
TheDSA Do It YourselfIntroduction toR Short Course
Manual

Jon Starkweather, PhD

November 28, 2018

Jon Starkweather, PhD
jonathan.starkweather@unt.edu

Consultant
DataScience andAnalytics

http://www.unt.edu

http://it.unt.edu/research

DSA hosts a number of “Short Courses”.
A list of them is available at:

http://it.unt.edu/researchshortcourses

The material contained in this manual can also be found at:
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/

1

http://www.unt.edu
http://it.unt.edu/research
http://it.unt.edu/researchshortcourses
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/

Contents

1 Module 1: Download and Install R 3
1.1 Introductory Notes 1 3

1.1.1 Downloading R. 3
1.1.2 Installing R. 3
1.1.3 The first time you open R. 4

1.2 Introductory Notes 2 4
1.2.1 Some initial orientation to using R. 4

2 Module 2: Packages and Libraries 6
2.1 Packages . 6

2.1.1 Explanatory Notes. .. 6
2.1.2 Download and Install Packages. 6
2.1.3 Choose Packages. 7
2.1.4 Updating packages. .. 8

2.2 Libraries .. 8
2.2.1 Loading a Library. .8
2.2.2 Detaching a Library .9
2.2.3 Preloading Libraries .. . 9

2.3 Finding Help .10
2.3.1 What’s in a Library. .10
2.3.2 Finding the right library. 11

2.4 Keeping R Up-To-Date .. . 12
2.4.1 Installing new packages. 12
2.4.2 Updating installed packages. 13

3 Module 3: Getting Data Into R 13
3.1 Script Files. .. . 13
3.2 Initial Rcmdr orientation. 14
3.3 Using Rcmdr to import SPSS data. 16
3.4 Using Rcmdr to import Excel data. 17
3.5 Using Rcmdr to import text data. 17
3.6 Importing data Without Rcmdr 18
3.7 Importing many Excel files, each with multiple sheets. 18

3.7.1 Context of the Example . 19
3.7.2 Illustrative Example .. . 19
3.7.3 Conclusions on importing many Excel files 24

4 What’s next. 24

2

1 Module 1: Download and Install R

1.1 Introductory Notes 1

1.1.1 Downloading R.

When you first go to CRAN1 to download R, you will be prompted to select which operating
system you will be using. Once you click on Windows you will beconfronted with two choices;
base and contrib. You only need the base. Later we will install packages which allow you enjoy
all the functioning of R. Once you click on base you will be confronted with a page showing (in
bold) a link to Download R x.xx.x for Windows where the seriesof x indicate the current version
(e.g. 3.3.1). Once you click on the download link; you will beprompted to save the file somewhere
on your computer. Saving it to the desktop is fine; there will be no need to keep it after you have
installed R.

1.1.2 Installing R.

Double click on the executable file to install R. The default options/settings as specified during
installation will be fine. The program can very easily be customized after installation.

There are three windows youll likely use every time you use R. The GUI or console window is
the core of the program and can act as both textual input and textual output display. The graphics
window, which as the name implies, displays graphical output (e.g. histograms, scatter plots,
topographical displays of terrain, 3D perspective plots, thermal images, etc.). The script window
displays script (also called syntax, or program code, or input code), which is not necessary, but
often preferred as a way of building script with comments (i.e. not working code but disregarded
by the console) and proof reading it prior to submitting it for processing...and saving it for later.
Once you complete the first three modules of this tutorial website, I would strongly encourage
installing and using RStudio – it is free and has quickly become the most popular way of using
R. More information on RStudio can be found at the RStudio home page2. RStudio has a panel
or ’pane’ layout which can be changed by going to “Tools” — “Global Options” — then “Pane
Layout” so you can arrange the panes however you want. You canalso minimize a pane or panes;
which is common, so that only the “Source” or scripting pane and the console pane are shown.
RStudio also has a default hotkey for submitting highlightedscript; pressing both the “Ctrl” and
“Enter” keys will submit highlighted script to the console and automatically return focus back
to the scripting or “Source” pane. Also, graphs or plots can be brought into a separate window
outside of the RStudio suit by clicking on the “Expand” buttonof the “Plots” pane – often helpful
to enlarge a plot to evaluate its contents. A brief introduction to RStudio3 may help users become
familiar with some of the settings and some preferences using R through RStudio.

