
S-PLUS 4.x complements to

Modern Applied
Statistics with S-Plus

Second edition

by

W. N. Venables and B. D. Ripley
Springer (1997). ISBN 0-387-98214-0

6 December 1998

These complements have been produced to supplement the second edition of
MASS. They will be updated from time to time. The definitive source is http:
//www.stats.ox.ac.uk/pub/MASS2/.

Sections 2.13 and 3.6 c© 1997 Springer-Verlag. Remaining material c© 1997,
1998 W. N. Venables and B. D. Ripley. A licence is granted for personal study
and classroom use. Redistribution in any other form is prohibited.

Selectable links are in this colour.
Selectable URLs are in this colour.

http://www.stats.ox.ac.uk/pub/MASS2/
http://www.stats.ox.ac.uk/pub/MASS2/

i

Introduction to 4.x Complements

These complements are made available on-line to supplement the book with a
description of the new user interface in S-PLUS 4.x for Windows. There are other
complements covering other aspects of S-PLUS, and these include comments on
changes in version 4.x. In particular, the programming complements discuss the
use of compiled C and FORTRAN code.

In this document 4.x refers to S-PLUS 4.0 releases 1, 2 and 3, S-PLUS 4.5
Professional Edition and any later versions in the same family. S-PLUS Standard
Edition has much more limited features; in particular no access to the S language
except through the GUI.

To forestall any possible confusion: there is no connection between version
4.x of S-PLUS and the version 4 of S which is currently under development, and
has been announced as the basis for future versions of S-PLUS for both Unix and
Windows.

The chapter and section numbering in these complements corresponds to that
in the book.

ii

Contents

Introduction i

1 Introduction 1

1.3 Using S-PLUS under Windows 1

1.4 An introductory session . 5

2 The S Language 8

2.4 Reading data . 8

2.12 History and audit trails . 8

2.13 BATCH operation . 8

3 Graphical Output 10

3.3 Enhancing plots . 10

3.6 Object-oriented editable graphics 10

6 Linear Statistical Models 17

6.7 Multiple comparisons . 17

8 Robust Statistics 21

8.3 Robust regression . 21

8.4 Resistant regression . 23

8.5 Multivariate location and scale 24

12 Survival Analysis 26

12.1 Estimators of survival curves . 26

12.2 Parametric models . 28

References 33

1

Chapter 1

Introduction

1.3 Using S-PLUS under Windows

Getting started

The ways to use a specific _Data directory have been changed. We have not tried
S-PLUS 4.x under Windows 3.x or NT3.51.

Windows 95 and NT4.0

1. Create a new folder, say SWS , for this project, then (optional) create new
folders _Data and _Prefs within that folder.

2. Copy any data files you need to use with S-PLUS to the folder SWS .

3. From the Start menu, select Settings, Taskbar, the Start Menu Programs
page and click on the Advanced button.

4. Open the S-PLUS 4.x folder under Programs1.

5. Create a duplicate copy of the S-PLUS 4.x icon for example, using Copy
from the Edit menu. Change the name of this icon to reflect the project it
will be used for.

6. Right-click on the new icon, and select Properties from the pop-up menu.

7. On the page labelled Shortcut, add at the end of the Target field S_PROJ=
followed by the complete path to your folder. If that path contains spaces,
enclose it is double quotes, as in

S_PROJ="c:\my work\S-Plus project"

If you have other files for the project, set the Start in field to their folder. If
this is the same place as _Data, you can set S_PROJ=. on the target rather
than repeating the path there.

8. Select the project’s S-PLUS icon from the Start menu tree.

1 Under NT4 the folder may not be there if S-PLUS was installed under another account. In that case
you need to find the S-PLUS home directory and make a shortcut to cmd\splus.exe in Programs.

1.3 Using S-PLUS under Windows 2

9. If you did not create them both at step 1, you will be asked if _Data and
_Prefs directories should be created. Click on OK.

10. When the program has initialized, click on the Commands Window button

with icon on the upper toolbar. If you always want a Commands Window
at startup, select this from the menus via Options | General Settings... |
Startup. (This setting is saved for the project on exiting the program.)

More details of this are given in the release notes (file README.TXT in SHOME)
and in Chapter 15 of the Programmer’s Guide.

Recovering from crashes

We have experienced a small number of crashes after which S-PLUS 4.x would
not restart. In all cases the problem was with the state of the information in the
working directory, and the following procedure allowed us to recover.

1. Locate the working directory, which contains a _Data and a _Prefs direc-
tory. We use C:\Swork in the examples; replace this by the appropriate
directory.

2. Delete the files __sum4.txt, __sum4i.txt and __sum4.tx_ in _Data if
these exist, and try to restart S-PLUS. If this works, S-PLUS will create
new versions of these files as needed.

3. Rename _Prefs to _Prefs.bak, make a new _Prefs directory and restart
S-PLUS. If this is successful you will need to reset your preferences, and
you may be able to copy crucial files from _Prefs.bak to _Prefs. We
keep a backup copy of a working _Prefs for use when we wish to reset
preferences to a known state.

4. If these fail the problem is probably a file such as last.dump in _Data.
Experts can delete this file and the corresponding lines in _Data___nonfi.
A more cautious approach is to rename _Data to _Data.old and create a
new _Data directory. Then restart S-PLUS, and use

attach("C:/Swork/_Data.old")
mydata <- mydata

to copy over crucial files such as mydata . This process can also be used
to delete files2 within _Data.old that have become corrupted (and their
modification times will reveal which these might be). Another possibility
is to start up another project, attach the corrupted working directory and
use remove to delete the corrputed files.

5. It may be possible to restore either or both of _Prefs and _Data from their
backups made during this process, once the problem has been pin-pointed.

2 using remove("name", w=2) .

1.3 Using S-PLUS under Windows 3

The S-PLUS 4.x interface

S-PLUS 4.x provides a new interface to the S-PLUS engine, and many new
actions. The GUI is highly configurable, but in its default state looks similar to
Figure 1.10. The top toolbar is constant, but the second toolbar and the menu
items depend on the type of subwindow which has focus.

Figure 1.10: A snapshot of the interface of S-PLUS for Windows 4.0 showing three
subwindows, from front to back an object browser, a graphsheet and a commands window.

The object browser and the commands window were selected by the two
buttons on the top toolbar which are depressed. (By default there is an object
browser but no commands windows.) To find out what the buttons mean, hover
the mouse pointer over them and read the description in the bottom bar of the main
S-PLUS window.

