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Time Series Analysis: Basic Forecasting.
This month’s article will provide a very gentle introduction to basic time series analysis. The primary

reference for this article is Hyndman and Athanasopoulos (2015) and it is highly recommended, not least
because it is completely free1 and regularly updated at OTexts. If you are unfamiliar, there is a growing
group of academics and researchers usingwww.OTexts.org [Online, Open Access Textbooks] to
remove barriers to learning - a most honorable endeavor. Thebook by Hyndman and Athanasopoulos
also has a companion R package; ‘fpp’ (Hyndman, 2013) which,obviously, makes working through the
examples presented in the book much easier.

As with any introduction, this one includes some necessary notation and terms which must be defined
prior to actually learning any of the data analysis techniques. Say we have a vector of time series data,
y, and there are nine values in this time series (t = 9). The most recent value is referred to asyt and
the last value asyt−8. Continuing the notation,yt+1 is used when referring to a forecast value (i.e. the
predicted next value of the time series). Next, there are a few terms worth noting. The termtrend refers
to a general pattern (e.g. increase or decrease) in the time series over the course of the series. Hyndman
and Athanasopoulos (2015) define a trend as the following; “atrend exists when there is a long-term
increase or decrease in the data” (p. 28). The termseasonal refers to patterns in the series which occur
at regular intervals (e.g. season of the year, semesters of an academic year, days of the week, or even
times of a day). Another term widely used iscycle, which “occurs when the data exhibit rises and falls
that are not of a fixed period” (Hyndman and Athanasopoulos, p. 28). Basic time series are conceptually
composed of either an additive model:

yt = St + Tt + Et (1)

or a multiplicative model:
yt = St ∗ Tt ∗ Et (2)

In both models, theyt is the data at periodt, St refers to the seasonal component at timet, theTt refers
to the trend (or cycle) component at timet, and theEt refers to everything else (i.e. error) at timet.
Hyndman and Athanasopoulos (2015) state that “the additivemodel is most appropriate if the magnitude
of the seasonal fluctuations or the variation around the trend (or cycle) does not vary with the level of the
time series” (p. 147). Alternatively, Hyndman and Athanasopoulos state that “when the variation in the
seasonal pattern, or the variation around the trend (or cycle), appears to be proportional to the level of
the time series, then the multiplicative model is more appropriate” (p. 147 – 148).

Below we will be using R Commander (package: ‘Rcmdr’) and the epack R Commander plugin (pack-
age: ‘RcmdrPlugin.epack’), as well as one of the main time series packages (package: ‘tseries’). Keep in
mind, the R Commander package has several dependent packages; as does the epack plugin (including
package: ‘tseries’). The examples will be using monthly average stock price for BP PLC from January
1st, 2010 until January 1st, 2011. If you are wondering why only these 12 data points were chosen,
please see2. Below we load R Commander and the epack plugin so we can import the data from Yahoo
Finance. The function used to retrieve the data is the ‘histprice2’ function from the epack plugin.

1https://www.otexts.org/book/fpp
2http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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It is worth noting that the ‘histprice2’ function is actually calling a function from the ‘tseries’ package
called ‘get.hist.quote’ which; by default, uses Yahoo Finance data. This is important because although
we are using monthly stock prices, the ‘get.hist.quote’ function is capable of retrieving daily historical
data. As a quick example, consider the data imported below which contains the daily closing price of the
S&P 500 from January 1964 until January 2014.

It is generally a good idea to begin with a graph of the data, while keeping in mind those terms from
above (e.g. trend, seasonality, cycle). First, take a look at the S&P 500 data.
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Now imagine you were attempting to forecast where the S&P 500would be if you were in 1980. You
would likely have very narrow prediction intervals (similar to confidence intervals). Contrast those imag-
ined intervals with the intervals you would imagine based onthe complete data in the graph, with those
two ominous bunny ear spikes...very foreboding. Do you see any trends, seasonality, or cycles in the
series? One way to get a better idea of those types of patternsis to plot segments of the data, only one
decade at a time perhaps using four decades.
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As you can see above, there does not seem to be any discerniblepatterns among the four segments. Of
course, part of the problem above is that each of the four panels has a different y-axis scale; which means
they are not directly comparable in terms of the variance in each series displayed. We could remedy that
by forcing each graph to have the same scale, but let’s turn our attention to a much smaller series of data;
BP PLC average closing stock price for each month in 2010.
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In the above graph we can see the stock price dropped nearly half its value between March and June.
Most analysts likely would have predicted BP’s stock to stay between $50 and $60 throughout 2010 –
even when using complex multivariate models which will not be covered here. However, on April 20th,
2010 the Deepwater Horizon oil rig exploded and thus began one of the worst petroleum related oceanic
environmental disasters. The point in highlighting this particular data set is to remind all of us that no
matter how sophisticated the model, there is always uncertainty. Statistics is a tool for helping to make
informed decisions in the presence of uncertainty; but models are not reality and no model is perfect.
However, the more data available and analyzed; the less uncertainty one is likely to have in estimates
resulting from a model. As the current article is to be an introduction, let’s return to some of the more
basic concepts of time series analysis.
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1 Autocorrelation

Autocorrelation can be considered a measure of the momentumof a time series. In most time series, it is
reasonable to suspect that the most recent data points are likely to contribute most influence on the next
(i.e. future) data point. Autocorrelation is a type of correlation statistic specifically for correlating the
most recent data point to other data points in the series. Recall, the most recent point is notatedyt and
subsequently older points labeledyt−1, yt−2, yt−3 ... yt−k (wherek = t − 1). The maximum number
of autocorrelations calculated is one minus the number of data points (i.e. k). Each autocorrelation
represents a different lagged value – which refers to the number of points between the most recent data
and the older data. Our BP data contains 12 values and therefore we can compute 11 autocorrelations
(r1, r2, r3, ... r11). Graphing is generally the preferred method of inspectingthe autocorrelations of a
time series. The function used is simply ‘acf’ and by defaultit produces the desired graph. However, we
can simply print the autocorrelations by changing ‘plot = TRUE’ (the default) to ‘plot = FALSE’ as seen
below. One can also get the partial autocorrelation by specifying ‘type = ‘partial”’.
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The blue dotted lines, in the plot above, represent a defaultconfidence interval of 95% (i.e. ‘ci = 0.95’)
which can be changed with the ‘ci’ argument (e.g. ‘ci = 0.80’ for 80%).

