM (e.g. generalized linear models and survival or
event history analysis). BMA is particularly useful when a large number of proposed predictors have been
measured (e.g. 20, 30, or 40).

BMA is accomplished in the R programming language environment using the BMA package (Raftery,
Hoeting, Volinsky, Painter, & Yeung, 20102). The function bicreg is used in the regression situa-
tion while the bic.glm function is used in the GLM and generalized linear modeling situations. The
bic.surv function is used for survival or event history analysis; which will not be covered in this ar-
ticle. These functions “do an exhaustive search over the model space using the fast leaps and bounds
algorithm” (Raftery, et al., 2005, p. 2). The leaps and bounds algorithm (Furnival & Wilson, 1974) allows
these functions to return a set of the best models rather than all possible models.

Regression Example

The first example involves a fictional data set which contains the outcome variable extroversion (extro)
and 12 possible predictors; openness (open), agreeableness (agree), social engagement (social), cognitive
engagement (cognitive), physical engagement (physical), cultural engagement (cultural), vocabulary (vo-
cab), abstruse analogies (abstruse), block design (block), common analogies (common), letter sets (sets),
and letter series (series). All 13 variables are assumed to be interval scaled. There are 750 cases in the
data set, with no missing values.

First, import the data from the web using the foreign package, because the data file is in SPSS for-
mat. Then get a summary of the data, if desired, using the summary function.

1http://journal.r-project.org/archive.html
2http://cran.r-project.org/web/packages/BMA/index.html
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Next, load the BMA package which contains the functions necessary for Bayesian Model Averaging. Note
that there are three dependencies.

The bicreg function is used in the linear regression situation. However, the function requires a matrix of
the possible predictor variables, so we must first create such a matrix. Using the attach function allows us
to reference the variables by name directly (as opposed to using the tedious $ operator, e.g. data.1$open).
The head function simply lists the first 6 elements of an object.

Now we can submit the bma function by simply assigning it to a named object (here: bma1) and supply-
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ing it with the matrix of predictors and the outcome variable (data.1$extro). We can use the common
summary function to summarize the results of the bicreg function.

The column “p!=0” indicates the probability that the coefficient for a given predictor is NOT zero, among
the 25 models returned. The column “EV” displays the BMA posterior distribution mean for each coeffi-
cient and the column “SD” displays the BMA posterior distribution standard deviation for each coefficient.
Only the five best models are displayed. We can see that the first model “model 1” (which includes only
open, agree, & series) is the best because it has the lowest BIC and the largest posterior probability (of
being the correct model). Notice, at the bottom of each model column, the number of predictors and R2

value is displayed. Generally, the first model (Model 1) is the best model; however, it may be the case that
theory dictates the inclusion of some variables which were excluded by the first model. For each variable
included in a given model, the coefficient (or parameter value) for that variable is given (e.g. Model 1,
open coefficient = 0.37028). Remember that the substantive interpretation of each coefficient is, for in-
stance: for a one unit change in open (predictor), there would be a corresponding change of 0.37028 in
extro (outcome), based on Model 1.

The Ordinary Least Squares (OLS) part of the output (not printed by default) gives a matrix, with each
model as a row and each predictor as a column; listing the estimated (OLS) coefficient for each variable in
a given model (of all 25 models returned). The OLS output can be accessed using the $ naming convention
(e.g. bma1$ols). The output below has been cut off at the right edge to save space in this article.
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Notice, both open and agree display fairly stable estimated coefficient values across all 25 models, this
is why they both have a “p!=0” value of 100% (indicating that their coefficient is NOT zero 100% of the
time among these models).

The standard errors for the above estimated coefficients can be retrieved using the se argument (e.g.
bma1$se). Again, the output below has been cut off at the right edge to save space in this article.

The postmean part of the output (printed with summary in the “EV” column) contains the average
posterior coefficient for each predictor and the postsd provides the standard deviation of each average
posterior coefficient.
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The which part of the output (not provided with the summary) contains a matrix, with each model as a
row and each predictor variable as a column; listing (TRUE or FALSE) whether a variable was included in
each model.