1http://cran.r-project.org/
2https://www.rstudio.com/
3http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module1/RStudio_Intro.pdf

3

http://cran.r-project.org/
https://www.rstudio.com/
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module1/RStudio_Intro.pdf

1.1.3 The first time you open R.

You will be confronted with a window in a window. It is recommended (but not necessary) you
change the display by changing the GUI preferences; GUI stands for Graphical User Interface. At
the top of the window, click on Edit then click on GUI preferences. Many of these preferences
are self explanatory; but here are a few I use: SDI and single window which changes the con-
sole/GUI to a single window display once applied and changesare saved. I prefer font size of 12
which is a little larger and easier for my old eyes to read, butnot so large as to dramatically cut
down the amount of character lines displayed. I generally change the Pager rows and columns
so that the console window is quite largethe specific numberswill be dependent on your screen
size/resolution; so it may take some trial and error fiddlingto get what you want. I also set the Ini-
tial left and top to zero so that the console window opens at the top/left of my screen when I open
R. Again, these are merely preferences and each of you should set the program up in a way which
is most comfortable for you. Once you have the preferences set how you want them, you will need
to SAVE them; regardless of whether or not you apply them. To save your GUI preferences, click
the Save button on the bottom of the GUI preferences. You willbe prompted to select a directory
in which to save the Rconsole. You must save this file in the etc directory if you want the changes
to be present each time you open the R program; this directoryis located inside the R directory
where you installed the program, generally at: File paths are

listed ingreen

C:\Program Files\R\R-x.xx.x\etc

where x.xx.x refers to the version number of the R installation you have (e.g. R-3.3.1). Once
you have saved the GUI preferences, close the program (no need to save workspace image; more
on this later) and open it again to make sure the changes have been saved and are being applied.

Congratulations; you now have a working, albeit limited, version of R – and it was completely
FREE!

1.2 Introductory Notes 2

1.2.1 Some initial orientation to using R.

There are some key terms you will need to become familiar with; first R is an object oriented
system. Anything can be an object; a score, a series of scores(also called a vector), a named
variable (also called a vector), a matrix (made up of rows andcolumns), a data frame, or a list (a
larger group of objects). As an example; lets open R and create a new object called ‘x’. Our object
x will initially be something as simple as an individual score, say 5. To communicate this in R, inR script is listed

in red
the console type the following and hit the enter key at the endof each line:
x <- 5
x = 5
x<-5
x=5
x
[1] 5 R output is listed

in blue
Notice how both = and<- refer to the same operation and the presence of spaces beforeand after
are not necessary. The operation = and<- perform is assignment; in other words, we have assigned

4

5 to x. Now we can perform simple arithmetic or complex algebra using our assigned value for x.
For example, try any of the following:
x - 5
[1] 0
x / 5
[1] 1
x ˆ 2
[1] 25
x ˆ 1/2
[1] 2.5
x * 6
[1] 30
x6
Error: object "x6" not found
6x
Error: unexpected symbol in "6x"
Notice above that x * 6 is functional, while 6x and x6 are not.
xˆ2 + 5 * x - (x)
[1] 45
5 * x * (xˆ2)
[1] 625
5 * (x * x)ˆ2
[1] 3125
We can also assign a group of values to our object using the concatenate or combine function which
as a default produces a vector. We can then assign our vector (x) to another object or use it in a
more complex function.
x <- c(5, 6, 7, 9, 10, 4, 5)
x
[1] 5 6 7 9 10 4 5
x + 2
[1] 7 8 9 11 12 6 7
is.vector(x)
[1] TRUE
y <- x * 2
y
[1] 10 12 14 18 20 8 10
You can continue to explore the arithmetic functions of R, butIm sure you didnt come to learn how
R can be used as a calculator, so lets continue to the next module.

* Nifty trick in R console type: demo(graphics) then continue slowly hitting the enter key until
nothing happens.

