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Time Series Analysis: Basic Forecasting.

This month’s article will provide a very gentle introdugtito basic time series analysis. The primary
reference for this article is Hyndman and Athanasopoul83%2and it is highly recommended, not least
because it is completely fidand regularly updated at OTexts. If you are unfamiliar, éhiera growing
group of academics and researchers usmgy. OText s. or g/ [Online, Open Access Textbooks] to
remove barriers to learning - a most honorable endeavor.bdb& by Hyndman and Athanasopoulos
also has a companion R package; ‘fpp’ (Hyndman, 2013) whibtiiously, makes working through the
examples presented in the book much easier.

As with any introduction, this one includes some necessatgtion and terms which must be defined
prior to actually learning any of the data analysis techegjuSay we have a vector of time series data,
y, and there are nine values in this time series Q). The most recent value is referred toasand
the last value ag;_g. Continuing the notatiory; ., is used when referring to a forecast value (i.e. the
predicted next value of the time series). Next, there arevadems worth noting. The terrnend refers
to a general pattern (e.g. increase or decrease) in the énes ®ver the course of the series. Hyndman
and Athanasopoulos (2015) define a trend as the followindrélad exists when there is a long-term
increase or decrease in the data” (p. 28). The tegamonal refers to patterns in the series which occur
at regular intervals (e.g. season of the year, semesters atademic year, days of the week, or even
times of a day). Another term widely usedagle, which “occurs when the data exhibit rises and falls
that are not of a fixed period” (Hyndman and Athanasopoulo28jp Basic time series are conceptually
composed of either an additive model:

Y =S+ T+ B (2)

or a multiplicative model:
yr = Spx Ty x By (2

In both models, the; is the data at period S, refers to the seasonal component at tinibe 7, refers

to the trend (or cycle) component at tiheand theF; refers to everything else (i.e. error) at tirhe
Hyndman and Athanasopoulos (2015) state that “the addit@el is most appropriate if the magnitude
of the seasonal fluctuations or the variation around theltfencycle) does not vary with the level of the
time series” (p. 147). Alternatively, Hyndman and Athar@mdos state that “when the variation in the
seasonal pattern, or the variation around the trend (oegyappears to be proportional to the level of
the time series, then the multiplicative model is more appate” (p. 147 — 148).

Below we will be using R Commander (package: ‘Rcmdr’) and thekpaCommander plugin (pack-
age: ‘RcmdrPlugin.epack’), as well as one of the main timeesgrackages (package: ‘tseries’). Keep in
mind, the R Commander package has several dependent pacaagkes the epack plugin (including
package: ‘tseries’). The examples will be using monthlyrage stock price for BP PLC from January
1st, 2010 until January 1st, 2011. If you are wondering whly timese 12 data points were chosen,
please sé Below we load R Commander and the epack plugin so we can impmdadta from Yahoo
Finance. The function used to retrieve the data is the ‘he#@’ function from the epack plugin.

Ihttps: /7 www. ot ext s. or g/ book/ f pp
2http: /7 en. w Ki pedi a. or g/ W ki / Deepwat er Hori zon oil spill


www.OTexts.org
https://www.otexts.org/book/fpp
http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill

"IR & Console (64-bit) =&

File Edit Misc Packages Windows Help

» library (Rcmdr)

Loading required package: splines
Loading required package: RcmdrMisc
Loading required package: car
Loading required package: sandwich

Rcmdr Version 2.1-6

> library(RemdrPlugin.epack)

Loading required package: TeachingDemos
Loading required package: tseries

'tseries' version: 0.10-32

'tseries' is a package for time series analysis and computational
finance.

See 'library(help="tseries")' for details.

Loading required package: abind

Loading reguired package: MASS

Loading required package: xts

Loading required package: zoo

Attaching package: 'zoo!

