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Forward 
 
This document is an introduction to the program R.  Although it could be a companion 
manuscript for an introductory statistics course, it is designed to be used in a course on 
mathematical statistics.   
 
The purpose of this document is to introduce many of the basic concepts and nuances of 
the language so that users can avoid a slow learning curve.  The best way to use this 
manual is to use a “learn by doing” approach.  Try the examples and exercises in the 
Chapters and aim to understand what works and what doesn’t.  In addition, some topics 
and special features of R have been added for the interested reader and to facilitate the 
subject matter. 
 
The most up-to-date version of this manuscript can be found at 
http://www.mathcs.richmond.edu/~wowen/TheRGuide.pdf. 
 
 
Font Conventions 
 
This document is typed using Times New Roman font.  However, when R code is 
presented, referenced, or when R output is given, we use 10 point Bold Courier New 
Font.   
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1. Overview and History 
 
Functions and quantities introduced in this Chapter: apropos(), c(), FALSE or F, 
help(), log(), ls(), matrix(), rm(), TRUE or T 
 
1.1 What is R? 
 
R is an integrated suite of software facilities for data manipulation, simulation, 
calculation and graphical display.  It handles and analyzes data very effectively and it 
contains a suite of operators for calculations on arrays and matrices.  In addition, it has 
the graphical capabilities for very sophisticated graphs and data displays.  Finally, it is an 
elegant, object-oriented programming language. 
 
R is an independent, open-source, and free implementation of the S programming 
language.  Today, the commercial product is called S-PLUS and it is distributed by the 
Insightful Corporation.  The S language, which was written in the mid-1970s, was a 
product of Bell Labs (of AT&T and now Lucent Technologies) and was originally a 
program for the Unix operating system.  R is available in Windows and Macintosh 
versions, as well as in various flavors of Unix and Linux.  Although there are some minor 
differences between R and S-PLUS (mostly in the graphical user interface), they are 
essentially identical. 
 
The R project was started by Robert Gentleman and Ross Ihaka (that’s where the name 
“R” is derived) from the Statistics Department in the University of Auckland in 1995.  
The software has quickly gained a widespread audience.  It is currently maintained by the 
R Core development team – a hard-working, international group of volunteer developers.  
The R project web page is 
 
 http://www.r-project.org 
 
This is the main site for information on R.  Here, you can find information on obtaining 
the software, get documentation, read FAQs, etc.  For downloading the software directly, 
you can visit the Comprehensive R Archive Network (CRAN) in the U.S. at 
 

http://cran.us.r-project.org/ 
 
The current version of R is 2.2.1. 
 
1.2 Starting and Quitting R 
 
The easiest way to use R is in an interactive manner via the command line.  After the 
software is installed on a Windows or Macintosh machine, you simply double click the R 
icon (in Unix/Linux, type R from the command prompt).  When R is started, the 
program’s “Gui” (graphical user interface) window appears.  Under the opening message 
in the R Console is the > (“greater than”) prompt.  For the most part, statements in R are 
typed directly into the R Console window. 
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Once R has started, you should be greeted with a command line similar to 
 

R : Copyright 2005, The R Foundation for Statistical Computing 
Version 2.2.0  (2005-10-06 r35749) ISBN 3-900051-07-0 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for a HTML browser interface to help. 
Type 'q()' to quit R. 
 

 
At the > prompt, you tell R what you want it to do.  You give R a command and R does 
the work and gives the answer.  If your command is too long to fit on a line or if you 
submit an incomplete command, a “+” is used for the continuation prompt. 
 
To quit R, type q() or use the Exit option beneath the File menu. 
 
 
1.3 A Simple Example: the c() Function and the Assignment Operator 
 
A useful command in R for entering small data sets is the c() function.  This function 
combines terms together.  For example, suppose the following represents eight tosses of a 
fair die: 
 
 2 5 1 6 5 5 4 1 
 
To enter this into an R session, we type 
 
 > dieroll <- c(2,5,1,6,5,5,4,1) 

> dieroll 
[1] 2 5 1 6 5 5 4 1 
> 

 
Notice a few things: 
 

• We assigned the values to a variable called dieroll.  R is case sensitive, so you 
could have another variable called DiEroLL and it would be distinct.  The name of 
a variable can contain most combination of letters, numbers, and periods (.).  
(Obviously, a variable can’t be named with all numbers, though.)  

• The assignment operator is “<-”;  to be specific, this is composed of a < (“less 
than”) and a – (“minus” or “dash”) typed together.  It is usually read as “gets” – 
the variable dieroll gets the value c(2,5,1,6,5,5,4,1).  Alternatively, as of R 
version 1.4.0, you can use “=” as the assignment operator. 
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• The value of dieroll doesn’t automatically print out.  But, it does when we type 
just the name on the input line as seen above. 

• The value of dieroll is prefaced with a [1].  This indicates that the value is a 
vector (more on this later). 

 
When entering commands in R, you can save yourself a lot of typing when you learn to 
use the arrow keys effectively.  Each command you submit is stored in the History and 
the up arrow (↑) will navigate backwards along this history and the down arrow (↓) 
forwards.  The left (←) and right arrow (→) keys move backwards and forwards along the 
command line.  These keys combined with the mouse for cutting/pasting can make it very 
easy to edit and execute previous commands. 
 
 
1.4 The Workspace 
 
All variables or “objects” created in R are stored in what’s called the workspace.  To see 
what variables are in the workspace, you can use the function ls() to list them (this 
function doesn’t need any argument between the parentheses).  Currently, we only have: 
 

> ls() 
[1] "dieroll" 

 
If we define a new variable – a simple function of the variable dieroll – it will be added 
to the workspace: 
 

> newdieroll <- dieroll/2  # divide every element by two 
> newdieroll 
[1] 1.0 2.5 0.5 3.0 2.5 2.5 2.0 0.5 
> ls() 
[1] "dieroll"    "newdieroll" 
> 

 
Notice a few more things: 
 

• The new variable newdieroll has been assigned the value of dieroll divided 
by 2 – more about algebraic expressions is given in the next session. 

• You can add a comment to a command line by beginning it with the # character.  
R ignores everything on an input line after a #. 

 
 
To remove objects from the workspace (you’ll want to do this occasionally when your 
workspace gets too cluttered), use the rm() function: 
 

> rm(newdieroll)  # this was a silly variable anyway 
> ls() 
[1] "dieroll" 
> 

 



 4

In Windows, you can clear the entire workspace via the “Remove all objects” option 
under the “Misc” menu.  However, more likely than not you will want to keep some 
things and delete others. 
 
When exiting R, the software asks if you would like to save your workspace image.  If 
you click yes, all objects (both new ones created in the current session and others from 
earlier sessions) will be available during your next session.  If you click no, all new 
objects will be lost and the workspace will be restored to the last time the image was 
saved.  Get in the habit of saving your work – it will probably help you in the future. 
 
 
1.5 Getting Help 
 
There is text help available from within R using the function help() or the ? character 
typed before a command.  If you have questions about any function in this manual, 
see the corresponding help file.  For example, suppose you would like to learn more 
about the function log() in R.  The following two commands result in the same thing: 
 
 > help(log) 
 > ?log 
 
In a Windows or Macintosh system, a Help Window opens with the following: 
 

log                   package:base                   R Documentation 
 

Logarithms and Exponentials 
 

Description: 
 
     `log' computes natural logarithms, `log10' computes common (i.e., 
     base 10) logarithms, and `log2' computes binary (i.e., base 2) 
     logarithms. The general form `logb(x, base)' computes logarithms 
     with base `base' (`log10' and `log2' are only special cases). 

. . .    (skipped material) 
Usage: 

 
     log(x, base = exp(1)) 
     logb(x, base = exp(1)) 
     log10(x) 
     log2(x) 

. . . 
Arguments: 

 
          x: a numeric or complex vector. 
 
       base: positive number.  The base with respect to which 
             logarithms are computed.  Defaults to e=`exp(1)'. 
 

Value: 
 
     A vector of the same length as `x' containing the transformed 
     values.  `log(0)' gives `-Inf' (when available). 
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. . . 
 
So, we see that the log() function in R is the logarithm function from mathematics.  This 
function takes two arguments: “x” is the variable or object that will be taken the 
logarithm of and “base” defines which logarithm is calculated.  Note that base is 
defaulted to e = 2.718281828.., which is the natural logarithm. We also see that there are 
other associated functions, namely log10() and log2() for the calculation of base 10 
and 2 (respectively) logarithms.  Some examples: 
 

> log(100) 
[1] 4.60517 
> log2(16)  # same as log(16,base=2) or just log(16,2) 
[1] 4 
> log(1000,base=10)  # same as log10(1000) 
[1] 3 
> 

 
Due to the object oriented nature of R, we can also use the log() function to calculate the 
logarithm of numerical vectors and matrices: 
 

> log2(c(1,2,3,4))  # log base 2 of the vector (1,2,3,4) 
[1] 0.000000 1.000000 1.584963 2.000000 
> 

 
Help can also be accessed from the menu on the R Console.  This includes both the text 
help and help that you can access via a web browser.  You can also perform a keyword 
search with the function apropos().  For example, to find all functions in R that contain 
the string norm: 
 

> apropos("norm") 
 [1] "dlnorm"    "dnorm"     "plnorm"         "pnorm"     "qlnorm"         
 [6] "qnorm"     "qqnorm"    "qqnorm.default" "rlnorm"    "rnorm"          
> 

 
Note that we put the keyword in double quotes, but single quotes ('') will also work. 
 