The commands window

To use this version of S-PLUS in the same way as earlier versions (or S-PLUS
under Unix), type commands in the commands window. These are executed
immediately. Previous commands can be recalled by using the up and down arrow
keys, and edited before submission (by pressing the return key). The commands
history button (immediately to the right of the command window button) brings
up a dialog with a list of the last few commands, which can be selected and
re-submitted. When the commands window has focus, the second toolbar has
just one button (with icon representing a pair of axes and a linear plot). When

1.3 Using S-PLUS under Windows 4

depressed, this selects editable graphics. This is not recommended for routine use,
as it may make the graphics very slow, and plots can be made editable later (see
under ‘object browsers’ below). It is also possible to launch a graphsheet with
editable graphics or not from the command line by

graphsheet(object.mode="object-oriented")
graphsheet(object.mode="fast")

Script windows

Figure 1.11: A script subwindow in S-PLUS for Windows 4.0.

There is another way to use this version of S-PLUS for S programming, which
is to use a script window. This can be opened from the New file button or menu
item, and presents a two-part subwindow as shown in Figure 1.11. S commands
can be typed into the top window and edited there. Groups of commands can be
selected (in the usual ways in Windows), and submitted by pressing the function
key F10 or by the leftmost button on the second line (marked to represent a
‘play’ key). If text output is produced, this will appear in the bottom part of the
subwindow. A script window can be launched from the command line to edit a
function by the new function Edit (note the difference from edit).

It is the help features that mark a scripts window as different from a commands
window. Select a function name by double-clicking on it. Then help on that
function is available by pressing the function key F1, and the right-click menu
has items Show Dialog... and Expand Inplace to pop-up a dialog box for the
arguments of the function and to paste in the function body.

1.4 An introductory session 5

Scripts can be saved as text files with extension .ssc ; use the Save file menu
item or button when the script window has focus.

More than one script window can be open at once. To avoid cluttering the
screen script windows can be hidden (and unhidden) from the Windows file menu.
The Hide item hides the window which has focus, whereas the Unhide... provides
a list of windows from which to select.

Object browsers

There can be one or more object browsers on screen. They provide a two-panel
view which will be familiar from many Windows programs. Objects are grouped
by class and can be expanded down to component level. The right-click menu is
context-sensitive: for example for a linear model fit (of class lm) has Summary,
Plot, Predict and Coefficients items. Double-clicking on a data frame or vector
will open it for editing or viewing in a spreadsheet-like data window.

If a graphsheet is selected and expanded it will first show its pages (if there
are more than one) and then the plotted objects. If the object is labelled Com-
positeObject then the right-click menu will include the item Convert to Objects
which will convert that plot to editable form.

Object browsers are highly customizable, both in the amount of detail in the
right pane and in the databases and classes of objects to be shown. Right-clicking
on the background of the left and right panes or the Format menu will lead to
dialog boxes to customize the format.

The ordering of items in the right pane can be puzzling: click on the heading
of a column to sort on that column (as in the Explorer in Windows 95 and NT4).

Data windows

A data window provides a spreadsheet-like view (Figure 1.12) of a data frame (or
vector or matrix). The scrollbars scroll the table, but the headings remain visible.
A region can be selected by dragging (and extended by shift-clicking); including
the headings in the selection includes the whole row or column as appropriate.

Entries can be edited and rows and columns inserted or deleted in the usual
spreadsheet styles. Toolbar buttons are provided for most of these operations, and
for sorting by the selected column. Double-clicking in the top row of a column
brings up a format dialog for that column: double-clicking in the top left cell
brings up a format dialog for the window that allows the type font and size to be
altered.

1.4 An introductory session

We can do something similar to the analysis of the hills and michelson
datasets using the GUI. First attach library MASS via the commands window or
a script window (this cannot be done from the GUI, although databases can be
attached).

1.4 An introductory session 6

Figure 1.12: A data window view of the hills dataset with the dist column selected.

Open an object browser, create a new page (from the right-click menu), filter
on the location of the MASS library, select all classes and click on OK. Select
data.frame in the left pane, and click on the Object header in the right pane
to sort the items alphabetically. Finally select the hills data frame. Click on the
2D plot button on the top toolbar, and select the button for a scatterplot matrix.
This gives a plot similar to Figure 1.4, but without the square aspect ratio. To
change that, select the plot region (click outside the scatterplot matrix), right-click
and select the Position/Size... item. In the dialog box enter equal dimensions for
width and height of the plot display size.

To try out the brush-and-spin plot, select Brush and Spin from the Graph
menu, select all the variables in the dialog box and click on OK.

To approximate Figure 1.6, double click on hills to open a data window, and
select the columns dist and time in that order. Then open the 2D plots palette
and select the Linear Fit button. Then to label points, open the annotations palette
(second from right on the graphsheet toolbar), and select the Label Points button
(third on the top row). Click near a point on the plot for a label, but shift-click
for this label to be permanent so that further points can be labelled. To add the
ltsreg line, we need to add another plot, which we can do by first selecting
the existing plot and then shift-clicking on the appropriate button, this time for
a robust fit. Finally we need to select the robust line and from the dialog box
brought up by the lines shortcut on the right-click menu select a dashed line. The
numerical labels on the y -axis are horizontal so overlap the axis label. There
seems to be no way to rotate the numbers, so the axis label will need to be selected
and moved.

Now return to the object browser, expand the list of data frames and select
michelson . The right pane will then list the columns: select Expt and Speed
in that order. (Hold down Ctrl whilst clicking on Speed .) Then open the 2D plots
palette and click on the Box Plot button. The plot will be generated. Select the

1.4 An introductory session 7

x -axis label and edit the text (either ‘in place’ by double clicking or via the dialog
box). Finally, open the annotations palette, select the Comment tool, and add the
title.

Figure 1.13: The dialog box for a fixed-effects analysis of variance.

Select the michelson data frame again, and select Speed , Run and Expt
in that order. Then select Statistics, Analysis of Variance and Fixed Effects from
the menus. A dialog box (Figure 1.13) will appear, with the appropriate formula
already constructed. Give fm as the name by which to save the model object.
Clicking on Apply gives output in the results window, including the analysis of
variance table. Now delete Run + from the formula, change the name to fm0
and click on OK.

Go back to the object browser, select the first page and the class list . Objects
fm and fm0 will have appeared. Right clicking on these will allow them to be
summarized and plotted. (Plotting the object will give four pages of diagnostic
plots.)

To compare the models, select Compare Models from the Statistics menu.
Select models fm0 , fm in that order3 from the list of models presented in the
dialog box, and select OK. The analysis of variance table appears in the report
window.

3 This will only work in release 2 or later of 4.0: release 1 ignores the order of selection.

8

Chapter 2

The S Language

2.4 Reading data

The function scan

It is not possible in some releases of 4.0 to paste data into a command window to
be read by scan . However, there is a better alternative: copy the data as before,
and use scan("clipboard", ...) . This also works in 3.3.

2.12 History and audit trails

Auditing was enabled in 4.0 release 1, apparently by mistake. It is disabled by
default in 4.0 releases 2 and later, but can be enabled by setting

Splus.exe S_NOAUDIT=

via the properties of the S-PLUS icon for the project.

