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Bayesian Generalized Linear Models in R
Bayesian statistical analysis has benefited from the explosion of cheap and powerful desktop computing

over the last two decades or so. Bayesian techniques can now be applied to complex modeling problems
where they could not have been applied previously. It seems likely that the Bayesian perspective will
continue to challenge, and perhaps sub-plant, traditional frequentist statistical methods which have domi-
nated many disciplines of science for so long. The current article will review one function which allows
the user to conduct linear regression, general linear modeling, and generalized linear modeling (i.e. non-
Gaussian; e.g., Poisson, binomial, etc.). A fairly simple model is specified, then modeled using traditional
techniques, and then modeled with a Bayesian approach. Do not implement these methods unless you
understand the core principles of the Bayesian perspective (i.e. priors, likelihoods, posteriors, etc., and all
they entail).

A complete treatment of the Bayesian perspective is beyond the scope of this article and could fill
several books; and has. Interested readers can consult a number of introductory texts focusing on the
Bayesian perspective (e.g., Berry, 1996; Bolstad, 2004; Gelman, Carlin, Stern, & Rubin, 2004; Hoff,
2009). Very generally speaking, the Bayesian approach to statistical inference differs from traditional
frequentist inference by assuming that the data are fixed and model parameters are random, which sets
up problems in the form of; what is the probability of a hypothesis (or parameter), given the data at
hand? These types of problems can be stated with symbols as: p (H|D). Traditional frequentist inference
assumes that the model parameters are fixed (though unknown) and the data are essentially random; for
instance, if the null hypothesis is true, what is the probability of this data? These types of problems can
be stated in the general form; what is the probability of the data given a hypothesis? In symbols, this
translates to: p (D|H).

Bayesian methods focus on five essential elements. First, the incorporation of prior information (e.g.,
expert opinion, a thorough literature review of the same or similar variables, and/or prior data). Prior
information is generally specified quantitatively in the form of a distribution (e.g., normal/Gaussian, Pois-
son, binomial, etc.) and represents a probability distribution for a coefficient; meaning, the distribution of
probable values for a coefficient we are attempting to model (e.g., a β weight). It may help to think of the
prior as an educated best guess. Second, the prior is combined with a likelihood function. The likelihood
function represents the data (i.e. what is the distribution of the estimate produced by the data). Third,
the combination of the prior with the likelihood function results in the creation of a posterior distribution
of coefficient values. Fourth, simulates are drawn from the posterior distribution to create an empirical
distribution of likely values for the population parameter. Fifth, basic statistics are used to summarize
the empirical distribution of simulates from the posterior. The mode (or median or mean) of this em-
pirical distribution represents the maximum likelihood estimate of the true coefficient’s population value
(i.e. population parameter) and credible intervals can capture the true population value with probability
attached.

Keep in mind, priors should be rationally and honestly derived. They can be weak or strong. These
terms refer to the strength of belief we have in the prior(s). Weak priors result when we do not have a
great deal of evidence or prior information on which to base the prior(s). When the prior is weak, the
prior distribution will be wide, reflecting a great many possible values and the likelihood will be more
influential in creating the posterior distribution. Strong priors, conversely, result when we have a great
deal of evidence on which to base the prior(s). When the prior is strong, the prior distribution will be
narrow, reflecting a smaller range of possible values and the likelihood will be less influential in creating
the posterior (strong priors will influence the posterior more than the likelihood). It should be clear the
one key feature of the prior is the ability to quantify our uncertainty. The posterior can be thought of as
a compromise between the prior and the likelihood. If the prior is weak, then it will be less influential in
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creating the posterior; if the prior is strong, then it will be more influential in creating the posterior.
The example used here is a simple linear regression model with one interval/ratio outcome (extro) and

three interval/ratio predictors (open, agree, social). The simulated data set contains 500 cases, each with
complete data (i.e. no missing values).

Import the data from the web, get a summary of the data, and take a look at the correlations. We see very
little multicollinearity here.

Confirm / take a look at the core Linear Model (lm) – traditional Ordinary Least Squares (OLS) regres-
sion.

Notice in the output, the intercept is approximately -5.0. The unstandardized coefficients for each predic-
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tor are listed. The open coefficient is approximately 1.2, the agree coefficient is .90, the social coefficient is
approximately 0.40. We could calculate a 95% confidence interval (CI95) for each predictor’s coefficient;
for instance, the CI95 for open is 1.187 to 1.212. But what does this really tell us? Well, it is interpreted
as: if an infinite number of samples were taken from this population, 95% of the open coefficient values
would be between 1.187 and 1.212. But it does not tell us the range which contains the true population
value.

The same results are below; but, the results below were generated with the Generalized Linear Model
(glm) function, specifying the default Gaussian (normal) family distribution. The primary benefit of the
glm function is the ability to specify error distributions other than normal.