 
1.6 More on Functions in R 
 
We have already seen a few functions at this point, but R has an incredible number of 
functions that are built into the software, and you even have the ability to write your own 
(see Chapter 8).  Most functions will return something, and functions usually require one 
or more input values.  In order to understand how to generally use functions in R, let’s 
consider the function matrix().  A call to the help file gives the following: 
 

Matrices 
 

Description: 
 

     'matrix' creates a matrix from the given set of values. 
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Usage: 
 
  matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE) 
 

Arguments: 
 

data:  the data vector 
  nrow:  the desired number of rows 
  ncol:  the desired number of columns 

byrow: logical. If `FALSE' the matrix is filled by columns, 
 otherwise the matrix is filled by rows. 

  ... 
 
So, we see that this is a function that takes vectors and turns them into matrix objects.  
There are 4 arguments for this function, and they specify the entries and the size of the 
matrix object to be created. The argument byrow is set to be either TRUE or FALSE (or T or 
F – either are allowed for logicals) to specify how the values are filled in the matrix.  
 
Often arguments for functions will have default values, and we see that all of the 
arguments in the matrix() function do.  So, the call 
 
 > matrix() 
 
will return a matrix that has one row, one column, with the single entry NA (missing or 
“not available”).  However, the following is more interesting: 
  

> a <- c(1,2,3,4,5,6,7,8) 
> A <- matrix(a,nrow=2,ncol=4, byrow=FALSE) # a is different from A 
> A 
     [,1] [,2] [,3] [,4] 
[1,]    1    3    5    7 
[2,]    2    4    6    8 
> 

 
Note that we could have left off the byrow=FALSE argument, since this is the default 
value.  In addition, since there is a specified ordering to the arguments in the function, we 
also could have typed 
 

> A <- matrix(a,2,4) 
 
to get the same result.  For the most part, however, it is best to include the argument 
names in a function call (especially when you aren’t using the default values) so that you 
don’t confuse yourself.  We will learn more about this function in the next chapter. 
 
 
1.7 Printing and Saving Your Work 
 
You can print directly from the R Console by selecting “Print…” beneath the File menu, 
but this will capture everything (including errors) from your session.  Alternatively, you 
can copy what you need and paste it into a word processor or text editor (suggestion: use 
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Courier font so that the formatting is identical to the R Console).  In addition, you can 
save everything in the R Console by using the “Save to File…” command. 
 
 
1.8 Other Sources of Reference 
 
It would be impossible to describe all of R in a document of manageable size.  But, there 
are a number of tutorials, manuals, and books that can help with learning to use R.  
Happily, like the program itself, much of what you can find is free.  Here are some 
examples of documentation that are available: 
 

• The R program: From the Help menu you can access the manuals that come with 
the software.  These are written by the R core development team.  Some are very 
lengthy and specific, but the manual “An Introduction to R” is a good source of 
useful information. 

  
• Free Documentation: The CRAN website has several user contributed 

documents in several languages.  These include: 
 

R for Beginners by Emmanuel Paradis (57 pages).  A good overview of the 
software with some nice descriptions of the graphical capabilities of R.  The 
author assumes that the reader knows some statistical methods. 
 
R reference card by Tom Short (4 pages).  This is a great desk companion when 
working with R. 
 

• Books: These you have to buy, but they are excellent!  Some examples: 
 

Introductory Statistics with R by Peter Dalgaard, Springer-Verlag (2002).  Peter is 
a member of the R Core team and this book is a fantastic reference that includes 
both elementary and some advanced statistical methods in R. 
 
Modern Applied Statistics with S, 4th Ed. by W.N. Venable and B.D. Ripley, 
Springer-Verlag (2002).  The authoritative guide to the S programming language 
for advanced statistical methods. 

 
 
1.9 Exercises 
 

1. Use the help system to find information on the R functions mean and median. 
2. Get a list of all the functions in R that contains the string test. 
3. Create the vector info that contains your age, height (in inches), and zip code. 
4. Create the matrix Ident that is a 3x3 identity matrix. 
5. Save your work from this session in the file 1stR.txt. 
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2. My Big Fat Greek1 Calculator 
 
Functions, operators, and constants introduced in this Chapter: +, -, *, /, ^, %*%, 
abs(), as.matrix(), choose(), cos(), cumprod(), cumsum(), det(), 
diff(), dim(), eigen(), exp(), factorial(), gamma(), length(), pi, 
prod(), sin(), solve(), sort(), sqrt(), sum(), t(), tan().  
 
2.1 Basic Math 
 
One of the simplest (but very useful) ways to use R is as a powerful number cruncher.  
By that I mean using R to perform standard mathematical calculations.  The R language 
includes the usual arithmetic operations: +,-,*,/,^.  Some examples: 
 

> 2+3 
[1] 5 
> 3/2 
[1] 1.5 
> 2^3     # this also can be written as 2**3 
[1] 8 
> 4^2-3*2   # this is simply 16 - 6 
[1] 10 
> (56-14)/6 – 4*7*10/(5^2-5) # this is more complicated 
[1] -7 

 
Other standard functions that are found on most calculators are available in R: 
 
  Name      Operation 
  sqrt()     square root 
  abs()      absolute value 
  sin(), cos(), tan()  trig functions (radians) – type ?Trig for others 
  pi       the number π = 3.1415926.. 
  exp(), log()    exponential and logarithm 
  gamma()     Euler’s gamma function 
  factorial()    factorial function 
  choose()     combination 
 

> sqrt(2) 
[1] 1.414214 
> abs(2-4) 
[1] 2 
> cos(4*pi) 
[1] 1 
> log(0)    # not defined 
[1] -Inf 
> factorial(6)  # 6! 
[1] 720 
> choose(52,5)  # this is 52!/(47!5!) 
[1] 2598960 

                                                 
1 Ahem.  The Greek letters Σ and Π are used to denote sums and products, respectively. 
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2.2 Vector Arithmetic 
 
Vectors can be manipulated in a similar manner to scalars by using the same functions 
introduced in the last section.  (However, one must be careful when adding or subtracting 
vectors of different lengths or some unexpected results may occur.)  Some examples of 
such operations are: 
 

> x <- c(1,2,3,4) 
> y <- c(5,6,7,8) 
> x*y 
[1]  5 12 21 32 
> y/x 
[1] 5.000000 3.000000 2.333333 2.000000 
> y-x 
[1] 4 4 4 4 
> x^y        
[1]     1    64  2187 65536 
> cos(x*pi) + cos(y*pi) 
[1] -2  2 -2  2 
> 

 
Other useful functions that pertain to vectors include: 
 

Name      Operation 
length()     returns the number of entries in a vector 
sum()      calculates the arithmetic sum of all values in the vector 
prod()     calculates the product of all values in the vector 
cumsum(), cumprod() cumulative sums and products 
sort()     sort a vector 
diff()     computes suitably lagged (default is 1) differences 

 
 
Some examples using these functions: 
 

> s <- c(1,1,3,4,7,11) 
> length(s) 
[1] 6 
> sum(s)   # 1+1+3+4+7+11 
[1] 27 
> prod(s)  # 1*1*3*4*7*11 
[1] 924 
> cumsum(s) 
[1]  1  2  5  9 16 27 
> diff(s)    # 1-1, 3-1, 4-3, 7-4, 11-7 
[1] 0 2 1 3 4 
> diff(s, lag = 2) # 3-1, 4-1, 7-4, 11-4 
[1] 2 3 4 7 
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2.3 Matrix Operations 
 
Among the many powerful features of R is its ability to perform matrix operations.  As 
we have seen in the last chapter, you can create matrix objects from vectors of numbers 
using the matrix() command: 
 
 

> a <- c(1,2,3,4,5,6,7,8,9,10)  
> A <- matrix(a, nrow = 5, ncol = 2) # fill in by column 
> A 
     [,1] [,2] 
[1,]    1    6 
[2,]    2    7 
[3,]    3    8 
[4,]    4    9 
[5,]    5   10 

 
> B <- matrix(a, nrow = 5, ncol = 2, byrow = TRUE) # fill in by row 
> B 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 
[4,]    7    8 
[5,]    9   10 
 
> C <- matrix(a, nrow = 2, ncol = 5, byrow = TRUE) 
> C 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    2    3    4    5 
[2,]    6    7    8    9   10 
> 

 
 
Matrix operations (multiplication, transpose, etc.) can easily be performed in R using a 
few simple functions like: 
 
 
  Name      Operation 
  dim()      dimension of the matrix (number of rows and columns) 
  as.matrix()    used to coerce an argument into a matrix object 

%*%      matrix multiplication 
  t()      matrix transpose 
  det()      determinant of a square matrix 
  solve()     matrix inverse; also solves a system of linear equations 
  eigen()     computes eigenvalues and eigenvectors 
   
 
 
Using the matrices A, B, and C just created, we can have some linear algebra fun: 
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> t(C)    # this is the same as A!! 
     [,1] [,2] 
[1,]    1    6 
[2,]    2    7 
[3,]    3    8 
[4,]    4    9 
[5,]    5   10 
 
> B%*%C 
     [,1] [,2] [,3] [,4] [,5] 
[1,]   13   16   19   22   25 
[2,]   27   34   41   48   55 
[3,]   41   52   63   74   85 
[4,]   55   70   85  100  115 
[5,]   69   88  107  126  145 
 
> D <- C%*%B 
> D 
     [,1] [,2] 
[1,]   95  110 
[2,]  220  260 
 
> det(D) 
[1] 500 
 
> solve(D)   # this is D-1  
      [,1]  [,2] 
[1,]  0.52 -0.22 
[2,] -0.44  0.19 
>  

 
 
2.4 Exercises 
 
Use R to compute the following: 
 

1. 23 32 − . 
2. ee. 
3. (2.3)8 + ln(7.5) – cos(π/ 2 ). 