2.13 BATCH operation

It is sometimes desirable to run an S-PLUS job non-interactively. S-PLUS 4.x
provides a command-line interface program sqpe.exe whose input and output
can be redirected and which can be used from an MS-DOS window in Windows 95
or in other shells. Error messages are written to the output stream, but commands
are not echoed unless options(echo=T) is set. The prompts will not appear
in the output file unless the environment variable ALWAYS_PROMPT is set. Before
using sqpe ensure that the environment variable SHOME is set: an example of its
use (in an MS-DOS window) is

set ALWAYS_PROMPT=T
set SHOME=C:\Program Files\splus4
%SHOME%\cmd\sqpe < infile > outfile

The main S-PLUS program has a BATCH switch with syntax

2.13 BATCH operation 9

Splus [S_PROJ=dir] /BATCH infile [[outfile] errfile]

where the error messages are written to outfile if errfile is not supplied.
Setting S_PROJ is needed to change the working directory _Data from its default.
The input commands are not echoed (use options(echo=T)) and the prompts
will not appear in the output file unless the environment variable ALWAYS_PROMPT
is set. The files are specified relative to the working directory.

Figure 2.3: The BATCH progress box.

From 4.0 release 3 it is possible to ask for the progress dialog box (similar to
Figure 2.3) to be minimized1 by using the command line (all on one line)

Splus [S_PROJ=dir] /BATCH_PROMPTS progress:min /BATCH
infile [[outfile] errfile]

This minimizes the progress dialog as a floating window rather than to the taskbar.
In 4.5 you can also use /BATCH PROMPTS no to turn off the dialogs completely,
or /BATCH PROMPTS progress:no to suppress the progress dialog box only.

Using Splus /BATCH needs all the resources of the GUI, and so takes a
similar time to start and uses a similar amount of memory. Using Sqpe.exe
provides much more efficient (faster, using less memory) access to the S-PLUS
engine provided that access to graphsheets or win.printer is not required.

1 it has no minimize control

10

Chapter 3

Graphical Output

3.3 Enhancing plots

Adding information

Mathematics in labels

Under S-PLUS 4.x there is a series of escape codes which can be used to enhance
graph labels on graphsheets. These are

‘string‘ string in italics
#string# string in bold
x[2] x2 , superscript
x]2[x2 , subscript
\n change to font n (the normal font being 0)
|n| change to colour n
~xyz character with ASCII code xyz

These escape codes can be escaped by preceding them by @ . The special characters
depend on the font selected: use the Character Map accessory to see what is
where in each font. In particular, the Greek letters (including variant forms) are
in positions A--Z and a--z of the Symbol font (normally font 1).

Note that these escapes are normally disabled for graphics created by com-
mands from a commands or script window, but can be used by editing text in such
graphics.

3.6 Object-oriented editable graphics

[This section is (mainly) reproduced from the book for convenience. There are
some added graphics.]

S-PLUS 4.0 for Windows introduced a completely separate style of graphics
based on menus and toolbars with simple command-line equivalents. The style
of the interface is designed for intuitive exploration by experienced Windows
users; most of the options are set from dialog boxes brought up by selecting and
double-clicking or right-clicking elements of the plot. There are separate dialog

3.6 Object-oriented editable graphics 11

boxes for different plot elements: at least the background, plotted objects, axes
and any annotations.

This graphical system works in a new graphical device called a Graph Sheet.
A graphsheet device can be launched from the command window by the function
graphsheet() , but it will normally be opened from a plot palette button or
from the new document icon on the toolbar. Graphsheets can be used as graphics
devices with both base and Trellis command-line graphics, and provide limited
editing facilities, for example to edit the text of labels and the colour and width

of lines, if the ‘Object-oriented Graphs’ button has been selected or if the
graphsheet was started with argument object.mode=T . It is possible to convert
graphs to the editable form at a later date using the object browser (see page 5).
Note that command-line graphics will not normally use1 a graphsheet already
opened from the GUI, but will open a new one. Normally the GUI graphics will
start a new graphsheet for each plot, whereas the command-line graphics will
re-use the existing one.

To produce a hardcopy of a graphsheet to a printer the normal Windows
printing facilities can be used: it is also possible to export the graph(s) to a file
via the Export Graph... item on the File menu. Finally, graphsheets can be
saved (as S-PLUS graph files with extension .sgr) and re-imported for editing
or additions. Their structure can be browsed in the graphsheets view of the object
browser (another part of the new interface).

2D plots

The 2D plot palette (Figure 3.23) on the toolbar contains many buttons for different
plot types plus six which control the placement of axes and three the production
of conditioning plots. The basic types of plots are scatter and line plots (of types
"l" , "s" and "S"), smoothed plots, and various fitted lines. There are also
barplots, histograms, and pie charts.

Most of these plots work on two columns of data2. As they are not specified
as arguments to a function, they need to be specified in some other way, and there
are many possibilities. The most convenient way will often be to double-click a
data frame in the object browser, select the desired columns (in the order x , y ,
z if needed, . . .) and either drag-and-drop onto the appropriate button in the 2D
plot palette, or just click on the button. The variables may be specified or changed
using the either of the dialog boxes brought up by double-clicking the plotted
points or the background.

All plots can be conditioned, in the Trellis style but with a little less flexibility.
The default is to use four panels in a 2 × 2 layout. The conditioning variable(s)
can be set in the Multipanel tab of the plot background dialog box or by drag-
and-drop. For the latter, select the desired variable(s) in an object browser of
an open view of the data frame, then click and hold over the columns (not their
headers) and drag to the graphsheet window. A rectangular drop target will appear

1 An existing graphsheet can be taken over by using its name as the Name argument to graphsheet .
2 If only one column is selected this is used for y and the index is used for x .

3.6 Object-oriented editable graphics 12

Figure 3.23: Three palettes from S-PLUS 4.0.

in the graph window above the plot area: ‘drop’ the columns there. (Dropping
the variables in the plot area will replace the plotted variables.) Alternatively,
additional columns can be selected and the Conditioning button selected on the
toolbar before generating the plot.

Buttons on the 2D plot palette can select no conditioning or a 3× 3 layout as
well as the default 2×2 layout. Considerably greater control over the conditioning
is available from the Multipanel tab. This allows the number and layout of panels
to be changed, the partitioning of continuous variables to be set (with overlap as
in shingles if desired), and strips to be plotted or not. (If they are, they can be
selected and their properties edited.)

3.6 Object-oriented editable graphics 13

3D plots

The distinction between 2D and 3D plots is by appearance not data; contour,
level and filled contour plots are on the 2D plot palette even though they require
three columns to be selected. Like Trellis plots, the contour and surface plots
require a z coordinate evaluated at a rectangular grid of x and y coordinates, but
unlike Trellis they will interpolate irregular data to an automatically chosen grid
(controlled from the Gridding tab of the plot dialog box).