2 Stationarity and Non-Stationarity

An important concept in time series analysis is stationarity and particularly the recognition of non-
stationarity in a particular time series. Stationarity refers to the idea that the time series fluctuates around
a constant mean and the variance around that mean remains constant. As one might expect, most time
series exhibit non-stationarity; in other words, most timeseries do not fluctuate around a fixed mean and
they do not fluctuate uniformly. Fortunately, there is a function available in R to test for stationarity; the
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS; 1992) testfor the null hypothesis that the time series
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is level or trend stationary. Using the ‘kpss.test’ function actually requires running the function twice;
once to test if the series is level and once to test if the series displays trend.

Both tests above indicate our time series is non-stationary (i.e. bothp-values are less than 0.05); which
indicates our series does not vary uniformly and does not vary around a constant mean. When a series
is non-stationary (as the tests above indicate is the case with our example), then forecasting is much
more difficult. However, adifferencing operation can be used to transform a non-stationary series into
a series where the assumptions of stationarity are met. For example, with the above result we would
apply ad = 1 differencing operation first and then apply the KPSS tests tothe resulting differences. The
differencing operation simply takes the difference between each time datum (d = 1), or the difference
between each other datum (d = 2), etc. If the resulting differenced time series shows stationarity (i.e.
p > 0.05) then the models discussed below (e.g. ARIMA) are appropriate. The differencing operation is
not used here due to the space and scope constraints of this document.

3 Auto-Regressive Model

The Auto-Regressive model (AR) is nothing more complex than a linear regression model for time series.
The AR model essentially assumes the current time point datum is linearly related most to the previous
point and subsequently less to each previous time point as specified in the model. When specifying an
AR model, you must specify theorder which indicates how many lags to use. The function for fittingan
AR model in R is simply ‘ar(data)’, as can be seen below with noorder specified – by default the order
is 1 (i.e. AR-1). In the example below, the ‘names’ function isused to display the named objects which
are returned by the ‘ar’ function. Of particular use is the ‘partialacf’ which returns the partial autocorre-
lations (simply type: “ar(bp_close)$partialacf” into the console to return these values). Also
typically informative are the residuals of the model (simply type: “ar(bp_close)$resid” into the
console to return these values); larger residuals indicatepoorer fit.
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4 Autoregressive-Moving-Average Models

Autoregressive-moving-average (ARMA) models are based on two polynomial functions; one for the au-
toregression (AR) and a second for the moving-average (MA). The basic function for fitting an ARMA
model to a univariate time series is simply the ‘arma’ function as demonstrated below. Again, the func-
tion defaults to specify AR-1 and MA-1; order one (AR) and ordertwo (MA) which reflect the lag
periods for each component of the model.

As can be seen in the summary above, only the autoregressive portion of the ARMA model is significant.
As should be expected; the autoregressive coefficient is fairly close to what was observed in the AR
model from the previous section.

11



5 Autoregressive Integrated Moving Average Models

The autoregressive integrated moving average (ARIMA) modelis an appropriate choice (over the ARMA
model) when non-stationarity is suspected or observed in the time series. The application of the ‘Arima’
function below has default values specified for the arguments. The ‘Arima’ function is supplied the time
series data and two other components can be specified. The ‘order’ - which is the non-seasonal part of
the ARIMA model, the three components (p, d, q) are the AR order, the degree of differencing (to correct
for non-stationarity – as discussed at the beginning of thisdocument), and the MA order. The ‘seasonal’
argument allows one to specify the seasonal part of the ARIMA model, plus the period (which defaults
to frequency(x)). This should be a list with components order and period, buta specification of just
a numeric vector of length 3 will be turned into a suitable list with the specification as the order.

The output provided by simply listing the output object or retrieving a summary of the output object
provides the basic information; primarily the coefficients(and their standard errors [s.e.]). To see all the
elements of the output, in case one wanted to extract specificparts of it for further computation; we can
use the ‘names’ function and then index each element with the’$’ and name.

We can also apply some functions to use our ARIMA model to forecast predictions providing an estimate
of the expected next time series point(s) and show that prediction graphically. The ‘forecast’ function
provides 80% and 95% confidence intervals as well as a point estimate. Both functions used below are
requesting only one time point ahead predictions; however,both functions are capable of forecasting
multiple future time points.
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The rather large interval (shaded area) around the point estimate is reasonable given the rather large
fluctuation of the existing series (i.e. the drastic decrease in price once the oil spill was made public).
In the graph above, the blue shading represents the 80% confidence interval, while the gray shading
represents the 95% interval.

There also ways of filtering the time series. Below the series is filtered with exponential smoothing
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and then (separately) filtered as a non-seasonal model.

Lastly, much of the above has been covered on the RSS Do-it-yourself Introduction to R web site3 and
specifically in Module 104.

Until next time,why are you wearing that stupid man suit?
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