To conduct the Bayesian GLM, load the package ‘arm’ which contains the bayesglm function (Gelman,
et al., 2010). You will notice there are several dependencies.
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Conduct the Bayesian Generalized linear model (here family = Gaussian) and get the summary of the
output. Notice the specification of the prior mean, scale, and degrees of freedom. Each ‘family’ of dis-
tributions requires specific prior specifications (e.g. a binomial distribution would have slightly different
prior specification; see the package documentation for details1 or simply type help(bayesglm) in the
R console).

1http://cran.r-project.org/web/packages/arm/arm.pdf

6

http://cran.r-project.org/web/packages/arm/arm.pdf


We can see the output matches up with the traditional linear model (OLS regression) as well as the tradi-
tional GLM. As sample sizes increase the results should converge to the same values.

One of the benefits of the Bayesian perspective (for any analysis) is that it allows us to make credible
interval statements. Credible intervals are similar to confidence intervals, but in the Bayesian framework,
the interval REALLY IS believed to contain the true population parameter. For instance: a 95% credible
interval for a parameter being estimated is interpreted as; there is a 95% probability that the actual param-
eter is included in that interval. This is because the interval is based on information from the posterior
distribution; of for instance, one of the predictor’s coefficient posterior distribution (e.g. the open vari-
able’s coefficient posterior distribution).

The bayesglm function represents a kind of short cut of the Bayesian approach to inference. Typically,
the posterior is not used directly for making inferences. Instead, an empirical distribution is constructed
based on draws from the posterior and that empirical distribution is what informs the inference(s). Here,
we are using the bayesglm as a proxy for doing the added empirical distribution. With the bayesglm
we get a distribution of ’simulates’ which are used in place of an actual empirical distribution (which will
be covered further below).

Retrieve the posterior distributions of the coefficients for the intercept and all three predictors. The head
function simply lists the first 10 rows of the object on which it is run (the default head is the first 6).
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Extract just the posterior distribution of the ’open’ variable’s coefficient. Again, the head function simply
lists the first 10 items of the object.

Take a look at the posterior distribution of the open variable’s coefficient (normally a histogram would not
be used, it is used here simply as a graphical reference).
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The ‘density’ plot is normally used to display a posterior. The density plot can be thought of as a highly
modified histogram. Imagine a histogram with 100 bins (instead of the 7 as displayed in the histogram
above), then imagine plotting a line from the x-axis through each bin’s midpoint at the top of each bin,
and then back down to the x-axis; the result would be the density plot.
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Now we can retrieve the 95% credible interval for the open variable’s coefficient.

Recall, this credible interval is interpreted as; there is a 95% probability that the true population value of
the open coefficient is between 1.186 and 2.210. Keep in mind, these numbers will fluctuate slightly based
on the iterative nature of the function.

To make truly Bayesian inferences about our coefficients, we need to do the extra step of creating the em-
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pirical distribution(s) mentioned above. Going further entails actually creating an empirical distribution
based on iterative draws from the posterior. The MCMCregress function in the package ‘MCMCpack’
(Martin, Quinn, & Park, 2010)2 provides us with the Markov Chain Monte Carlo simulation method of
creating the empirical distribution; which itself allows us to then compute the descriptive statistics used
for inference. Meaning, the mode, median, or mean of the empirical MCMC simulates’ distribution is
the ’maximum likelihood’ estimate (i.e. top of a density function) of the population parameter. The
MCMCregress function also gives us the credible interval which includes the actual population parame-
ter value.
First, load the ‘MCMCpack’ library.

Next, apply the MCMCregress function. Notice, the model formula is the same, but here we have some
new options. The ’burnin’ argument is used because MCMC iterates are sensitive to their initial start
values, so the first few (i.e. 3000) iterations are discarded. The ’mcmc’ simply issues how many (post-
burnin) iterations will be used to build the empirical distribution. The ’thin’ defaults to 1 and represents
a control on convergence, such that once approximate convergence has been reached it can be beneficial
to keep only a few simulates and discard the rest to conserve computer resources (Gelman, Carlin, Stern,
& Rubin, 2004). The verbose option (by default is off) simply does or does not print the iteration history
as the function runs. The seed argument simply allows the user to set the random number generator seed.
The ’beta.start’ argument allows the user to set a start value for the beta vector.

Notice in the summary, we get the coefficient estimates (“1. Empirical...”) and credible intervals (“2.
Quantiles...”). So, we can say there is a 95% probability that the true population value of the open coeffi-
cient is between 1.1869 and 1.2120.

2The package ‘MCMCpack’ contains functions for many other types of models and contains other ancillary functions for
working with MCMC objects.
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Until next time, “Stop; hey, what’s that sound...”

This article was last updated on January 25, 2016.

This document was created using LATEX
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