The contour and levels plots are analogues of contourplot and levelplot ;
the filled contour plots are contour plots with the regions between contours filled
in different colours. The details of the contours, levels and colours can be altered
from the dialog box brought up by double-clicking or right-clicking inside the plot
region.

The analogue of the Trellis function cloud is a 3D scatterplot from the 3D
plot palette. A cloud of points can be represented as points, connected by lines
(with or without highlighting the points) or as a ‘dropped line scatter’ plot where
each point is represented by a line segment from (x, y, z) to (0, 0, z) . There
are also 3D bar charts (sometimes known as Manhattan diagrams) for data on a
rectangular grid.

Surfaces can be represented in many ways:

(a) As a wireframe surface, plotted at the grid spacing or at every other grid point.

(b) As a wireframe interpolated to a finer grid (default half the spacing) by splines.

(c) Filled versions of (a) and (b), in which the surface is shown in a solid colour
(selected from the Fills tab of the dialog box selected from the surface).

(d) A draped surface, with levels represented by 8, 16 or 32 colours. (Many
representations intermediate between (c) and (d) can be selected from the
Lines and Fills tabs.)

(e) Contours or filled contours, in which contour levels are plotted at the appro-
priate height as horizontal sections of the surface.

To change the representation of a surface, select the surface by clicking on it, then
the appropriate button in the 3D plot palette (Figure 3.23).

All of these 3D plots can be rotated. First select the plot area by clicking
within the plot region delimited by the axes, but not on the surface. Four circles
and a triangle will appear. Any of these can be dragged to rotate the plot: the
circles give horizontal rotation (about the vertical axis) and the triangle rotates the
vertical axis. It may be a good idea to change to a simple view of the surface (such
as a coarse wireframe grid) if rotation proves to be slow.

The software also allows multiple (2, 4 or 6) views of the plot from different
(equispaced) angles, and these can be rotated simultaneously by rotating one of
the panels. Multiple views are selected by buttons on the 3D plot palette. As these
are a form of conditioning, a single view is selected again by clicking on the ‘no
conditioning’ button in the palette.

Plots can also be conditioned on the x , y or z variables and shown as a series
of ‘exploded’ views.

3.6 Object-oriented editable graphics 14

All the plots from the 3D palette can be conditioned on additional variables,
selecting 2× 2 or 2× 3 layouts from a palette button, with fine-tuning from the
background dialog box.

The shape of the enclosing cuboid (the aspect parameter in 3D Trellis) can
be set from the 3D Workbox tab of the plot’s dialog box.

Editing plots

Many of the properties of a graph can be altered from dialog boxes. To select a
part of the graph (such as an axis or fitted line or label) (left-)click on it. Clicking
on any of the data points in a 2D plot will select both the points and the fitted
curve. Then either double-clicking or right-clicking will bring up or a tabbed
dialog box or a shortcut menu to the tabs from which the properties of that part
can be selected.

The plot region or the whole graph can be selected. The dialog box has at least
four tabs, Plot Summary (including the data frame used), Position/Size (which
includes aspect ratio, with a welcome option for ‘proportional units’), Fill/Border
(colours, patterns, . . .) and Multipanel (for conditioning). The 3D plots add the
3D Workbox tab. When the whole graph is selected it can be resized by dragging
the handles, or moved by dragging a point outside the plot region, and similarly
for the plot region.

Once an axis label or title is selected, clicking on the text brings up an ‘in-
place’ edit box for replacement text. Double-clicking on the surrounding box
enables properties such as font and colour to be altered: these can also be altered
from the toolbar when the text is selected.

Legends and titles can be added from the Insert menu; showing a legend can
also be toggled from a toolbar button.

There is an annotation palette (Figure 3.23) which has tools to label points (as
in identify) and to add text, a date stamp or various symbols to a graph. This
palette is selected from its toolbar button or from the Toolbars item on the Views
menu. Its effect is to provide a simple drawing package with which to enhance
graphs.

Multiple graphs

A graph sheet can display more than one graph. To add a graph to an existing
graph sheet display, ensure that no elements are selected and create the new
graph, holding down Shift whilst the plot button is clicked. (As we saw in the
Introduction, doing this whilst a graph is selected adds to that graph.) It may
be necessary to use the Arrange Graphs item on the Format menu to produce a
usable layout (as the default might be to overlay the graphs). The graphs can be
re-ordered by selecting them in the order required (use shift-click) and then using
Arrange Graphs.

Graphsheets can make multiple pages of graphs. The circumstances under
which they do so is set by the Auto pages item in the Options|Graph Options

3.6 Object-oriented editable graphics 15

... dialog box, which can be overridden for each graphsheet from the Options
tab of its right-click background menu. The default is to create separate pages if
sent several frames (plots starting on a new page) during the execution of a single
expression, for example when using plot(lm.object, ask=T) . This can be
changed to a new graph page for every plot, or to always use the same graph page.
To set this up from the command line we can use, for example

graphsheet(Name="GStest")
guiModify("GraphSheet", Name="GStest",

AutoPageMode="Every Graph")

In 4.5 we can use guiGetGSName() for the name of the current graphsheet.

Setting GUI properties from the command-line

As the last example shows, it is possible to change almost all of the settings in
the GUI by calls from the S language. The simplest (and in many cases the only)
way to find the corresponding S command is to invoke the operation from the GUI
and then open a history window (using toolbar button to the left of that for the
command-line window labelled by a scroll). The appropriate command(s) will be
recorded in the history window and can be used from an S script with minimal
changes (for example giving the appropriate name for the graphsheet).

To find the existing settings of a graphsheet (say), use

nm <- guiGetArgumentNames("GraphSheet")
pr <- guiGetPropertyValue("GraphSheet", Name="GStest")
names(nm) <- pr
print(pr)

and this listing gives the corresponding arguments to be used with guiModify
to alter the settings. However, it does not seem to be possible to find the set of
allowable values for the settings except by trying them from a dialog box or menu
and examining the history.

Using command-line graphics on a graphsheet

The traditional command-line graphics operations are mapped to objects in the
object-oriented graphics model. In the default ‘fast’ mode the graphics calls in
each top-level S expression are mapped to a single composite object. This is
usually what is required, but can have some unexpected side-effects. One is that
all the graphics calls from within a function are combined into a single object, and
nothing is displayed until the function call finishes. Similarly, running a series of
simulations in a for loop and plotting the results after each one will under 4.x
not display any of the results until the whole series of simulations has completed.
This is in contrast to the behaviour under S-PLUS 3.3 for Windows and for the
Unix versions, under which the graphics are displayed immediately.

The work-around is to ensure that the graphics calls are split into multiple
objects; this can only be done in 4.0 release 2 or later using an undocumented

3.6 Object-oriented editable graphics 16

effect of the function guiLocator . If this is called with a negative argument
it pauses (guiLocator(-n) pauses for n seconds), and then plots the pending
graphics calls (which will appear in an object-browser view of the graphsheet as a
single object). Two side-effects of the call to guiLocator are to move the focus
to the graphsheet which is thus brought to the front and to start a new expression
for the purposes of the Page creation option (the AutoPageMode property) of
the graphsheet.