The following cbjects are masked from 'package:base':
as.Date, as.Date.numeric

Loading required package: forecast

Loading required package: timeDate
This is forecast 5.8

> bp_close <— histpriceZ(instl = "BP", guotl = "Cleose", startl = "2Z010-01-01",

+ endl = "2011-01-01"

trying URL 'http://chart.yahoo.com/table.csv?s5=BP&a=0&b=01&c=2010&ad=0&e=01&af=2011lag=meg=qg&y=0&z=BPS
Content type 'text/csv' length unknown

opened URL
downloaded €37 bytes

time series starts 2010-01-04
time series ends 2010-12-01
> |

It is worth noting that the ‘histprice2’ function is actualtalling a function from the ‘tseries’ package
called ‘get.hist.quote’ which; by default, uses Yahoo Rcedata. This is important because although
we are using monthly stock prices, the ‘get.hist.quotettiom is capable of retrieving daily historical
data. As a quick example, consider the data imported belaehndontains the daily closing price of the

S&P 500 from January 1964 until January 2014.

"R R Console (64-bit el 5

File Edit Misc Packages Windows Help

> spc <— get.hist.guote(instrument = "“gspc"”, start = "1964-01-01"

+ end = "2014-01-01", guote = "Close")

tryving URL 'http://chart.yahoo.com/table.csv?s="gspc&a=0&b=01&c=15%64&sd=0&e=01&af=2014ag=dag=gey=0&zS5
Content type 'text/csv' length unknown

opened URL

downloaded 689 Eb

time series starts 1964-01-02
time series ends 2013=12-31
> length (spc)

[1] 12587

> |

It is generally a good idea to begin with a graph of the datadleAteeping in mind those ter

above (e.g. trend, seasonality, cycle). First, take a lotheaS&P 500 data.

ms from

"IR # Console (64-it) =] =]

File Edit Misc Packages Windows Help

> plot (spc)
> |
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Now imagine you were attempting to forecast where the S&PWwO0Id be if you were in 1980. You

would likely have very narrow prediction intervals (sinmita confidence intervals). Contrast those imag-
ined intervals with the intervals you would imagine basedht@complete data in the graph, with those
two ominous bunny ear spikes...very foreboding. Do you sgeti@nds, seasonality, or cycles in the
series? One way to get a better idea of those types of patetoplot segments of the data, only one

decade at a time perhaps using four decades.

R R Console (64-bit) =

File Edit Misc Packages Windows Help
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As you can see above, there does not seem to be any discerattdens among the four segments. Of
course, part of the problem above is that each of the fourlpdias a different y-axis scale; which means
they are not directly comparable in terms of the varianceacheseries displayed. We could remedy that
by forcing each graph to have the same scale, but let’s turattention to a much smaller series of data;

BP PLC average closing stock price for each month in 2010.
'R R Console (64-bit) =] B |

File Edit Misc Packages Windows Help

> graphics.off()
> plot(bp close)

> |
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In the above graph we can see the stock price dropped nedfligshzalue between March and June.

Most analysts likely would have predicted BP’s stock to stagween $50 and $60 throughout 2010 —
even when using complex multivariate models which will netdovered here. However, on April 20th,

2010 the Deepwater Horizon oil rig exploded and thus begabthe worst petroleum related oceanic
environmental disasters. The point in highlighting thisticalar data set is to remind all of us that no
matter how sophisticated the model, there is always unogrieStatistics is a tool for helping to make

informed decisions in the presence of uncertainty; but risodee not reality and no model is perfect.
However, the more data available and analyzed; the lesgtairdg one is likely to have in estimates

resulting from a model. As the current article is to be anoidtrction, let’'s return to some of the more
basic concepts of time series analysis.