5

2 Module 2: Packages and Libraries

2.1 Packages

2.1.1 Explanatory Notes.

The terms package and library tend to be used interchangeably in R literature. These terms refer
to the compiled chunks of downloadable content that developers and users create to increase the
functionality of R. These packages are what make R so attractive and so capable. As an example,
consider a fictional researcher, Dr. Smarty Pants at the University of Jupiter’s Moon. Dr. Smarty
Pants wants to do a new statistical technique, called the Wiz-Magic Decomposition analysis or
WMD for short. Unfortunately, because WMD is so new, Dr. SmartyPants can not find WMD in
any of the existing statistical software available. But, Dr.Smarty Pants is an R user. So, no matter
who Dr. Smarty Pants happens to be, where he or she happens to be, and no matter what analysis
he or she wants to perform; any individual, like Dr. Smarty Pants, can write the code to perform
the desired analysis and send it to CRAN as a new package. CRAN willthen check it to make
sure it works, has proper documentation, and post it so that everyone can then use the newest most
advanced techniques, like WMD. You might think this process takes a great deal of time, but it
does not. As of this writing, according to CRAN there are a over 9000 packages available and it is
very likely that within a week, new packages will be available. Remember, packages are not just
new analysis; many are very specific and may include better ways to do existing functions (e.g.
the AMORE package is described as “A MORE flexible neural network package”). Furthermore,
packages get updated to increase functionality or ease of use. Keep in mind, all packages and all
new versions of R are completely free. So, you’re now likely wondering, how do I get and use
these packages? First, open R if it is not already.

2.1.2 Download and Install Packages.

To download and install packages, you must have R open and youmust have an Internet connec-
tion. Next, click on ‘Packages’ at the top of the R Console.

6

Take note of the options here, you will likely use two of them most frequently; ‘Install Pack-
age(s)...’ and ‘Update packages...’ The base install of R comes with about 5 core packages. We
are interested in installing new/different packages; so, click on ‘Install Package(s)...’ You will then
be prompted to select a CRAN mirror site from which to download packages. I suggest selecting a
location close to the physical location of your computer. Once you select a mirror site, you will be
presented with an alphabetical list of all the available packages.Before you choose, please take a
minute to read the following paragraph.

The first time you install R on your machine, it is recommendedyou install all the packages
used on this site. Fortunately, you do not need to point and click each of these packages to install
them. You can use this4 script. If you simply open that script in your browser and copy – paste
its contents into your R console and run it, it will install all the package used on this site (and
their dependent packages). Depending on your internet connection speed, this operation may take
several minutes.

2.1.3 Choose Packages.

Now choose the Hmisc package; then click ‘OK’. You will notice in the R Console, packages
will be downloaded first, in the appropriate location, and then they will be installedwhich gives
the message “package ‘Hmisc’ successfully unpacked and MD5sums checked”. You will also
notice a message telling you where the temporary file is located which contains the downloaded
package(s). You could delete this temp file after all the packages are installed, but it can be useful

4http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module2/InstallPackages_listed_at_R_SC.R

7

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module2/InstallPackages_listed_at_R_SC.R

to take note of it in the unlikely event your Internet connection gets interrupted during download. If
your connection is interrupted, you can still install the packages that were downloaded successfully
by clicking on ‘Packages’ then ‘Install package(s) from local zip files...’.

2.1.4 Updating packages.

Now that you have the Hmisc package installed, you need to update. This may seem silly because
you just installed it, but remember with a few thousand packages it becomes time consuming to
update all of them when a new version of R is released and you may not have the most recent
version of a package. So, click on ‘Packages’ and then ‘Update packages...’. If you have not done
so already in this session of R (e.g. if you closed R and just re-opened it), you will need to choose
a mirror site. You will then be prompted with a list of packages that can be updated. I generally
choose all the available packages to make sure I have the mostfunctionally up-to-date software.
Once you choose which/all packages, click ‘Ok’ and you will notice a similar series of messages
in the console showing the download and install of the updated packages.

We will be using the Hmisc package/library in the next set of notes on using a package/library;
but in future notes/tutorials we will need a variety of packageagain, it is highly recommended you
download and install all of the available packages.

2.2 Libraries

2.2.1 Loading a Library.

Loading a library is necessary to use the downloaded and installed package. Remember, the terms
package and library are used synonymously throughout R literature; however, one could say a
package becomes a library when it is loaded. In the previous set of notes, we downloaded and
installed the Hmisc package (hopefully you have all packages used on this site now). To use a
package, we must now load it. This is a very simple procedure;in the console, simply type the
following and hit enter.
library(Hmisc)
Attaching package: ’Hmisc’
The following object(s) are masked from ’package:car’:
recode
Any downloaded and installed package can be loaded by typing: library(name) where ‘name’
refers to the package name. Occasionally, when a package loads, it will ‘mask’ objects in other
packages and the R console will return a message for each library loaded. As an example, consider
the following; package Hmisc will mask the object ‘recode’ in package car if car is already loaded.
This bears watching because; it can be extremely frustrating when attempting to use a familiar
function which will no longer work because a newly loaded package is masking it. The good news
is that this does not occur frequently even when using many libraries (e.g. multiple libraries can
be loaded and used simultaneously). For this reason, it can be important and preferable to clean up
after one’s self by using the ‘detach’ library command for libraries which are not being used.