17

Chapter 6

Linear Statistical Models

6.7 Multiple comparisons

As we all know, the theory of p -values of hypothesis tests and of the coverage of
confidence intervals applies to pre-planned analyses. However, the only circum-
stances in which an adjustment is routinely made for testing after looking at the
data is in multiple comparisons of contrasts in designed experiments. Consider
the experiment on yields of barley in our dataset immer 1. This has the yields of
five varieties of barley at six experimental farms in both 1931 and 1932; we will
average the results for the two years. An analysis of variance gives

> immer.aov <- aov((Y1+Y2)/2 ~ Var + Loc, data=immer)
> summary(immer.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
Var 4 2655 663.7 5.989 0.0024526
Loc 5 10610 2122.1 19.148 0.0000005

Residuals 20 2217 110.8

The interest is in the difference in yield between varieties, and there is a statistically
significant difference. We can see the mean yields by a call to model.tables .

> model.tables(immer.aov, type="means", se=T, cterms="Var")
....

Var
M P S T V

94.392 102.54 91.133 118.2 99.183

Standard errors for differences of means
Var

6.078
replic. 6.000

This suggests that variety T is different from all the others, as a pairwise signif-
icant difference at 5% would exceed 6.078 × t20(0.975) ≈ 12.6 ; however the
comparisons to be made have been selected after looking at the fit.

1 the Trellis dataset barley discussed in Cleveland (1993) is a more extensive version of the same
dataset.

6.7 Multiple comparisons 18

(

(

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

)

M-P

M-S

M-T

M-V

P-S

P-T

P-V

S-T
�

S-V
�

T-V
�

-50 -40 -30 -20 -10 0
�

10 20
�

30
�

40
�

simultaneous 95 % confidence limits, Tukey method�

response variable: Var

Figure 6.1: Simultaneous 95% confidence intervals for variety comparisons in the immer
dataset.

Function multicomp allows us to compute simultaneous confidence intervals
in this problem, that is confidence intervals such that the probability that they cover
the true values for all of the comparisons considered is bounded above, by 5% for
95% confidence intervals. We can also plot the confidence intervals (Figure 6.1),
by

> multicomp(immer.aov, plot=T)
95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.9925
response variable: Var

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound Upper Bound
M-P -8.15 6.08 -26.300 10.00
M-S 3.26 6.08 -14.900 21.40
M-T -23.80 6.08 -42.000 -5.62 ****
M-V -4.79 6.08 -23.000 13.40
P-S 11.40 6.08 -6.780 29.60
P-T -15.70 6.08 -33.800 2.53
P-V 3.36 6.08 -14.800 21.50
S-T -27.10 6.08 -45.300 -8.88 ****
S-V -8.05 6.08 -26.200 10.10
T-V 19.00 6.08 0.828 37.20 ****

This does not allow us to conclude that variety T has a significantly different yield
from variety P .

We may want to restrict the set of comparisons, for example to comparisons
with a control treatment. The dataset oats is discussed on page 300; here we
ignore the split-plot structure.

> oats1 <- aov(Y ~ N + V + B, data=oats)

6.7 Multiple comparisons 19

> summary(oats1)
Df Sum of Sq Mean Sq F Value Pr(F)

N 3 20020 6673.5 28.460 0.000000
V 2 1786 893.2 3.809 0.027617
B 5 15875 3175.1 13.540 0.000000

Residuals 61 14304 234.5
> multicomp(oats1, focus="V")

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.4022
response variable: N

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound
Golden.rain-Marvellous -5.29 4.42 -15.90

Golden.rain-Victory 6.88 4.42 -3.74
Marvellous-Victory 12.20 4.42 1.55

Upper Bound
Golden.rain-Marvellous 5.33

Golden.rain-Victory 17.50
Marvellous-Victory 22.80 ****

> multicomp(oats1, focus="N", comparison="mcc", control=1)
....

Estimate Std.Error Lower Bound Upper Bound
0.2cwt-0.0cwt 19.5 5.1 7.24 31.8 ****
0.4cwt-0.0cwt 34.8 5.1 22.60 47.1 ****
0.6cwt-0.0cwt 44.0 5.1 31.70 56.3 ****

Note that we need to specify the control level: perversely by default the last
level is chosen. We might also want to know if all the increases in nitrogen give
significant increases in yield, which we can examine by

> lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),
0,0,0,-1,1,rep(0,9)),,3, dimnames=list(NULL,

c("0.2cwt-0.0cwt", "0.4cwt-0.2cwt", "0.6cwt-0.4cwt")))
> multicomp(oats1, lmat=lmat, bounds="lower", comparisons="none")

....
Estimate Std.Error Lower Bound

0.2cwt-0.0cwt 19.50 5.1 8.43 ****
0.4cwt-0.2cwt 15.30 5.1 4.27 ****
0.6cwt-0.4cwt 9.17 5.1 -1.90

There are a bewildering variety of methods for multiple comparisons reflected
in the options for multicomp . Miller (1981), Hsu (1996) and Yandell (1997,
Chapter 6) give fuller details. Do remember that this tackles only part of the
problem; the analyses here have been done after selecting a model and specific

6.7 Multiple comparisons 20

factors on which to focus: the allowance for multiple comparisons is only over
contrasts of one selected factor in one selected model.

21

Chapter 8

Robust Statistics

8.3 Robust regression

S-PLUS 4.5 introduced a new method of robust regression, lmRobMM due to Yohai
et al. (1991), which is also in S-PLUS 5.x. This comes with a full set of method
functions, even for add1 and drop1 , so can be used routinely as a replacement
for lm . The method used is an M-estimate with a re-descending ψ function
and a starting value for the optimization that is chosen as a highly resistant ‘S’
estimator. The optimization algorithm uses a random search, so the results will
not be exactly repeatable.

Let us try it on the phones data.

> phones.lmr <- lmRobMM(calls ~ year, data=phones)
> summary(phones.lmr)
Final M-estimates.

Call: lmRobMM(formula = calls ~ year, data = phones)

Residuals:
Min 1Q Median 3Q Max

-1.719 -0.46 0.2267 39.03 188.5

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -52.3103 3.7851 -13.8199 0.0000
year 1.0990 0.0636 17.2853 0.0000

Residual scale estimate: 2.027 on 22 degrees of freedom
Proportion of variation in response explained by model: 0.4898

Test for Bias
Statistics P-value

M-estimate 1.601 0.449
LS-estimate 0.243 0.886
> plot(phones.lmr)

8.3 Robust regression 22

This works well, rejecting all the spurious observations. The ‘test for bias’ is of
the M-estimator against the initial S-estimator; if the M-estimator appears biased
the initial S-estimator is returned.