1 Autocorreation

Autocorrelation can be considered a measure of the momeoftartime series. In most time series, it is
reasonable to suspect that the most recent data pointkeletth contribute most influence on the next
(i.e. future) data point. Autocorrelation is a type of ctat®n statistic specifically for correlating the
most recent data point to other data points in the series. lIRE@most recent point is notategd and
subsequently older points labeled |, v; 2, yi—3 ... y;—r (Wherek = t — 1). The maximum number
of autocorrelations calculated is one minus the number tf gaints (i.e. k). Each autocorrelation
represents a different lagged value — which refers to thebeurof points between the most recent data
and the older data. Our BP data contains 12 values and thenefcan compute 11 autocorrelations
(r1, 2, 73, ... r11). Graphing is generally the preferred method of inspectiveggautocorrelations of a
time series. The function used is simply ‘acf’ and by defgytoduces the desired graph. However, we
can simply print the autocorrelations by changing ‘plot ZURR (the default) to ‘plot = FALSE’ as seen

below. One can also get the partial autocorrelation by $gagi‘type = ‘partial™.
'R R Console (64-bit) = E bl

File Edit Misc Packages Windows Help

> acf{bp clese, lag.max = 11)
> acf(bp close, lag.max = 11, plot = FALSE}

Rutocorrelations of series 'bp_close', by lag

o] : 2 g 4 5 [ T 8 9 10
1.000 0.524 0.353 -0.051 -0.263 -0.367 -0.251 -0.254 -0.141 -0.091 -0.058
i1
0.000
3
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The blue dotted lines, in the plot above, represent a detaultidence interval of 95% (i.e. ‘ci = 0.95)
which can be changed with the ‘ci’ argument (e.g. ‘ci = 0.88F 80%).

2 Stationarity and Non-Stationarity

An important concept in time series analysis is statiopaaitd particularly the recognition of non-
stationarity in a particular time series. Stationarityersfto the idea that the time series fluctuates around
a constant mean and the variance around that mean remaisisucbrAs one might expect, most time
series exhibit non-stationarity; in other words, most teedes do not fluctuate around a fixed mean and
they do not fluctuate uniformly. Fortunately, there is a tisicavailable in R to test for stationarity; the
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS; 1992) tiestthe null hypothesis that the time series



is level or trend stationary. Using the ‘kpss.test’ funotaxctually requires running the function twice;
once to test if the series is level and once to test if the seligplays trend.

-
IR R Console (64-bit) =

File Edit Misc Packages Windows Help

» kpss.test{ts{bp €lose), mill = "Level"}
EPSS Test for Level Stationarity

data: ts (bp_close)
KPSS Level = 0.6274, Truncation lag parameter = 0, p-valus = 0.02014

> kpss.test{ts (bp_close), null = "Trend"}
KPSS Test for Trend Stationarity

data: ts (bp_close)
KPSS Trend = 0.2159, Truncation lag parameter = 0, p-value = 0.01003

> |
Both tests above indicate our time series is non-stationarylfothp-values are less than 0.05); which
indicates our series does not vary uniformly and does ngt asund a constant mean. When a series
is non-stationary (as the tests above indicate is the cafeonur example), then forecasting is much
more difficult. However, aifferencing operation can be used to transform a non-stationary series into
a series where the assumptions of stationarity are met. »an@e, with the above result we would
apply ad = 1 differencing operation first and then apply the KPSS testisdaesulting differences. The
differencing operation simply takes the difference betweach time datumd(= 1), or the difference
between each other datumh £ 2), etc. If the resulting differenced time series shows giwtrity (i.e.

p > 0.05) then the models discussed below (e.g. ARIMA) are appragrile differencing operation is
not used here due to the space and scope constraints of thisdat.

3 Auto-Regressive Model

The Auto-Regressive model (AR) is nothing more complex thameat regression model for time series.
The AR model essentially assumes the current time poinhadéuinearly related most to the previous
point and subsequently less to each previous time pointesfed in the model. When specifying an
AR model, you must specify tharder which indicates how many lags to use. The function for fitimg
AR model in R is simply ‘ar(data)’, as can be seen below witlorater specified — by default the order
is 1 (i.e. AR-1). In the example below, the ‘names’ functioms$ed to display the named objects which
are returned by the ‘ar’ function. Of particular use is thartfalacf’ which returns the partial autocorre-
lations (simply type: ar (bp_cl ose) $parti al acf ” into the console to return these values). Also
typically informative are the residuals of the model (siynpylpe: “ar (bp_cl ose) $r esi d” into the
console to return these values); larger residuals indpadeer fit.