The BMA package also contains a plot function for displaying the posterior distributions of each coeffi-
cient; in this example the density plots are displayed in 5 rows and 3 columns.

Notice, among the density plots, each variable which is of little importance contains a spike at 0.0. These
are the variables which are least influential to the outcome variable (e.g. social)); their coefficients are
centered on, and most likely are, zero.
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For a complete description of the bicreg function simply type help(bicreg) in the R console once
the BMA package is loaded.

GLM Example

We can use the same data and predictors from above to illustrate the application of BMA to a GLM
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situation using the bic.glm function. The bic.glm function can accept a matrix of predictors and
the outcome variable (as above with the bicreg function), or the formula can be specified directly (e.g.
extro ˜ open + agree + social + cognitive ... series). The bic.glm function
also accepts the glm.family argument to specify non-Gaussian models (e.g. Poisson, binomial, etc.).

Notice when using bic.glm and specifying “Gaussian” the estimation of the posterior means and stan-
dard deviations are slightly different from what was observed with the bicreg function. Below the means
and standard deviations from the bicreg and bic.glm functions are displayed; bma1 and bma2 re-
spectively.

The plot function also works with bic.glm objects; here displaying the density plots in 4 rows and 3
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columns.

Notice again, the variables which do not contribute to the outcome variable are shown with spikes at zero
in their density plots; indicating that their coefficients are most likely zero.
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For a complete description of the bic.glm function simply type help(bic.glm) in the R console
once the BMA package is loaded.

Binomial Generalized Linear Model Example

The binomial generalized linear model is the logistic (logit) model. The bic.glm function is used,
simply specifying the binomial glm.family argument as would be done with the standard glm function.
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This example uses a simulated data set which contains one binary outcome variable (y = 0 or 1) and
four interval predictor variables (x1, x2, x3, x4). There are 400 cases of data with no missing values. The
data also contains a code variable which simply identifies each case. The data file is a space delimited text
(.txt) file, so the foreign package is not necessary for importing it into R.

As mentioned above, when using the bic.glm function, one can either create a matrix of predictor
variables or simply specify the formula directly. Above we used the matrix approach; here we will specify
the formula directly. Of course, here we also specify the glm.family as binomial.

Although the summary of the bic.glm object here is interpreted the same way as the previous two
examples (in terms of model/variable importance using BIC and posterior probability), it is important to
remember that the coefficients for each predictor here (binomial setting) are NOT interpreted in the same
way as they would be in the Gaussian setting(s).

Remember, when interpreting coefficients in a logistic (binomial) setting, the values are interpreted as
changes in the logit. The logistic coefficient is the expected amount of change in the logit for each one unit
change in the predictor. The logit is what is being predicted; it is the odds of membership in the category
of the outcome variable with the numerically higher value (here a 1, rather than 0). The closer a logistic
coefficient is to zero, the less influence it has in predicting the logit.

The plot function works the same with way with binomial models as it did with the above models.
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The plots simply confirm what was expressed in the summary function, x1 has virtually nothing to con-
tribute to y and x4 has a moderate influence on y.

For a complete description of the different families available to the glm function (and the bic.glm
function), type help("family") in the R console.
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Keep in mind, there are other packages available for conducting BMA in R. Perhaps most notable, is
the mlogitBMA3 package which offers extensions to the bic.glm function so that BMA can be applied
in the multinomial logistic situation. Other packages which incorporate BMA include: BAS4, BMS5, and
ensembleBMA6.

An Adobe.pdf version of this article can be found here:
http://www.unt.edu/rss/rssmattersindex.htm.

3http://cran.r-project.org/web/packages/mlogitBMA/index.html
4http://cran.r-project.org/web/packages/BAS/index.html
5http://cran.r-project.org/web/packages/BMS/index.html
6http://cran.r-project.org/web/packages/ensembleBMA/index.html
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Until next time, It ain’t me, it ain’t me; I ain’t no Senator’s son...

This article was last updated on February 14, 2011.

This document was created using LATEX
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