The compare.fits function makes it easy to compare this fit with that from
lm or similar functions.

> phones.lm <- lm(calls ~ year, data=phones)
> compare.fits(phones.lmr, phones.lm)

....
Coefficients:

phones.lmr phones.lm
(Intercept) -52.310 -260.059

year 1.099 5.041

Residual Scale Estimates:
phones.lmr : 2.027 on 22 degrees of freedom
phones.lm : 56.22 on 22 degrees of freedom

This also has summary and plot methods.

For Brownlee’s stack loss data we get similar results to rlm (page 263) but
with a smaller estimated scale.

> stack <- data.frame(stack.x, loss=stack.loss)
> stack.lmr <- lmRobMM(loss ~ ., data=stack)
> summary(stack.lmr, cor=F)
Final M-estimates.

Call: lmRobMM(formula = loss ~ ., data = stack)

Residuals:
Min 1Q Median 3Q Max

-8.63 -0.6713 0.3594 1.151 8.174

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -37.6525 5.0026 -7.5266 0.0000
Air.Flow 0.7977 0.0713 11.1886 0.0000

Water.Temp 0.5773 0.1755 3.2905 0.0043
Acid.Conc. -0.0671 0.0651 -1.0297 0.3176

Residual scale estimate: 1.837 on 17 degrees of freedom

and for the hills data we have

> summary(lmRobMM(time ~ dist + climb, data=hills,
weights=1/dist^2))

....
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) -3.3745 4.8433 -0.6967 0.4910

8.4 Resistant regression 23

dist 5.5365 1.2347 4.4840 0.0001
climb 0.0086 0.0037 2.3282 0.0264

Residual scale estimate: 0.7921 on 32 degrees of freedom

> summary(lmRobMM(ispeed ~ grad, data=hills))
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 5.0754 0.4210 12.0563 0.0000

grad 0.0077 0.0016 4.8817 0.0000

Residual scale estimate: 0.8189 on 33 degrees of freedom

8.4 Resistant regression

S-PLUS 4.x and S-PLUS 5.x have an alternative formula-based interface for
lmsreg and ltsreg , and print , summary and plot methods. We can try
these on the stack loss example.

> stack <- data.frame(stack.x, loss=stack.loss)
> lmsreg(loss ~ ., data=stack)
$coefficients:
Intercept Air.Flow Water.Temp Acid.Conc.

-39.25 0.75 0.5 0
$scale:

Y
1.207615

$residuals:
1 2 3 4 5 6 7 8 9 10 11 12

7.75 2.75 7.5 8.75 -0.25 -0.75 -0.25 0.75 -0.75 0.75 0.75 0.25
13 14 15 16 17 18 19 20 21

-2.25 -1.75 0.75 -0.25 0.25 0.25 0.75 2.25 -8.25
....

> ltsreg(loss ~ ., data=stack)
....

Coefficients:
Intercept Air.Flow Water.Temp Acid.Conc.
-36.2921 0.7362 0.3691 0.0081

Scale estimate of residuals: 1.038

Total number of observations: 21

Number of observations that determine the LTS estimate: 13
> plot(ltsreg(loss ~ ., data=stack))

Remember that the results are random, but this version of the code does seem to
produce different answers.

8.5 Multivariate location and scale 24

The plot method gives a normal QQ-plot of the residuals and plots of the
standarized residuals against fitted values, index and robust distance from the
centre of the x values.

For the hills data we can use

> summary(ltsreg(time ~ ., data=hills))
....

Coefficients:
Intercept dist climb
-0.9477 4.7817 0.0086

Scale estimate of residuals: 3.033

Robust Multiple R-Squared: 0.9761

Total number of observations: 35

Number of observations that determine the LTS estimate: 19

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-11.8 -0.7073 0.6713 5.812 64.21

Weights:
0 1
10 25

> par(pty="s", mfrow=c(1,2))
> plot(ltsreg(time ~ ., data=hills), which=4:3)

> hills$ispeed <- hills$time/hills$dist
> hills$grad <- hills$climb/hills$dist
> ltsreg(ispeed ~ grad, data=hills)
Coefficients:
Intercept grad
4.5707 0.0090

Two of the diagnostic plots are shown in Figure 8.1.

8.5 Multivariate location and scale

Function cov.mcd provides an alternative robust estimator of multivariate lo-
cation and covariance or correlations developed by Rousseeuw (1984); see also
Rousseeuw & Leroy (1987, p.262). MCD stands for ‘minimum covariance de-
terminant’ and corresponds to taking the covariance of (about) half the points
with the smallest determinant rather than with the smallest enclosing volume as
in cov.mve . In a sense discussed in that paper, cov.mve generalizes LMS and
cov.mcd generalizes LTS.

8.5 Multivariate location and scale 25

• ••

•

•

•

•

••

•

•

• •

•

•

•

•

•

•

• • • •••

•

•
•

•

•

••

•

•

•

Robust Distance computed by the MCD

S
ta

nd
ar

di
ze

d
LT

S
 R

es
id

ua
l

0
�

5
�

10 15

0
5

10
15

20

Lairig Ghru

Knock Hill Bens of Jura

Diagnostic plot

-2.5

2.5
�

•••

•

•

•

•

••

•

•

••

•

•

•

•

•

•

••• • ••

•

•
•

•

•

••

•

•

•

Quantiles of Standard Normal
�

R
es

id
ua

ls

-2 -1 0
�

1 2
�

0
20

40
60

Lairig Ghru

Bens of JuraKnock Hill

Figure 8.1: Diagnostic plots for an ltsreg fit to the hills dataset.

26

Chapter 12

Survival Analysis

S-PLUS 4.5 and S-PLUS 5.0 introduced further functions for survival analysis
from a different author: these have a very substantial overlap with those already in
S-PLUS but are more general in that they allow truncation as well as censoring.
Either or both censoring and truncation occur when subjects only observed for
part of the time axis. An observation Ti is right-censored if it is known only that
Ti > Ui for a censoring time Ui , and left-censored if it is only known that that
Ti 6 Li . (Both left- and right-censoring can occur in a study, but not for the
same individual.) Interval censoring is usually taken to refer to subjects known
to have an event in (Li, Ui] , but with the time of the event otherwise unknown.
Truncation is similar but subtly different. For left and right truncation, subjects
with events before Li or after Ui are not included in the study, and interval
truncation refers to both left and right truncation. (Notice the inconsistency with
interval censoring.)

We can consider the corresponding contributions to the likelihood. Suppose
we have interval truncation on [0 6 Li, Ri 6∞) . Then the contributions are

(a) f(ti)/[F (Ui)− F (Li)] for an observed event at ti .

(b) [F (Ci)−F (Li)]/[F (Ui)−F (Li)] for an event left-censored at Ci) , that is
known to occur in the observation interval prior to Ci .

(c) [F (Ui) − F (Ci)]/[F (Ui) − F (Li)] for an event right-censored at Ci but
know to occur before the end of the observation interval.