10



. R Console (64-bit) =| =
File Edit Misc Packages Windows Help

> ar(bp close, aic = TRUE, method = "yule-walker")
Ccall:
ar(x = bp_ close, aic = TRUE, method = "yule-walker”
Coefficients:

1
0.6241

Order selected 1 sigma”™2 estimated as 51.73
> names (ar (bp_close) )

[1] ™ordex™ b o e "var.pred" "x.mean" Nazal
[6] "n.used" "order . .max" "partialacf” "resid" "method"
[11] "series" "frequency™ "call" "asy.var.coef"

> |

4  Autoregressive-M oving-Aver age M odels

Autoregressive-moving-average (ARMA) models are base#vormpblynomial functions; one for the au-
toregression (AR) and a second for the moving-average (MA&. @asic function for fitting an ARMA
model to a univariate time series is simply the ‘arma’ fuoictas demonstrated below. Again, the func-
tion defaults to specify AR-1 and MA-1; order one (AR) and ordeo (MA) which reflect the lag
periods for each component of the model.

IR R Console (64-bit) | =
File Edit Misc Packages Windows Help

> arma (bp_close)

Caltil:
arma(x = bp_close)

Coefficient(s):
arl mal intercept

0.65763 -0.09556 13.97203

> names {arma (bp_close) )

[1] "coef™ "css" "n.used"

[4] "residuals" "fitted.values” "series™

[7] "frequency" "call”™ "wcov”

[10] "Tag" "convergence" "include.intercept"

> summary (arma (bp_close))

Call:
arma(x = bp close)

Model:
RARMA (1,1)

Residuals:
Min 12 Median 30 Max
-13.832 =2.416 1.443 3.862 8.329

Coefficient(s):
Estimate Std. Error t wvalue Pr(>|t])

arl 0.65763 D .21792 3:018 0.00255 **

mal —0.09556 0.41¢602 -0.230 0.81832

intercept 13.97203 S.868450 1.414 0.15750

Signif. codes: Btk B TEETY G0l T Qs Tl @ T U 3
Fit:

sigma”2 estimated as 35.9%3, Conditional Sum-of-Sguares = 359.35, AIC = 83.03

> |

As can be seen in the summary above, only the autoregressivemof the ARMA model is significant.
As should be expected; the autoregressive coefficient iily felose to what was observed in the AR
model from the previous section.

11



5 Autoregressive Integrated Moving Average Models

The autoregressive integrated moving average (ARIMA) msciat appropriate choice (over the ARMA
model) when non-stationarity is suspected or observedaititie series. The application of the ‘Arima’
function below has default values specified for the argumeértte ‘Arima’ function is supplied the time
series data and two other components can be specified. Tder"emvhich is the non-seasonal part of
the ARIMA model, the three components ¢, ) are the AR order, the degree of differencing (to correct
for non-stationarity — as discussed at the beginning ofdb@iment), and the MA order. The ‘seasonal’
argument allows one to specify the seasonal part of the ARIMAeh plus the period (which defaults
tof requency( x) ). This should be a list with components order and periodatsgecification of just

a numeric vector of length 3 will be turned into a suitabléewsh the specification as the order.
rR R Console (64-bit) = B |

File Edit Misc Packages Windows Help

> ArimaModel <- Arima(bp clese, order = c¢(3,1,0),
+ seasonal = list(order = ¢(0,1,1)),
+ include.mean = TRUE)
> ArimaModel
Series: bp close
ARTMA (3,1,0)
Coefficients:
arl ar2 ar3 smal