4. Let A = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

5274
4612
2321

, B = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

2151
3742
4310
2531

.  Find AB-1 and BAT. 

5. The dot product of [2, 5, 6, 7] and [-1, 3, -1, -1]. 
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3. Getting Data into R 
 
Functions and operators introduced in this section: $, :, attach(), attributes(), 
data(), data.frame(), edit(), file.choose(), fix(), read.table(), 
rep(), scan(), search(), seq() 
 
We have already seen how the combine function c() in R can make a simple vector of 
numerical values.  This function can also be used to construct a vector of text values: 
 

> mykids <- c("Stephen", "Christopher")  # put text in quotes 
 > mykids 

[1] "Stephen"     "Christopher" 
 

As we will see, there are many other ways to create vectors and datasets in R. 
 
3.1 Sequences 
 
Sometimes we will need to create a string of numerical values that have a regular pattern.  
Instead of typing the sequence out, we can define the pattern using some special 
operators and functions. 
 

• The colon operator : 
 

The colon operator creates a vector of numbers (between two specified numbers) 
that are one unit apart:  
 
> 1:9 
[1] 1 2 3 4 5 6 7 8 9 
 
> 1.5:10       # you won’t get to 10 here 
[1] 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 
 
> c(1.5:10,10)     # we can attach it to the end this way 
[1]  1.5  2.5  3.5  4.5  5.5  6.5  7.5  8.5  9.5 10.0 
 
> prod(1:8)      # same as factorial(8) 
[1] 40320 
 
 

• The sequence function seq() 
 
The sequence function can create a string of values with any increment you wish.  
You can either specify the incremental value or the desired length of the 
sequence: 
 
> seq(1,5)    # same as 1:5 
[1] 1 2 3 4 5 
 
> seq(1,5,by=.5)  # increment by 0.5 
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
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> seq(1,5,length=7) # figure out the increment for this length 
[1] 1.00000 1.66667 2.33333 3.00000 3.66667 4.33333 5.00000 

 
 

• The replicate function rep() 
 

The replicate function can repeat a value or a sequence of values a specified 
number of times: 
 
> rep(10,10)      # repeat the value 10 ten times 
 [1] 10 10 10 10 10 10 10 10 10 10 
 
> rep(c("A","B","C","D"),2) # repeat the string A,B,C,D twice 
[1] "A" "B" "C" "D" "A" "B" "C" "D" 
 
> matrix(rep(0,16),nrow=4)  # a 4x4 matrix of zeroes 
     [,1] [,2] [,3] [,4] 
[1,]    0    0    0    0 
[2,]    0    0    0    0 
[3,]    0    0    0    0 
[4,]    0    0    0    0 
> 

 
 
3.2 Reading in Data: Single Vectors 
 
When entering a larger array of values, the c() function can be unwieldy.  Alternatively, 
data can be read directly from the keyboard by using the scan() function.  This is useful 
since data values need only be separated by a blank space (although this can be changed 
in the arguments of the function).  Also, by default the function expects numerical inputs, 
but you can specify others by using the “what =” option.  The syntax is: 
 
 > x <- scan()   # read what is typed into the variable x 
 
When the above is typed in an R session, you get a prompt signifying that R expects you 
to type in values to be added to the vector x.  The prompt indicates the indexed value in 
the vector that it expects to receive.  R will stop adding data when you enter a blank row.  
After entering a blank row, R will indicate the number of values it read in.  
 
Suppose that we count the number of passengers (not including the driver) in the next 30 
automobiles at an intersection: 
 

> passengers <- scan() 
1: 2 4 0 1 1 2 3 1 0 0 3 2 1 2 1 0 2 1 1 2 0 0  # I hit return 
23: 1 3 2 2 3 1 0 3  # I hit return again 
31:        # I hit return one last time 
Read 30 items 
 
> passengers    # print out the values 

  [1] 2 4 0 1 1 2 3 1 0 0 3 2 1 2 1 0 2 1 1 2 0 0 1 3 2 2 3 1 0 3 
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In addition, the scan() function can be used to read data that is stored (as ASCII text) in 
an external file into a vector.  To do this, you simply pass the filename (in quotes) to the 
scan() function.  For example, suppose that the above passenger data was originally 
saved in a text file called passengers.txt that is located on a disk drive.  To read in this 
data that is located on a U: drive, we would simply type 
 
 > passengers <- scan("U:/passengers.txt") 

Read 30 items 
> 

 
Notes:  
 

• ALWAYS view the text file first before you read it into R to make sure it is what 
you want and formatted appropriately. 

• To represent directories or subdirectories, use the forward slash (/), not a 
backslash (\) in the path of the filename – even on a Windows system. 

• If your computer is connected to the internet, data can also read (contained in a 
text file) from a URL using the scan() function.  The basic syntax is given by: 

 
> dat <- scan("http://www...") 

 
• If the directory name and/or file name contains spaces, we need to take special care 

denoting the space character.  This is done by including a backslash (\) before the 
space is typed.   

 
As an alternative, you can use the function file.choose() in place of the filename.  In 
so doing, an explorer-type window will open and the file can be selected interactively.   
More on reading in datasets from external sources is given in the next section. 
 
 
3.3 Data Frames 
 
3.3.1 Creating Data Frames 
 
Often in statistics, a dataset will contain more than one variable recorded in an 
experiment.  For example, in the automobile experiment from the last section, other 
variables might have been recorded like automobile type (sedan, SUV, minivan, etc.) and 
driver seatbelt use (Y, N).  A dataset in R is best stored in an object called a data frame.  
Individual variables are designated as columns of the data frame and have unique names.  
However, all of the columns in a data frame must be of the same length. 
You can enter data directly into a data frame by using the built-in data editor.  This 
allows for an interactive means for data-entry that resembles a spreadsheet.  You can 
access the editor by using either the edit() or fix() commands: 
 

> new.data <- data.frame()  # creates an "empty" data frame 
> new.data <- edit(new.data) # request that changes made are  

# written to data frame 
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OR 

 
 > new.data <- data.frame()  # creates an "empty" data frame 
 > fix(new.data)     # changes saved automatically 
 
  
The data editor allows you to add as many variables (columns) to your data frame that 
you wish.  The column names can be changed from the default var1, var2, etc. by 
clicking the column header.  At this point, the variable type (either numeric or character) 
can also be specified. 
 
When you close the data editor, the edited frame is saved. 
 
You can also create data frames from preexisting variables in the workspace.  Suppose 
that in the last experiment we also recorded the seatbelt use of the driver: Y = seatbelt 
worn, N = seatbelt not worn.  This data is entered by (recall that since these data are text 
based, we need to put quotes around each data value): 
 

> seatbelt <- c("Y","N","Y","Y","Y","Y","Y","Y","Y","Y",  # return 
+ "N","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y","Y",  # return 
+ "Y","Y","N","Y","Y","Y","Y") 
> 

 
We can combine these variables into a single data frame with the command 
 

> car.dat <- data.frame(passengers,seatbelt) 
 
A data frame looks like a matrix when you view it: 
 

> car.dat 
   passengers seatbelt 
1           2        Y 
2           4        N 
3           0        Y 
4           1        Y 
5           1        Y 
6           2        Y 
. . . 

 
The values along the left side are simply the row numbers. 
 
 
3.3.2 Datasets Included with R 
 
R contains many datasets that are built-in to the software.  These datasets are stored as 
data frames.  To see the list of datasets, type 
 

> data() 
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A window will open and the available datasets are listed (many others are accessible from 
external user-written packages, however).  To open the dataset called trees, simply type 
 

> data(trees) 
 
After doing so, the data frame trees is now in your workspace.  To learn more about this 
(or any other included dataset), type help(trees). 
 
 
3.3.3 Accessing Portions of a Data Frame 
 
You can access single variables in a data frame by using the $ argument.  For example, 
we see that the trees dataset has three variables: 
 

> trees 
   Girth Height Volume 
1    8.3     70   10.3 
2    8.6     65   10.3 
3    8.8     63   10.2 
4   10.5     72   16.4 
5   10.7     81   18.8 
. . .  

 
To access single variables in a data frame, use a $ between the data frame and column 
names: 
 

> trees$Height 
 [1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69 75 74 85 86 71 64 78 
[22] 80 74 72 77 81 82 80 80 80 87 
> sum(trees$Height)      # sum of just these values 
[1] 2356 
> 

 
You can also access a specific element or row of data by calling the specific position (in 
row, column format) in brackets after the name of the data frame: 
 

> trees[4,3]    # entry at forth row, third column 
[1] 16.4 
 
> trees[4,]     # get the whole row 
  Girth Height Volume 
4  10.5     72   16.4 
> 

 
Often, we will want to access variables in a data frame, but using the $ argument can get 
a little awkward.  Fortunately, you can make R find variables in any data frame by adding 
the data frame to the search path.  For example, to include the variables in the data frame 
trees in the search path, type 
 
 > attach(trees) 



 17

Now, the variables in trees are accessible without the $ notation: 
 

> Height 
 [1] 70 65 63 72 81 83 66 75 80 75 79 76 76 69 75 74 85 86 71 64 
[21] 78 80 74 72 77 81 82 80 80 80 87 

 
To see exactly what is going on here, we can view the search path by using the search() 
command: 
 

> search() 
[1] ".GlobalEnv"       "trees"             "package:methods"  
[4] "package:stats"    "package:graphics"  "package:utils"    
[7] "Autoloads"        "package:base"     
> 

 
Note that the data frame trees is placed as the second item in the search path.  This is the 
order in which R looks for things when you type in commands.  FYI, .GlobalEnv is your 
workspace and the package quantities are libraries that contain (among other things) the 
functions and datasets that we are learning about in this manual. 
 