(d) [F (Di)−F (Ci)]/[F (Ui)−F (Li)] of an event interval-censored in (Ci, Di] .

Clearly right-censoring with right-truncation or left-censoring with left-truncation
will rarely make sense.

12.1 Estimators of survival curves

The new functions use functions censor which is almost equivalent to Surv but
whose output is tailored for the new functions (and is incompatible with that from
Surv , so the correct function must be used). There is a function kaplanMeier
which computes Kaplan-Meier estimates of the survival curve in a very similar
way to survfit . For example, compare

12.1 Estimators of survival curves 27

> kaplanMeier(censor(time, cens) ~ treat, data=gehan,
conf.interval="log-log")

treat=6-MP
Number Observed: 21
Number Censored: 12
Confidence Type: log-log

Survival Std.Err 95% LCL 95% UCL
(-Inf, 6] 1.000 0.000 1.000 1.000
(6, 7] 0.857 0.076 0.666 0.943
(7, 10] 0.807 0.087 0.622 0.907
(10, 13] 0.753 0.096 0.576 0.864
(13, 16] 0.690 0.107 0.521 0.810
(16, 22] 0.627 0.114 0.471 0.749
(22, 23] 0.538 0.128 0.395 0.661
(23, 35] 0.448 0.135 0.328 0.561

treat=control
Number Observed: 21
Number Censored: 0
Confidence Type: log-log

Survival Std.Err 95% LCL 95% UCL
(-Inf, 1] 1.000 0.000 1.000 1.000
(1, 2] 0.905 0.064 0.704 0.972
(2, 3] 0.810 0.086 0.626 0.909
(3, 4] 0.762 0.093 0.588 0.870
(4, 5] 0.667 0.103 0.513 0.781
(5, 8] 0.571 0.108 0.442 0.682
(8, 11] 0.381 0.106 0.302 0.459
(11, 12] 0.286 0.099 0.232 0.342
(12, 15] 0.190 0.086 0.160 0.223
(15, 17] 0.143 0.076 0.122 0.165
(17, 22] 0.095 0.064 0.084 0.108
(22, 23] 0.048 0.046 0.043 0.052
(23, Inf) 0.000 0.000 NA NA

There are appears to be no way to plot the results; the GUI item for Kaplan-Meier...
is an interface to survfit . The functions qkaplanMeier estimates quantiles
by linear interpolation on the results of a call to kaplanMeier .

The advantage of kaplanMeier comes with interval-censored data, which it
can handle and survfit cannot. As a simple example, suppose that the leuk
data had only be recorded in 4-week periods.

mn <- 4 * (leuk$time %/% 4)
kaplanMeier(censor(mn, mn + 4, rep(3, length(mn))) ~ 1)
Number Observed: 33
Number Censored: 33
Confidence Type: log

Survival Std.Err 95% LCL 95% UCL
(-Inf, 0] 1.000 0.000 1.000 1.000
(4, 4] 0.818 0.067 0.717 0.933

12.2 Parametric models 28

(8, 8] 0.636 0.084 0.540 0.750
(12, 16] 0.606 0.085 0.513 0.716
(20, 20] 0.515 0.087 0.434 0.611
(24, 24] 0.455 0.087 0.384 0.539
(28, 28] 0.424 0.086 0.358 0.502
(32, 36] 0.394 0.085 0.333 0.465
(40, 40] 0.364 0.084 0.309 0.428
(44, 56] 0.333 0.082 0.284 0.391
(60, 64] 0.273 0.078 0.234 0.317
(68, 100] 0.182 0.067 0.159 0.207
(104, 108] 0.152 0.062 0.134 0.171
(112, 120] 0.121 0.057 0.108 0.135
(124, 132] 0.091 0.050 0.082 0.100
(136, 140] 0.061 0.042 0.056 0.066
(144, 156] 0.030 0.030 0.029 0.032
(160, Inf) 0.000 0.000 NA NA

which is not altogether helpful since many of those intervals are empty.

12.2 Parametric models

The new analogue to survreg is censorReg , which has a GUI interface to
specify its many parameters. This has a longer list of distributions ("extreme" ,
"weibull" , "gaussian" , "lognormal" , "logistic" , "loglogistic" ,
"exponential" , "logexponential" , "rayleigh" and "lograyleigh").
Remember (page 352) that with survreg there is a confusion as to whether the
names refer to the distribution of T or of log T . That confusion is even worse here,
with what is to survreg the "exponential" and "rayleigh" distributions
becoming "logexponential" and "lograyleigh" (and the details are not
documented at all)! Examining the code (in the misleadingly-titled function
make.distribution) shows that distribution =

1. "weibull" , "lognormal" and "loglogistic" give accelerated life
models for those distributions.

2. "logexponential" and "lograyleigh" give accelerated-life models
for the exponential and Rayleigh distributions respectively.

3. "extreme" , "gaussian" , "logistic" , "exponential" and "rayleigh"
give additive models for those distributions, that is

T ∼ βTx+ σ ε

known as the identity ‘link’ in survreg .

Let us consider a simple example using gehan . We can fit a Weibull model
by

12.2 Parametric models 29

> options(contrasts=c("contr.treatment", "contr.poly"))
> summary(censorReg(censor(time, cens) ~ treat, gehan))
Call:
censorReg(formula = censor(time, cens) ~ treat, data = gehan)

Distribution: Weibull

Standardized Residuals:
Min Max

Uncensored 0.046 3.359
Censored 0.095 1.056

Coefficients:
Est. Std.Err. 95% LCL 95% UCL z-value p-value

(Intercept) 3.52 0.252 3.02 4.009 13.96 2.61e-044
treat -1.27 0.311 -1.88 -0.658 -4.08 4.51e-005

Extreme value distribution: Dispersion (scale) = 0.73219
Observations: 42 Total; 12 Censored
-2*Log-Likelihood: 213

If we compare this with the result on page 355,

> summary(survreg(Surv(time, cens) ~ treat, gehan))
Call:
survreg(formula = Surv(time, cens) ~ treat, data = gehan)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.06 -1.05 -0.222 0.841 1.51

Coefficients:
Value Std. Error z value p

(Intercept) 3.52 0.252 13.96 2.61e-044
treat -1.27 0.311 -4.08 4.51e-005

Extreme value distribution: Dispersion (scale) = 0.73219
Degrees of Freedom: 42 Total; 39 Residual
-2*Log-Likelihood: 94.1

we see the agreement is good apart from the log-likelihoods. We can look at this
more precisely:

> censorReg(censor(time,cens) ~ treat, gehan)$loglik
[1] -116.41 -106.58
> survreg(Surv(time,cens) ~ treat, gehan)$loglik
[1] -57.671 -47.064
> censorReg(censor(time,cens) ~ treat, gehan,dist="logexp")$loglik
[1] -116.77 -108.52
> survreg(Surv(time,cens) ~ treat, gehan, dist="exp")$loglik
[1] -57.251 -49.009

12.2 Parametric models 30

so the increase in log-likelihood over the null model is about the same. Part of the
answer is that survreg is quoting the log-likelihood regarding log T as the data,
whereas censorReg is (more naturally) regarding T as the data. The formula for
the likelihood ((12.1) on page 344) shows that it is a product of terms for censored
observations, which are probabilities, and of terms for uncensored observations,
which are densities. The latter are affected by the transformation of T , so

L(parameters; (log Ti)) = L(parameters; (Ti))×
∏
δi=1

Ti

We can check this for the gehan data

> attach(gehan)
> sum(log(time[cens==1]))
[1] 59.515

which is precisely the difference in the log-likelihood for the fitted models, and
for the null model for the exponential distribution. In the Weibull case, survreg
is quoting the null-model log-likelihood at the shape parameter it fits to the full
model, which is not statistically meaningful.