8

2.2.2 Detaching a Library

Detach a library. Again, it is extremely easy to detach a library which is no longer needed. Simply
type the following and hit enter:
detach("package:Hmisc")
Common errors result from forgetting the parentheses and/orquotations, as well as forgetting the
colon between package and the library name. As an exercise inensuring we are doing what we
think we are doing, type the following and hit enter:
search()
[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"
The search function shows all the loaded libraries. Notice,Hmisc is not listed. Now hit your
up arrow 3 times and then hit the enter key. Notice, the up arrow scrolls through your previous
commands and the third command up should have been ‘library(Hmisc)’. When you hit the enter
key, you should have loaded that library again. So, if we hit the up arrow twice, we should see
the ‘search()’ command and if we hit enter again, we should see that Hmisc is listed as a loaded
package. Also notice that the ‘base’ package is loaded; which as the name implies is part of the
base install of R and is loaded when the program R is opened/started.

2.2.3 Preloading Libraries

It can be very convenient to have one or a few libraries load when you start R if you tend to use
these libraries during every session. This is the same rationale behind the base library being loaded
each time R starts; everyone uses it every time they use R. You can customize R to load certain
libraries upon start up by locating a file called “Rprofile.site” which by default is located:

C:\Program Files\R\R-x.xx.x\etc

where x.xx.x refers to the version number of the R installation you are using (e.g. R-3.3.1) and yes,
there is an ‘etc’ folder. Once you locate the Rprofile.site file, you can open it in Notepad which by
default is available with each installation of Windows. Here is where you can tell R to load certain
libraries upon start up. As an example, you can see my currentRprofile.site file here5. One thing
to notice in my Rprofile is the line:

setwd("C:\\Users\\jon\\Desktop\\Work_Stuff\\Jon_R")

which sets the working directory for R (Windows XP machine).This tells R where to start looking
when ever you go to File and open or save in R. In other words, if you wanted to open or save
something from the R console, it will start with the specifiedworking directory. You can set your
working directory to be any folder on your computer.

Important Note: If you change your Rprofile to preload libraries at start up, itwill be necessary
to cut and paste the Rprofile file from the ‘etc’ folder to some other location prior to starting R
when you want to update packages. For instance, after havingR and all packages downloaded and
installed for a week, you will likely want to check for updates. Then, go to the ‘etc’ folder and cut

5http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module2/JonsRprofileFile.txt

9

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module2/JonsRprofileFile.txt

the Rprofile file out and paste it to your desktop. Then, start R and update packages/libraries as
mentioned previously. Yes, the program will function without that file. After updating all packages,
then close R. Then, cut the Rprofile file off your desktop and paste it back into the ‘etc’ folder...then
restart R. The reason you would need to do this is because, R will not update packages/libraries
that are in use (i.e. loaded). So, if you have your Rprofile set to load some libraries at start up, you
would never be able to update those libraries.

So, you’re probably wondering what’s in a library? We’ll answer that in the next set of notes.