To remove an object from the search path, use the detach() command in the same way 
that attach() is used.  However, note that when you exit R, any objects added to the 
search path are removed anyway. 
 
To list the features of any object in R, be it a vector, data frame, etc. use the 
attributes() function.  For example: 
 

> attributes(trees) 
$names 
[1] "Girth"  "Height" "Volume" 
 
$row.names 
 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" 
[12] "12" "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" 
[23] "23" "24" "25" "26" "27" "28" "29" "30" "31" 
 
$class 
[1] "data.frame" 
 
> 

 
Here, we see that the trees object is a data frame with 31 rows and has variable names 
corresponding to the measurements taken on each tree. 
 
 
3.3.4 Reading in Datasets 
 
A dataset that has been created and stored externally (again, as ASCII text) can be read 
into a data frame.  Here, we use the function read.table() to load the dataset into a data 
frame.  If the first line of the text file contains the names of the variables in the dataset 
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(which is often the case), R can take those as the names of the variables in the data frame.  
This is specified with the header = T option in the function call.  If no header is 
included in a file, you can ignore this option and R will use the default variable names for 
a data frame.  Filenames are specified in the same way as the scan() function, or the 
file.choose() function can be used to select the file interactively.  For example, the 
function call 
 
 > smith <- read.table(file.choose(), header=T) 
 
would read in data from a user-specified text file where the first line of the file designates 
the names of the variables in the data frame. 
 
 
3.4 Exercises 
 

1. Generate the following sequences in R: 
a. 1 2 3 1 2 3 1 2 3 
b. 10.00000 10.04545 10.09091 10.13636 10.18182 10.22727 

10.27273 10.31818 10.36364 10.40909 10.45455 10.50000 
c. "1"   "2"   "3"   "banana"  "1"   "2"   "3"   "banana" 

 
2. Using the scan() function, enter 10 numbers (picked at random between 1 and 

100) into a vector called blahblah. 
 
3. Create a data frame called schedule with the following variables: 

coursenumber: the course numbers of your classes this semester (e.g. 329) 
coursedays:  meeting days (either MWF, TR, etc.) 
grade:    your anticipated grade (A, B, C, D, or F) 
 

4. Load in the stackloss dataset from within R and save the variables Water.Temp 
and Acid.Conc. in a data frame called tempacid. 
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4. Introduction to Graphics 
 
One of the greatest powers of R is its graphical capabilities (see the exercises section in 
this chapter for some amazing demonstrations).  In this chapter, some of these features 
will be briefly explored. 
 
 
4.1 The Graphics Window 
 
When pictures are created in R, they are presented in the active graphical device or 
window (for the Mac, it’s the Quartz device).  If no such window is open when a 
graphical function is executed, R will open one.  Some features of the graphics window: 
 

• You can print directly from the graphics window, or choose to copy the graph to 
the clipboard and paste it into a word processor.  There, you can also resize the 
graph to fit your needs.  A graph can also be saved in many other formats, 
including pdf, bitmap, metafile, jpeg, or postscript. 

 
• Each time a new plot is produced in the graphics window, the old one is lost.  In 

MS Windows, you can save a “history” of your graphs by activating the 
Recording feature under the History menu.  You can access old graphs by using 
the “Page Up” and “Page Down” keys.  Alternatively, you can simply open a new 
active graphics window (by using the function x11() in Windows/Unix and 
quartz() on a Mac). 

 
 
4.2 Two Basic Graphing Functions 
 
There are many functions in R that produce graphs, and they range from the very basic to 
the very advanced and intricate.  In this section, two basic functions will be profiled, and 
information on ways to embellish plots will be given in the sections that follow.  Other 
graphical functions will be described in Chapter 5. 
 
 
4.2.1 The plot() Function 
 
The most common function used to graph anything in R is the plot() function.  This is a 
generic function that can be used for scatterplots, time-series plots, function graphs, etc.  
If a single vector object is given to plot(), the values are plotted on the y-axis against 
the row numbers or index.  If two vector objects (of the same length) are given, a 
bivariate scatterplot is produced.  For example, consider again the dataset trees in R.  To 
visualize the relationship between Height and Volume, we can draw a scatterplot: 
 
 > plot(Height, Volume)  # object trees is in the search path 
 
The plot appears in the graphics window: 
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Notice that the format here is the first variable is plotted along the horizontal axis and the 
second variable is plotted along the vertical axis.  By default, the variable names are 
listed along each axis. 
 
This graph is pretty basic, but the plot() function can allow for some pretty snazzy 
window dressing by changing the function arguments from the default values.  These 
include adding titles/subtitles, changing the plotting character/color (over 600 colors are 
available!), etc.  See ?par for an overwhelming lists of these options.   
 
This function will be used again in the succeeding chapters. 
 
 
4.2.2 The curve() Function 
 
To graph a continuous function over a specified range of values, the curve() function 
can be used (although interestingly curve() actually calls the plot() function).  The 
basic use of this function is: 
 
curve(expr, from, to, add = FALSE, ...) 
 

Arguments: 
expr: an expression written as a function of 'x' 
 
from, to: the range over which the function will be plotted. 
 
add: logical; if 'TRUE' add to already existing plot. 

 
Note that it is necessary that the expr argument is always written as a function of 'x'.  If 
the argument add is set to TRUE, the function graph will be overlaid on the current graph 
in the graphics window (this useful feature will be illustrated in Chapter 6). 
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 For example, the curve() function can be used to plot the sine function from 0 to 2π: 
 

> curve(sin(x), from = 0, to = 2*pi) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Graph Embellishments 
 
In addition to standard graphics functions, there are a host of other functions that can be 
used to add features to a drawn graph in the graphics window.  These include (see each 
function’s help file for more information): 
 
 Function    Operation 
 abline()    adds a line with specified intercept and slope 
 arrows()    adds an arrow at a specified coordinate 
 lines()    adds lines between coordinates 

points() adds points at specified coordinates (also for overlaying 
scatterplots) 

 rug()     adds a “rug” representation to one axis of the plot 
 segments()   similar to lines() above 
 text()    adds text (possibly inside the plotting region) 
 title()    adds main titles, subtitles, etc. with other options 
 
The plot used on the cover page of this document includes some of these additional 
features applied to the graph in Section 4.2.1.   
 
 
4.4 Changing Graphics Parameters 
 
There is still more fine tuning available for altering the graphics settings.  To make 
changes to how plots appear in the graphics window itself, or to have every graphic 
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created in the graphics window follow a specified form, the default graphical parameters 
can be changed using the par() function.  There are over 70 graphics parameters that can 
be adjusted, so only a few will be mentioned here.  Some very useful ones are given 
below: 
 

> par(mfrow = c(2, 2) # gives a 2 x 2 layout of plots 
> par(bg = "cornsilk") # plots drawn with this colored background 
> par(xlog = TRUE)  # always plot x axis on a logarithmic scale  

 
Any or all parameters can be changed in a par() command, and they remain in effect 
until they are changed again (or if the program is exited).  You can save a copy of the 
original parameter settings in par(), and then after making changes recall the original 
parameter settings.  To do this, type 
 
 
 > oldpar <- par(no.readonly = TRUE) 
 
   ... then, make your changes in par() ... 
 
 > par(oldpar)  # default (original) parameter settings restored 
 
 
 
4.5 Exercises 
 
As mentioned previously, more on graphics will be seen in the next two chapters.  For 
this section, enter the following commands to see some R’s incredible graphical 
capabilities.  Also, try pasting/inserting a graph into a word processor or document. 
 

> demo(graphics) 
> demo(persp)  # for 3-d plots 
> demo(image) 
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5. Summarizing Data 
 
One of the simplest ways to describe what is going on in a dataset is to use a graphical or 
numerical summary procedure.  Numerical summaries are things like means, proportions, 
and variances, while graphical summaries include histograms and boxplots. 
 
 
5.1 Numerical Summaries 
 
 R includes a host of built in functions for computing sample statistics for both numerical 
(both continuous and discrete) and categorical data.  For numerical data, these include 
 
  Name    Operation 
  mean()   arithmetic mean 
  median()   sample median 
  fivenum()  five-number summary 
  min(), max() smallest/largest values 
  quantile()  calculate sample quantiles (percentiles) 
  var()    sample variance 
  sd()    sample standard deviation 
  cov(), cor() sample covariance/correlation 
       
These functions will take one or more vectors as arguments for the calculation; in 
addition, they will (in general) work in the correct way when they are given a data frame 
as the argument. 
 
If your data contains only discrete counts (like the number of pets owned by each family 
in a group of 20 families), or is categorical in nature (like the eye color recorded for a 
sample of 50 fruit flies), the above numerical measures may not be of much use.  For 
categorical or discrete data, we can use the table() function to summarize a dataset.   
 
For examples using these functions, let’s consider the dataset mtcars in R contains 
measurements on 11 aspects of automobile design and performance for 32 automobiles 
(1973-74 models): 
 
> data(mtcars)   # load in dataset 
> attach(mtcars)  # add mtcars to search path 
> mtcars 
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb 
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 
. . . 
 