The advantages of censorReg come from its wider range of options. As noted
above, it allows truncation, by specifying a call to censor as the truncation
argument. Distributions can be fitted with a threshold, that is a parameter γ > 0
such that the failure-time model is fitted to T − γ (and hence no failures can
occur before time γ). It the parameter threshold = T , γ is estimated as 90%
of the smallest observed failure time; if threshold = "Linearized-qq" γ
is chosen by optimizing the linearity of a QQ-plot of the fitted response and a
Kaplan-Meier estimate of survival.

There is a plot method for censorReg , which appears to require the syntax

gehan.cr <- censorReg(censor(time, cens) ~ factor(treat), gehan)
plot(gehan.cr)

This produces up to seven figures, of residuals against fitted values, the square root
of the absolute value of the residuals against fitted values, and the response against
the fitted values (all of which are useless here as the fitted values are the mean for
the appropriate group and so take just two values), Weibull probability plots of
the residuals and by group, a so-called stress plot (not for a factor variable) and a
figure showing probability plots by group for each of six distributions (Weibull,
log-normal and log-logistic and the corresponding additive models). This function
often fails for correctly specified models.

The plot methods are available separately as functions probplot.censorReg ,
stressplot.censorReg and probplot6.censorReg . The probability plots
for the gehan example are shown in Figures 12.1 and 12.2.

To show a stress plot (Figure 12.3) we had to resort to the following manipu-
lations and model.

12.2 Parametric models 31

1 5
�

10

.0002

.0005

.001

.003

.005

.01

.02

.05

.1

.2

.3

.5

.7

.9
.98

.999

Weibull Probability Plot with MLE’s
Grouped by treat, method = factor(km)

Time to Failure

W
ei

bu
ll

P
ro

ba
bi

lit
y

Figure 12.1: Weibull probability plot for gehan dataset. The two groups correspond to
the two treatments: only the uncensored observations are plotted.

1 5
�

10
.0002
.0005

.003

.01

.03

.1

.2

.5

.9

.999

P
ro

ba
bi

lit
y

weibull

Failure Time
0

�
10 20

�
30

�

extreme

Failure Time

1 5
�

10
.00005

.0005

.005
.02

.1

.3

.5

.7

.9

.98
.995
.999

P
ro

ba
bi

lit
y

lognormal

Failure Time
0

�
10 20

�
30

�

normal

Failure Time

1 5
�

10
.0001

.0005
.002

.01

.05

.2

.5

.8

.95

.99

.998

P
ro

ba
bi

lit
y

loglogistic

Failure Time
0

�
10 20 30

�

logistic

Failure Time

Figure 12.2: Six probability plots for the gehan dataset produced by
probplot6.censorReg . Details as Figure 12.1.

leuk <- leuk
attach(leuk); leuk$lwbc <- log(wbc); detach()
plot(censorReg(censor(time) ~ lwbc, data=leuk))

This is a graphical version of the prediction method, showing quantiles against a
single numerical covariate (although plotted with x and y axes reversed).

12.2 Parametric models 32

1 5
�

10 50
�

100

7
8

9
10

11

Stress Plot
method = regression(KM), extreme(log)

Time to Failure

lw
bc

Figure 12.3: ‘Stress plot’ for a Weibull fit to the leuk dataset. The lines correspond to
probabilities of 10%, 50% and 90% from left to right.

There is a predict method that allows prediction of the times at which
the probability of an event is as given (by default 10%, 50% and 90%), or the
probabilities at specified times.

> predict(gehan.cr)
$"factor(treat)=control":

Estimate Std.Err 95% LCL 95% UCL
0.1 1.8233 0.36576 0.89027 3.7342
0.5 7.2427 0.18407 5.04919 10.3891
0.9 17.4445 0.17041 12.49137 24.3618

$"factor(treat)=6-MP":
Estimate Std.Err 95% LCL 95% UCL

0.1 6.4752 0.32912 3.3971 12.343
0.5 25.7215 0.24442 15.9310 41.529
0.9 61.9521 0.29598 34.6829 110.662

> predict(gehan.cr, q=seq(10,30,10), type="probability")
$"factor(treat)=control":

Estimate Std.Err 95% LCL 95% UCL
10 0.65934 0.36507 0.48622 0.79833
20 0.93767 0.72760 0.78327 0.98428
30 0.99200 1.46972 0.87432 0.99955

$"factor(treat)=6-MP":
Estimate Std.Err 95% LCL 95% UCL

10 0.17366 0.42656 0.083482 0.32654
20 0.38834 0.42417 0.216589 0.59317
30 0.57482 0.50317 0.335227 0.78376

33

References

Cleveland, W. S. (1993) Visualizing Data. Summit, NJ: Hobart Press. [17]

Hsu, J. C. (1996) Multiple Comparison Procedures: Theory and Methods. London:
Chapman & Hall. [19]

Miller, R. G. (1981) Simultaneous Statistical Inference. New York: Springer-Verlag. [19]

Rousseeuw, P. J. (1984) Least median of squares regression. Journal of the American
Statistical Association 79, 871–881. [24]

Rousseeuw, P. J. and Leroy, A. M. (1987) Robust Regression and Outlier Detection. New
York: John Wiley and Sons. [24]

Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. London: Chap-
man & Hall. [19]

Yohai, V., Stahel, W. A. and Zamar, R. H. (1991) A procedure for robust estimation and
inference in linear regression. In Directions in Robust Statistics and Diagnostics, Part
II, eds W. A. Stahel and S. W. Weisberg. Springer-Verlag. [21]

	Introduction
	Using S-PLUS under Windows
	An introductory session

	The S Language
	Reading data
	History and audit trails
	BATCH operation

	Graphical Output
	Enhancing plots
	Object-oriented editable graphics

	Linear Statistical Models
	Multiple comparisons

	Robust Statistics
	Robust regression
	Resistant regression
	Multivariate location and scale

	Survival Analysis
	Estimators of survival curves
	Parametric models

	References