=0.31722 +0.9165 —0.Z2333 =0.6835

s.e. 0.6569 0.6720 0.4446 0 8238

sigma®2 estimated as 51.0%: log likelihcod=-34.4¢
ATC=78.%2 ATCc=93.92 BIC=80.44

> summary (ArimaMcodel)

Series: bp close

ARIMA (3,1,0)

Coefficients:
arl arz2 ar3 smal
-0.1722 -0.0165 -0.2393 -0.6835
s.e. 0.6569 0.6720 0.444¢6 0.8238

sigma”2 estimated as 51.09: log likelihood=-34.46
AIC=78.92 ATCc=93.92 BIC=80.44

Training set error E;asuEEEQSE - - _— _— _—
Trrining set 1.185403 6.524823 5.045851 2.200577 12.63444 0.5270813 -0.05001454
=

The output provided by simply listing the output object atrieving a summary of the output object
provides the basic information; primarily the coefficie(dad their standard errors [s.e.]). To see all the
elements of the output, in case one wanted to extract speeifis of it for further computation; we can

use the ‘names’ function and then index each element witttlsand name.
rR R Consale (64-bit) o | B |
File Edit Misc Packages Windows Help

> names (ArimaModel)

[1] "coef™ "sigma2" "var.coef" "mask" "loglik" "aic"
[7] "arma" "residuals"™ "call" "series" "code" "n.cond"
[13] "model” Ep— "hic o
> ArimaModelScoef
arl ar2 ar3 smal

-0.17215423 -0.01654517 -0.23929453% -0.68354303
> |

We can also apply some functions to use our ARIMA model to fasepredictions providing an estimate
of the expected next time series point(s) and show that gtiedigraphically. The ‘forecast’ function
provides 80% and 95% confidence intervals as well as a pdinma&g. Both functions used below are
requesting only one time point ahead predictions; howdseth functions are capable of forecasting
multiple future time points.

12



IR R Console (64-bit) =
File Edit Misc Packages Windows Help

> predar3 (ArimaModel, forel = 1)
x

1 44.76752
» forecast {ArimaModel, h = 1)

Point Forecast Lo B0 Hi 80 Lo 95 Hi 95
13 44 . 76792 35.60636 53.92948 30.7565Z2 58.77931
3 i_a;ot(forecast(érimaMoc’e;, h = 1))
g
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The rather large interval (shaded area) around the poimha&igt is reasonable given the rather large
fluctuation of the existing series (i.e. the drastic de@eaagrice once the oil spill was made public).
In the graph above, the blue shading represents the 80% eoné&dnterval, while the gray shading
represents the 95% interval.

There also ways of filtering the time series. Below the segdgtered with exponential smoothing
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and then (separately) filtered as a non-seasonal model.
"R R Console (54-bit) =| =
File Edit Misc Packages Windows Help

> HoltWintersModel.E <-— Ho;tﬁinters(bp_c;ose, gamma = FALSE, beta = FALSE)
> HoltWintersModel.E
Holt-Winters exponential smcothing without trend and without seasonal component.

Ccall:
HoltWinters(x = bp close, beta = FALSE, gamma = FALSE})

Smoothing parameters:
alpha: 0.9%066745
beta : FALSE
gamma: FALSE

Coefficients:
[,1]
a 43.78764
> HoltWintersModel.NS <- HoltWinters(bp close, gamma = FALSE)
> HoltWintersModel.NS
Holt-Winters exponential smoothing with trend and without seasonal component.

Call:
HoltWinters (x = bp close, gamma = FALSE)

Smoothing parameters:
alpha: 0.5%24136
beta : 0
gamma: FATLSE

Coefficients:
[.11

a 43.61932

b -2.91000

> |

Lastly, much of the above has been covered on the RSS Do-isglbuntroduction to R web sifeand
specifically in Module 16,

Until next time,why are you wearing that stupid man suit?
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