The variables in this dataset are both continuous (e.g. mpg,  disp,  wt) and discrete (e.g. 
gear,  carb, cyl) in nature.  For the continuous variables, we can calculate: 
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> mean(hp) 
[1] 146.6875 
> var(mpg) 
[1] 36.3241 
> quantile(qsec, probs = c(.20, .80))  # 20th and 80th percentiles 
   20%    80%  
16.734 19.332 
> cor(wt,mpg)    # not surprising that this is negative 
[1] -0.8676594 

 
For the discrete variables, we can get summary counts: 
 

> table(cyl) 
cyl 
 4  6  8  
11  7 14  

 
So, it can be seen that eleven of the vehicles have 4 cylinders, seven vehicles have 6, and 
fourteen have 8 cylinders.  We can turn the counts into percentages (or relative 
frequencies) by dividing by the total number of observations: 
 

> table(cyl)/length(cyl)   # note: length(cyl) = 32 
cyl 
      4       6       8  
0.34375 0.21875 0.43750  

 
 
5.2 Graphical Summaries 
 
• barplot(): 

 
For discrete or categorical data, we can display the information given in a table 
command in a picture using the barplot() function.  This function takes as its 
argument a table object created using the table() command discussed above: 
 
> barplot(table(cyl)/length(cyl)) # use relative frequencies on  

# the y-axis 
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See ?barplot on how to change the fill color, add titles to your graph, etc. 
 
 
• hist(): 
 
This function will plot a histogram that is typically used to display continuous-type data.  
Its format, with the most commonly used options, is: 
 
hist(x,breaks="Sturges",prob=FALSE,main=paste("Histogram of" ,xname)) 
 

Arguments: 
 

x: a vector of values for which the histogram is desired. 
 
 breaks: one of: 
 

* a character string (in double quotes) naming an algorithm to  
  compute the number of cells 

 
The default for 'breaks' is '"Sturges"': Other names for which 
algorithms are supplied are '"Scott"' and '"FD"' 

 
* a single number giving the number of cells for the histogram 

 
 prob: logical; if FALSE, the histogram graphic is a representation 
         of frequencies, the 'counts' component of the result; if 
         TRUE, _relative_ frequencies ("probabilities"), component 
         'density', are plotted. 
 
 main: the title for the histogram 
 
The breaks argument specifies the number of bins (or “classes”) for the histogram.  Too 
few or too many bins can result in a poor picture that won’t characterize the data well.  
By default, R uses the Sturges formula for calculating the number of bins.  This is given 
by 

⎡ ⎤1)(log2 +n  
 
where n is the sample size and ⎡ ⎤ is the ceiling operator. 
 
Other methods exist that consider finding the optimal bin width (the number of bins 
required would then be the sample range divided by the bin width).  The Freedman-
Diaconis formula (Freedman and Diaconis 1981) is based on the inter-quartile range (iqr) 
 

3
12 −⋅⋅ niqr ; 

 
the formula proposed by Scott (1979) is based on the standard deviation (s) 
 

3
15.3 −⋅⋅ ns . 
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To see some differences, consider the faithful dataset in R, which is a famous dataset 
that exhibits natural bimodality.  The variable eruptions gives the duration of the 
eruption (in minutes) and waiting is the time between eruptions for the Old Faithful 
geyser: 
 
 > data(faithful) 
 > attach(faithful) 
 > hist(eruptions, main = "Old Faithful data", prob = T) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can give the picture a slightly different look by changing the number of bins: 
 
 

> hist(eruptions, main = "Old Faithful data", prob = T, breaks=18) 
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• stem() 
 
This function constructs a text-based stem-and-leaf display that is produced in the R 
Console.  The optional argument scale can be used to control the length of the display. 
 

> stem(waiting) 
 
  The decimal point is 1 digit(s) to the right of the | 
 
  4 | 3 
  4 | 55566666777788899999 
  5 | 00000111111222223333333444444444 
  5 | 555555666677788889999999 
  6 | 00000022223334444 
  6 | 555667899 
  7 | 00001111123333333444444 
  7 | 555555556666666667777777777778888888888888889999999999 
  8 | 000000001111111111111222222222222333333333333334444444444 
  8 | 55555566666677888888999 
  9 | 00000012334 
  9 | 6 

 
 
• boxplot() 
 
This function will construct a single boxplot if the argument passed is a single vector, but 
if many vectors are contained (or if a data frame is passed), a boxplot for each variable is 
produced on the same graph. 
 
For the two data files in the Old Faithful dataset: 
 
 > boxplot(faithful)  # same as boxplot(eruptions, waiting) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, the waiting time for an eruption is generally much larger and has higher variability 
than the actual eruption time.  See ?boxplot for ways to add titles/color, changing the 
orientation, etc. 
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• ecdf(): 
 
This function will create the values of the empirical distribution function (EDF) Fn(x).  It 
requires a single argument – the vector of numerical values in a sample.  To plot the EDF 
for data contained in x, type  
 

> plot(ecdf(x)) 
 
 
• qqnorm() and qqline() 
 
These functions are used to check for normality in a sample of data by constructing a 
normal probability plot (NPP) or normal q-q plot.  The syntax is: 
 

> qqnorm(x)  # creates the NPP for values stored in x 
> qqline(x)  # adds a reference line for the NPP 

 
 
 
Only a few of the many functions used for graphics have been discussed so far.  Other 
graphical functions include: 
 
   Name   Operation 
  pairs()  Draws all possible scatterplots for two columns in a matrix/dataframe 
  persp()  Three dimensional plots with colors and perspective 
  pie()   Constructs a pie chart for categorical/discrete data 
  qqplot()  quantile-quantile plot to compare two datasets 
  ts.plot() Time series plot 
   
 
5.3 Exercises 
 
Using the stackloss dataset that is available from within R: 
 

1. Compute the mean, variance, and 5 number summary of the variable stack.loss. 
2. Create a histogram, boxplot, and normal probability plot for the variable 

stack.loss.  Does an assumption of normality seem appropriate for this sample?
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6. Probability, Distributions, and Simulation 
 
6.1 Distribution Functions in R 
 
R allows for the calculation of probabilities (including cumulative), the evaluation of 
density/mass functions, and the generation of pseudo-random variables following a 
number of common distributions (both discrete and continuous).  The following table 
gives examples of various function names in R along with additional arguments. 
 
Distribution R name Additional arguments2 Argument defaults 
beta  beta shape1 (α), shape2 (β)  

binomial binom size (n), prob (p)  

Chi-square chisq df (degrees of freedom r)  

continuous uniform unif min (a), max (b) min = 0, max = 1 

exponential exp rate (= 1/θ) rate = 1 

F distribution f df1 (r1), df2 (r2)  

gamma gamma shape (α), scale (θ) scale = 1 

hypergeometric hyper m = N1, n = N2,  
k = n (sample size) 

 

normal norm mean (µ), sd (σ) mean = 0, sd = 1 

Poisson pois lambda (λ)  

t distribution t df (degrees of freedom r)  

Weibull weibull shape (α), scale (β) scale = 1 

 
Prefix each R name given above with ‘d’ for the density or mass function, ‘p’ for the 
CDF, ‘q’ for the percentile function (also called the quantile), and ‘r’ for the generation 
of pseudo-random variables.  The syntax has the following form – we use the wildcard 
rname to denote a distribution above: 
 
 > drname(x, ...) # evaluate the pdf or pmf at x 
 > prname(q, ...) # evaluate the CDF at q 
 > qrname(p, ...) # evaluate the pth percentile of this distribution  
 > rrname(n, ...) # simulate n observations from this distribution 
 
Thus, in the above x and q are vectors that have values in the support of the distribution, 
p is a vector of probabilities, and n is an integer value.  The following are examples: 
 

> x <- rnorm(100)  # generate 100 standard normal RVs, put in x 
> w <- rexp(100,rate=.1)      # generate 100 from Exp(θ = 10) 
> dbinom(3,size=10,prob=.25) # P(X = 3) for X ~ Bin(n=10, p=.25) 
> pbinom(3,size=10,prob=.25) # P(X ≤ 3) in the above distribution 
> pnorm(12,mean=10,sd=2)   # P(X ≤ 12) for X~N(mu = 10, sigma = 2) 
> qnorm(.75,mean=10,sd=2)   # 3rd quartile of N(mu = 10,sigma = 2) 
> qchisq(.10,df=8)         # 10th percentile of χ2(8) 
> qt(.95,df=20)     # 95th percentile of t(20) 

                                                 
2 Hogg and Tanis (2006) parameter names are given in parentheses.  See the help files for the exact 
distribution parameterizations. 
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6.2 A Simulation Application: Monte Carlo Integration 
 
Suppose that we wish to calculate 

I = ∫
b

a

dxxg )( , 

but the antiderivative of g(x) cannot be found in closed form.  Standard techniques 
involve approximating the integral by a sum, and many computer packages can do this.  
Another approach to finding I is called Monte Carlo integration and it works for the 
following example.  Suppose that we generate n independent Uniform random variables3 
(this we have already seen how to do) X1, X2, …, Xn on the interval [a, b] and compute 
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So, Î  can be used as an approximation for I that improves as n increases.  
 
As it turns out, this method can be modified to use other distributions (besides the 
Uniform) defined over the same interval.  Compared to other numerical methods for 
approximating integrals, the Monte Carlo method is not particularly efficient.  However, 
the Monte Carlo method becomes increasingly efficient as the dimensionality of the 
integral (e.g. double integrals, triple integrals) rises. 
 

Example: Consider the definite integral: ∫
2

0

3 )exp( dxx  

 
A Monte Carlo estimate would be given by (using 1,000,000 observations): 
 

> 2*mean(exp(runif(1000000,min=0,max=2)^3)) # a=0, b=2, so b–a=2 
[1] 276.9353 

 
Another call gets a slightly different answer (remember, it is a limiting value!): 
 

> 2*mean(exp(runif(1000000, min=0,max=2)^3)) 
[1] 276.5444 
 

                                                 
3 The method can be easily modified to use another distribution defined on the interval [a, b].  See Robert 
and Casella (1999). 
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6.3 Graphing Distributions 
 
6.3.1 Discrete Distributions 
 
Graphs of probability mass functions (pmfs) and CDFs can be drawn using the plot() 
function.  Here, we give the function the support of the distribution and probabilities at 
these points.  By default, R would simply produce a scatterplot, but we can specify the 
plot type by using the type and lwd (line width) arguments.  For example, to graph the 
probability mass function for the binomial distribution with n = 10 and p = .25: 
 

> x <- 0:10 
> y <- dbinom(x, size=10, prob=.25)  # evaluate probabilities 
> plot(x, y, type = "h", lwd = 30, main = "Binomial Probabilities w/ 

n = 10, p = .25", col = "gray")   # not a hard return here! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have done a few things here.  First, we created the vector x that contains the integers 
0 through 10.  Then we calculated the binomial probabilities at each of the points in x and 
stored them in the vector y.  Then, we specified that the plot be of type "h" which is 
gives the histogram-like vertical lines and we “fattened” the lines with the lwd = 30 
option (the default width is 1, which is line thickness).  Finally, we gave it some color 
and an informative title. 
 
Lastly, we note that to conserve space in the workspace, we could have produced the 
same plot without actually creating the vectors x and y: 
 
 > plot(0:10, dbinom(x, size=10, prob=.25), type = "h", lwd = 30) 
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6.3.2 Continuous Distributions 
 

To graph smooth functions like a probability density function or CDF for a 
continuous random variable, we can use the curve() function that was introduced in 
Chapter 4.  To plot a density function, we can use the names of density functions in R as 
the expression argument.  Some examples: 
 
 > curve(dnorm(x), from = -3, to = 3)  # the standard normal curve 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
> curve(pnorm(x, mean=10, sd=2), from = 4, to = 16)  # a normal CDF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we restricted the plotting to be between -3 and 3 in the first plot since this is 
where the standard normal has the majority of its area.  Alternatively, we could have used 
upper and lower percentiles (say the .5% and 99.5%) and calculated them by using the 
qnorm() function. 
 
Also note that the curve() function has as an option to be added to an existing plot.  
When you overlay a curve, you don’t have to specify the from and to arguments because 
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R defaults them to the low and high values of the x-values on the original plot.  Consider 
how the histogram a large simulation of random variables compares to the density 
function: 
 

> simdata <- rexp(1000, rate=.1)   # 1000 from Exp(theta = 10) 
> hist(simdata, prob = T, breaks = "FD", main="Exp(theta = 10) RVs") 
> curve(dexp(x, rate=.1), add = T)  # overlay the density curve 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.4 Random Sampling 
 
Simple probability experiments like “choosing a number at random between 1 and 100” 
and “drawing three balls from an urn” can be simulated in R.  The theory behind games 
like these forms the foundation of sampling theory (drawing random samples from fixed 
populations); in addition, resampling methods (repeated sampling within the same 
sample) like the bootstrap are important tools in statistics. The key function in R is the 
sample() function.  Its usage is:  
 
sample(x, size, replace = FALSE, prob = NULL) 
 

Arguments: 
 
         x: Either a (numeric, complex, character or logical) vector of 
            more than one element from which to choose, or a positive 
            integer. 
 
      size: non-negative integer giving the number of items to choose. 
 
   replace: Should sampling be with or without replacement? 
 

prob: An optional vector of probability weights for obtaining the 
   elements of the vector being sampled. 
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Some examples using this function are: 
 

> sample(1:100, 1)     # choose a number between 1 and 100 
[1] 34 
 
> sample(1:6, 10, replace = T) # toss a fair die 10 times 
 [1] 1 3 6 4 5 2 2 5 4 5 
 
> sample(1:6, 10, T, c(.6,.2,.1,.05,.03,.02)) # not a fair die!! 
 [1] 1 1 2 1 4 1 3 1 2 1 
 
> urn <- c(rep("red",8),rep("blue",4),rep("yellow",3)) 
> sample(urn, 6, replace = F)  # draw 6 balls from this urn 
[1] "yellow" "red"    "blue"   "yellow" "red"    "red"    

 
 
6.5 Exercises 
 

1. Simulate 20 observations from the binomial distribution with n = 15 and p = 0.2. 
2. Find the 20th percentile of the gamma distribution with α = 2 and θ = 10. 
3. Find P(T > 2) for T ~ t8. 
4. Plot the Poisson mass function with λ = 4 over the range x = 0, 1, … 15. 
5. Using Monte Carlo integration, approximate the integral 

∫
π

+
4/

0

2 ))(tan1log( dxx  

 with n = 1,000,000. 
6. Simulate 100 observations from the normal distribution with µ = 50 and σ = 4.  

Plot the empirical cdf Fn(x) for this sample and overlay the true CDF F(x). 
7. Simulate 25 flips of a fair coin where the results are “heads” and “tails.” 
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7. Statistical Methods 
 
R includes a host of statistical methods and tests of hypotheses.  We will focus on the 
most common ones in this Chapter. 
 
 
7.1 One and Two-sample t-tests 
 
The main function that performs these sorts of tests is t.test().  It yields hypothesis 
tests and confidence intervals that are based on the t-distribution.  Its syntax is: 
 

Usage: 
 

t.test(x, y = NULL, alternative = c("two.sided", "less", 
"greater"), mu = 0, paired = FALSE, var.equal = FALSE, conf.level 
= 0.95) 

 
Arguments: 

 
   x, y: numeric vectors of data values.  If y is not given, a one 
         sample test is performed. 

 
      alternative: a character string specifying the alternative 

   hypothesis, must be one of `"two.sided"' (default), `"greater"'  
 or `"less"'. You can specify just the initial letter. 

 
mu: a number indicating the true value of the mean (or difference 
in means if you are performing a two sample test).  Default is 0. 

 
paired: a logical indicating if you want the paired t-test 
(default is the independent samples test if both x and y are 
given). 

 
var.equal: (for the independent samples test) a logical variable 
indicating whether to treat the two variances as being equal. If 
`TRUE', then the pooled variance is used to estimate the 
variance.  If ‘FALSE’ (default), then the Welsh suggestion for 
degrees of freedom is used. 

 
conf.level: confidence level (default is 95%) of the interval 
estimate for the mean appropriate to the specified alternative 
hypothesis. 
 

 
 
Example: Using the trees dataset, test the hypothesis that the mean black cherry tree 
height is 70 ft. versus a two-sided alternative: 
 
 > data(trees) 

> t.test(trees$Height, mu = 70) 
 
 

 



 36

        One Sample t-test 
 
data:  trees$Height  
t = 5.2429, df = 30, p-value = 1.173e-05 
alternative hypothesis: true mean is not equal to 70  
95 percent confidence interval: 
 73.6628 78.3372  
sample estimates: 
mean of x  
       76  
 
> 

 
Thus, the null hypothesis would be rejected. 
 
Example4: the recovery time (in days) is measured for 10 patients taking a new drug and 
for 10 patients taking a placebo.  We wish to test the hypothesis that the mean recovery 
time for patients taking the drug is less than fort those taking a placebo.  The data are: 
 

With drug:  15, 10, 13, 7, 9, 8, 21, 9, 14, 8 
Placebo:  15, 14, 12, 8, 14, 7, 16, 10, 15, 12 

 
For our test, we will assume that the two population means are equal.  In R, this analysis 
would be performed by: 
 

> drug <- c(15, 10, 13, 7, 9, 8, 21, 9, 14, 8) 
> plac <- c(15, 14, 12, 8, 14, 7, 16, 10, 15, 12) 
> t.test(drug, plac, alternative = "less", var.equal = T) 
 
        Two Sample t-test 
 
data:  drug and plac  
t = -0.5331, df = 18, p-value = 0.3002 
alternative hypothesis: true difference in means is less than 0  
95 percent confidence interval: 
     -Inf 2.027436  
sample estimates: 
mean of x mean of y  
     11.4      12.3  
 
> 

 
 
7.2 Linear Regression 
 
To fit the linear regression (“least-squares”) model to data, we use the lm() function.  
This can be used to fit simple linear (single predictor), multiple linear, and polynomial 
regression models.  With data loaded in, you only need to specify the linear model 
desired.  Examples of these are: 

                                                 
4 This example is from SimpleR (see page 7) as documented on CRAN. 
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 > lm(y ~ x)       # simple linear regression (SLR) model 
 > lm(y ~ x1 + x2)     # a regression plane 
 > lm(y ~ x – 1)     # SLR w/ zero intercept 
 > lm(y ~ x + I(x^2))     # quadratic regression model 
 > lm(y ~ x + I(x^2) + I(x^3))  # cubic model 
 
In the first example, the model is specified by the formula y ~ x which implies the linear 
relationship between y (dependent/response variable) and x (independent/predictor 
variable).  For the polynomial regression model examples, the function I() is used to tell 
R to treat the variable “as is” (and not to actually compute the quantity). 
 
The lm() function creates a linear model object from which a wealth of information can 
be extracted.   
 
Example: consider again the trees data discussed in Chapters 3 and 4.  Here, we will fit 
a linear regression model using Height as the independent variable and Volume as the 
dependent variable.  A scatterplot of these two variables is given in Chapter 4. 
 
To compute the least-squares line to model Y and a function of X, we enter (assuming 
that the dataset trees is loaded and in the workspace): 
 
 > fit <- lm(Volume ~ Height) 
 
The object fit is a linear model object.  To see what it contains, type: 
 

> attributes(fit) 
$names 
 [1] "coefficients"  "residuals"     "effects"       "rank"          
 [5] "fitted.values" "assign"        "qr"            "df.residual"   
 [9] "xlevels"       "call"          "terms"         "model"         
 
$class 
[1] "lm" 
 
> 

 
So, from the fit object, we can extract, for example, the residuals by assessing the 
variable fit$residuals. 
 
 
To get the least squares estimates of the slope and intercept, type 
 

> fit 
 
Call: 
lm(formula = logV ~ Height) 
 
Coefficients: 
(Intercept)       Height   
   -0.79652      0.05354   
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So, the fitted regression model has an intercept of -0.79652 and a slope of 0.05354.  More 
information about the fitted regression can be obtained by using the summary() function: 
 
 > summary(fit) 
 

Call: 
lm(formula = Volume ~ Height) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-21.274  -9.894  -2.894  12.067  29.852  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -87.1236    29.2731  -2.976 0.005835 **  
Height        1.5433     0.3839   4.021 0.000378 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 13.4 on 29 degrees of freedom 
Multiple R-Squared: 0.3579,     Adjusted R-squared: 0.3358  
F-statistic: 16.16 on 1 and 29 DF,  p-value: 0.0003784 

 
 
In the output above, we get (among other things) residual statistics, standard errors of the 
least squares estimates and tests of hypotheses on model parameters.  A call to 
anova(fit) will print the ANOVA table for the regression model. 
 
Finally, we can add the regression line to the scatterplot.  With the scatterplot active in 
the graphics window, enter: 
 
 > abline(fit)  # could also type abline(-87.1236, 1.5433) 
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7.3 Analysis of Variance (ANOVA) 
 
Fitting the ANOVA model is very similar to the linear regression model material, and 
this should make sense since they are both linear models.  The simplest way to fit an 
ANOVA model is to make a call to the aov() function, and the type of ANOVA model is 
specified by a formula statement.  Some examples: 
 
 > aov(x ~ a)     # one-way ANOVA model 
 > aov(x ~ a + b)    # two-way ANOVA with no interaction 
 > aov(x ~ a + b + a:b)  # two-way ANOVA with interaction 
 > aov(x ~ a*b)     # exactly the same as the above 
 
 
In the above statements, the x variable is continuous and contains all of the 
measurements in the ANOVA experiment.  The variables a and b represent factor 
variables – they contain the levels of the experimental factors.  The levels of a factor in R 
can be either numerical (e.g. 1, 2, 3,…) or categorical (e.g. low, medium, high, …), but 
the variables must be stored as factor variables.  We will see how this is done next. 
 
 
7.3.1 Factor Variables 
 
As an example for the ANOVA experiment, consider the following example on the 
strength of three different rubber compounds; four specimens of each type were tested for 
their tensile strength (measured in pounds per square inch): 
 
 

Type A B C 
Strength 
(lb/in2) 

3225, 3320, 
3165, 3145 

3220, 3410, 
3320, 3370 

3545, 3600, 
3580, 3485 

 
In R: 
 

Str <- c(3225,3320,3165,3145,3220,3410,3320,3370,3545,3600,3580,3485) 
Type <- c(rep("A",4), rep("B",4), rep("C",4)) 

 
 
Thus, the Type variable specifies the rubber type and the Str variable is the tensile 
strength.  Currently, R thinks of Type as a character variable; we want to let R know that 
these letter actually represent factor levels in an experiment.  To do this, use the 
factor() command: 
 

> Type <- factor(Type) 
> Type 
 [1] A A A A B B B B C C C C 
Levels: A B C 
> 
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Note that after the values in Type are printed, a Levels list is given.  To access the levels 
in a factor variable directly, you can type: 
 

> levels(Type) 
[1] "A" "B" "C" 
> 

 
With the data in this format, we can easily perform calculations on the subgroups 
contained in the variable Str.  To calculate the sample means of the subgroups, type 
 

> tapply(Str,Type,mean) 
      A       B       C  
3213.75 3330.00 3571.25 

 
The function tapply() creates a table of the resulting values of a function applied to 
subgroups defined by the second (factor) argument.  To calculate the variances: 
 

> tapply(Str,Type,var) 
       A        B        C  
6172.917 6733.333 6322.917 

 
 
We can also get multiple boxplots by specifying the relationship in the boxplot() 
function: 
 
 > boxplot(Str ~ Type, horizontal = T, xlab="Strength", col = "gray") 
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7.3.2 The ANOVA Table 
 
In order to fit the ANOVA model, we specify the single factor model in the aov() 
function: 
 

> anova.fit <- aov(Str ~ Type) 
> summary(anova.fit) 
 
            Df Sum Sq Mean Sq F value    Pr(>F)     
Type         2 266029  133015  20.752 0.0004257 *** 
Residuals    9  57688    6410                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
> 

 
 
7.4 Chi-square Tests 
 
Hypothesis test for count data that use the Pearson Chi-square statistic are available in R.  
These include the goodness-of-fit tests and those for contingency tables.  Each of these 
are performed by using the chisq.test() function.  The basic syntax for this function is 
(see ?chisq.test for more detailed information): 
 

 
chisq.test(x, y = NULL, correct = TRUE, p = rep(1/length(x),length(x))) 

 
Arguments: 
 
      x: a vector, table, or matrix. 
 
      y: a vector; ignored if 'x' is a matrix. 
 
correct: a logical indicating whether to apply continuity correction 
         when computing the test statistic. 
 
      p: a vector of probabilities of the same length of 'x'. 

 
We will see how to use this function in the next two subsections. 
 
 
7.4.1 Goodness of Fit 
 
In order to perform the Chi-square goodness of fit test to test the appropriateness of a 
particular probability model, the vector x above contains the tabular counts (if your data 
vector contains the raw observations that haven’t been summarized, you’ll need to use the 
table() command to tabulate the counts).  The vector p contains the probabilities 
associated with the individual cells.  In the default, the value of p assumes that all of the 
cell probabilities are equal.   
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Example: A die was cast 300 times and the following was observed: 
 

Die face 1 2 3 4 5 6 
Frequency 43 49 56 45 66 41

 
 
To test that the die is fair, we can use the goodness-of-fit statistic using 1/6 for each cell 
probability value: 
 

> counts <- c(43, 49, 56, 45, 66, 41) 
> probs <- rep(1/6, 6) 
> chisq.test(counts, p = probs) 
 
        Chi-squared test for given probabilities 
 
data:  counts  
X-squared = 8.96, df = 5, p-value = 0.1107 
 
> 

 
Note that the output gives the value of the test statistic, the degrees of freedom, and the p-
value. 
 
 
7.4.2 Contingency Tables 
 
The easiest way to analyze a tabulated contingency table in R is to enter it as a matrix 
(again, if you have the raw counts, you can tabulate them using the table() function.  
 
Example: A random sample of 1000 adults was classified according to sex and whether 
or not they were color-blind as summarized below: 
 

 Male Female
Normal 442 514 
Color-blind 38 6 

 
 

> color.blind <- matrix(c(442, 514, 38, 6), nrow=2, byrow=T) 
> color.blind 
     [,1] [,2] 
[1,]  442  514 
[2,]   38    6 
> 

 
 
In a contingency table, the row names and column names are meaningful, so we can 
change these from the defaults: 
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> dimnames(color.blind) <- list(c("normal","c-b"),c("Male","Female")) 
> color.blind 
       Male Female 
normal  442    514 
c-b      38      6 
> 

 
This was really not necessary, but it does make the color.blind object look more like a 
table.   
 
To test if there is a relationship between gender and color-blind incidence, we obtain the 
values of the chi-square statistic: 
 

> chisq.test(color.blind, correct=F) # no correction for this one 
 
        Pearson's Chi-squared test 
 
data:  color.blind  
X-squared = 27.1387, df = 1, p-value = 1.894e-07 
 
> 

 
As with the ANOVA and linear model functions, the chisq.test() function actually 
creates an output object so that other information can be extracted if desired.  For 
example: 
 

> out <- chisq.test(color.blind, correct=F) 
> attributes(out) 
$names 
[1] "statistic" "parameter" "p.value"   "method"    "data.name"  
[6] "observed"  "expected"  "residuals" 
 
$class 
[1] "htest" 
 
 
> out$expected     # these are the expected counts 
         Male Female 
normal 458.88 497.12 
c-b     21.12  22.88 

 
 
7.5 Other Tests 
 
There are many, many more statistical procedures included in R, but most are used in a 
similar fashion to those discussed in this chapter.  Below is a list and description of other 
common tests (see their corresponding help file for more information): 
  
• prop.test() 
 

Large sample test for a single proportion or to compare two or more proportions that 
uses a chi-square test statistic. 
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• var.test() 
 

Performs an F test to compare the variances of two independent samples from normal 
populations. 

 
 
• cor.test() 
 
Test for significance of the computed sample correlation value for two vectors. 
 
 
• wilcox.test() 
 

One and two-sample nonparametric Wilcoxon Rank Sum and Signed Rank Tests, 
similar format to t.test() 

 
 
• ks.test() 
 

Test to determine if a sample comes from a specified distribution, or test to determine 
if two samples have the same distribution. 
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8. Advanced Topics 
 
In this final chapter we will introduce some advanced features of R – namely the ability 
to use scripts and to write functions in order to facilitate many steps in a procedure. 
 
 
8.1 Scripts 
 
If you have a long series of commands that you would like to save for future use, you can 
save all of the lines of code in a file and execute them together using the source() 
function.  For example, we could type the following statements in a text editor (you don’t 
precede a line with a “>” in the editor): 
 

x1 <- rnorm(500)  # Simulate 500 standard normals 
x2 <- rnorm(500)  #               "" 
x3 <- rnorm(500)  #               "" 
y1 <- x1 + x2 
y2 <- x2 + x3 
r <- cor(y1,y2) 

 
If we save the file as corsim.R on the U: drive, we run the script by typing 
 

> source("U:/corsim.R") 
> r 
[1] 0.5085203 
> 

 
Note that not only was the object r was created, but so was x1, x2, x3, y1, and y2. 
 
 
8.2 Control Flow 
 
R includes the usual control-flow statements (like conditional execution and looping) 
found in most programming languages.  These include (the syntax can be found in the 
help file accessed by ?Control): 
    

if       
if else 
for 
while 
repeat 
break 
next 

 
 
Many of these statements require the evaluation of a logical statement, and these can be 
expressed using logical operators: 
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  Operator   Meaning 
  ==     Equal to 
  !=     Not equal to 
  <, <=    Less than, less than or equal to 
  >, <=    Greater than, greater than or equal to 
  &&     Logical AND 
  ||     Logical OR 
  
Some examples of these are given below.  The first example checks if the number x is 
greater than 2, and if so the text contained in the quotes is printed on the screen: 
 
 > x <- rnorm(1) 
 > if(x > 2) print("This value is more than the 97.72 percentile") 
 
 
The code below creates vectors x and z and defines 100 entries according to assignments 
contained within the curly brackets.  Since more than one expression is evaluated in the 
for loop, the expressions are contained by {}.   
 
 > n <- 50 
 > for(i in 1:100)  { 
 +   x[i] <- mean(rexp(n, rate = .5)) 
 +   z[i] <- (x[i] – 2)/sqrt(2/n)  
 + } 
 > 
 
This last bit of code considers a Monte Carlo (MC) estimate of π.  The basis of it is as 
follows: if we generate a coordinate randomly over a square with vertices (1,1), (1,-1),  
(-1,1), and (-1,-1), then the probability that the coordinate lies within the circle with 
radius 1 centered at the origin (0,0) is π/4.  In the code below, n is the number of 
coordinates generated and s counts the number of observations contained in the unit 
circle.  Thus, s/n is the MC estimate of the probability and 4*s/n is the MC estimate of 
π.  The code stops when we are within .001 of the true value.  Since the function uses MC 
estimation, the result will be different each time the code executes. 
 
 

> eps <- 1; s <- 0; n <- 0  # initialize values 
> while(eps > .001) { 
+   n <- n + 1 
+   x <- runif(1,-1,1) 
+   y <- runif(1,-1,1) 
+   if(x^2 + y^2 < 1) s <- s + 1 
+   pihat <- 4*s/n 
+   eps = abs(pihat - pi) 
+ } 

 > 
 

> pihat   # this is our estimate 
[1] 3.141343 
> n    # this is how many steps it took 
[1] 1132 
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8.3 Writing Functions 
 
Probably one of the most powerful aspects of the R language is the ability of a user to 
write his or her own functions.  When doing so, many computations can be incorporated 
into a single function and (unlike with scripts) intermediate variables used during the 
computation are local to the function and are not saved to the workspace.  In addition, 
functions allow for input values used during a computation that can be changed when the 
function is executed. 
 
The general format for creating a function is 
 

fname <- function(arg1, arg2, ...)  { R code } 
 
In the above, fname is any allowable object name and arg1, arg2, ... are function 
arguments.  As with any R function, they can be assigned default values.  When you write 
a function, it is saved in your workspace as a function object. 
 
Here is a simple example of a user-written function.  We made the function a little more 
readable by adding some comments and spacing to single out the first if statement: 
 

> f1 <- function(a, b) { 
+ # This function returns the maximum of two scalars or the 
+ # statement that they are equal. 
+ if(is.numeric(c(a,b))) { 
+   if(a < b) return(b) 
+   if(a > b) return(a) 
+   else print("The values are equal") 
+ } 
+ else print("Character inputs not allowed.") 
+ } 
> 

 
The function f1 takes two values and returns one of several possible things.  Observe 
how the function works: before the values a and b are compared, it is first determined if 
they are both numeric.  The function is.numeric() returns TRUE the argument is either 
real or integer, and FALSE otherwise.  If this conditional is satisfied, the values are 
compared.  Otherwise, the user gets the warning message.  To use the function: 
 

> f1(4,7) 
[1] 7 
 
> f1(pi,exp(1)) 
[1] 3.141593 
 
> f1(0,exp(log(0))) 
[1] "The values are equal" 
 
> f1("Stephen","Christopher") 
[1] "Character inputs not allowed." 

 
The function object f1 will remain in your workspace until you remove it. 
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To make changes to your function, you can use the fix() or edit() commands 
described in Section 3.3.  When you edit a function, it will appear in the default text 
editor. 
 
Here is another example5.  Below is the formula for calculating the monthly mortgage 
payment for a home loan: 
 

12yr/1200)(11
r/1200

AP −+−
⋅= , 

 
where A is the loan amount, r is the interest rate, and y is the number of years for the 
loan.  The value of P represents the monthly payment.  Below is an R function that 
computes the monthly payment based on these inputs: 
 

> mortgage <- function(A = 100000, r = 6, y = 30)  { 
+ P <- A*r/1200/(1-(1+r/1200)^(-12*y)) 
+ return(round(P, digits = 2)) 
+ } 
> 

 
This function takes three inputs, but we have given them default values.  Thus, if we 
don’t give the function any arguments, it will calculate the monthly payment for a 
$100,000 loan at 6% interest for 30 years.  The round() function is used to make the 
result look like money and give the calculation only two decimal points: 
 

> mortgage() 
[1] 599.55 
> mortgage(200000,5.5)  # use default 30 year loan value 
[1] 1135.58 
> mortage(y = 15)    # D’oh!  Bad spelling... 
Error: couldn't find function "mortage" 
> mortgage(y = 15) 
[1] 843.86 

 
 
8.4 Exercises 
 

1. Write a function that: 
• simulates n = 20 observations from the normal distribution w/ µ = 10,  

σ = 2 
• draws m = 250 random samples (each of size 20) w/ replacement from the 

above sample 
• calculates the mean of each of these samples 
• outputs a histogram of the 250 sample means 

 
2. Rewrite the above function so that the values of n, m, µ, and σ can be chosen 

differently each time the function executes. 
                                                 
5 This is from The New S Language, by Becker/Chambers/Wilks, Chapman and Hall, London, 1988. 
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:, 12 
$, 16 
%*%, 10 
abline(), 21, 38 
abs(), 8 
aov(), 39 
apropos(), 5 
arrows(), 21 
as.matrix(), 10 
attach(), 16 
attributes(), 17, 37 
barplot(), 24 
boxplot(), 27, 40 
c(), 2, 12 
chisq.test(), 41 
cor(), 23 
cor.test(), 45 
cov(), 23 
curve(), 20, 32 
choose(), 8 
cumsum(), 9 
data(), 15 
data.frame(), 14 
det(), 10 
detach(), 17 
dim(), 10 
dimnames(), 43 
diff(), 9 
ecdf(), 28 
edit(), 14 
eigen(), 10 
exp(), 8 
for(), 47 
function(), 48 
help(), 4 
hist(), 25 
factorial(), 8 
FALSE or F, 6 
file.choose(), 14 
fivenum(), 23 
fix(), 14 
 

 
gamma(), 8 
I(), 37 
if(), 47 
ks.test(), 45 
length(), 9 
lines(), 21 
lm(), 36 
log(), 4 
ls(), 3 
matrix(), 6 
max(), 23 
mean(), 23 
median(), 23 
min(), 23 
NA, 6 
pairs(), 28 
par(), 20, 21 
persp(), 28 
pi, 8 
pie(), 28 
plot(), 19 
points(), 21 
print(), 47 
prod(), 9 
prop.test(), 43 
q(), 2 
qqline(), 28 
qqnorm(), 28 
qqplot(), 28 
quantile(), 23 
quartz(), 19 
read.table(), 17 
rep(), 13 
return(), 49 
rm(), 3 
round(), 49 
rug(), 21 
sample(), 33 
search(), 17 
scan(), 13 
sd(), 23 
 

 
segments(), 21 
seq(), 12 
solve(), 10 
sort(), 9 
source(), 46 
stem(), 27 
sum(), 9 
summary(), 38 
sqrt(), 8 
t(), 11 
t.test(), 35 
table(), 24 
text(), 21 
title(), 21 
TRUE or T, 6 
ts.plot(), 28 
var(), 23 
var.test(), 44 
while(), 47 
wilcox.test(), 45 
x11(), 19 

 