2.3 Finding Help

2.3.1 What’s in a Library.

The answer is that many things can be contained in a library. The libraries are bundles of code
used to conduct analysis, create graphs, etc. Libraries usually also contain some data which can be
loaded and used for a library provided example. At this point, you’re likely thinking, so what; how
do I use what’s in a library? Well, the bad news is that you needto know what is in a particular
library before you can use it. The good news, of course, is that it’s easy to discover what’s in a
particular library. This leads us to one of the many ways we can seek help in R. Working from
previous notes, let’s take a look at the base library which comes installed with the base installation
of R and loads upon start up of the program R. In the console, type the following and hit the enter
key:
help(base)
There are some things to notice in the new help window. First,at the top of the window; you’ll
see the topic you asked for help on (typically a function), the package in which this help query
topic is found, and R Documentation which is where this help comes from. The key information
for this particular library help is what the library does or what can it do; which is displayed in the
details section; which begins “This package contains the basic functions which let R function as
a language: arithmetic, input/output, basic programming support,...”. Also note that this is a rare
instance when the package help does not contain a list of the functions available in the package.
However, it does tell us what to do to get the complete list of functions:
library(help="base")
which does give us a complete list of functions and a brief description of their use. So, what is a
function? Well, let’s take a look at:
help(mean)
This help window is more typical of what you’ll see when usingthe console help function. There
are key elements here which appear in most help documentation; those listed in red (e.g. descrip-
tion, usage, arguments, details, etc.). Especially important is what we find at the bottom of the
help window; the examples. All examples listed in these types of help windows can be copied and
pasted into the console and they will work–and importantly can then be modified for our particular
use. We will use this approach in later notes to see how to do a particular analysis and apply it to
our own data.

10

2.3.2 Finding the right library.

If we are interested in finding a library that will allow us to do some task or analysis; then we
have a multitude of choices for tracking down what library weneed or want given the likelihood
of multiple libraries able to do a given task. If we start by clicking on the ‘Help’ button in the task
bar at the top of the console, we find a variety of help options.Two of my most frequently used
strategies for finding help are (1) ‘HTML help’ which opens your default browser to the online R
help index and (2) ‘Search help...’ which searches help filesfor whatever topic you enter. First,
a note of caution; if you have all the available packages downloaded and installed, the ‘Search
help...’ will take a minute or more to collect all the resultsfor just about any topic you search,
often resulting in a large list of returns. For this reason, Itypically use the HTML help first,

because I can click on the ‘Search Engine & Keywords’ to look for packages, functions, or other
forms of information on a particular topic; or I can click on ‘Packages’ to review the packages’
descriptions and then click on and review a particular package’s documentation and related func-
tions. There are other ways of finding help, often more efficient; such as searching Google6 using
“R xxxxxxx” where xxxxxxx is the topic of interest, or using the Rseek7 search engine. Using
Google will inevitably lead you to one of the many very usefulblogs created by R users who, not
long ago were in the exact same situation you might be...looking for help with some function or
library. Also keep in mind there are several R Reference Cards available; I have this8 one posted
on the web page9 because, I prefer it to others. Of course, there are also the help options in the
R console: ‘FAQ on R’, ‘FAQ on R for Windows’, and the help ‘Manuals (in PDF)’ all of which
should be considered recommended reading.

It is often intimidating to see how much help is available andrealize finding what you want can
become an adventure in and of itself. But, imagine how ridiculous someone might find it if we
complained about having too much help available for a software package we were learning. ?.?.?

6http://www.google.com/
7http://www.rseek.org/
8http://cran.r-project.org/doc/contrib/Short-refcard .pdf
9http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/

11

http://www.google.com/
http://www.rseek.org/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/

2.4 Keeping R Up-To-Date

Maintaining R is not difficult, it simply requires a few easy steps.
If you have your ‘Rprofile.site’ file setup to auto-load packages when R is started, then you will

need to remove that file from the R directory prior to updating. If you do not, then the packages
which you have specified to auto-load will never be updated. This is because R will not update a
package if that package is loaded into the workspace. So, if you need to remove the ‘Rprofile.site’
file, then find the ’etc’ folder in your R installation. Two examples of where it might be located are
below where x.xx.x refers to the version number of the R installation you have (e.g. R-2.15.0).

C:\R\R-3.0.1\etc
C:\Program Files (x86)\R\R-3.3.1\etc

Once inside the ‘etc’ folder, right-click on the ‘Rprofile.site’ file and select “Cut”. Now right-click
on your desktop and select “Paste”. You do not need to close the ‘etc’ window/folder.

2.4.1 Installing new packages.

First, start R.
Second, click on “Packages” at the top of the R console and then select “Set CRAN mirror...”.

Choose the mirror site you wish to use; I generally select USA (CA 1).

Next, click again on “Packages” in the R console and then select “Select repositories...”. By
default, CRAN and CRAN (extras) are selected; I generally also select R-Forge which contains
packages begin developed (often very recent updates to existing packages). Then click the OK
button.

12

Next, type the following line in the R console and hit the enter key:
x <- new.packages()
This line tells R you want to search for new packages at the repositories selected above and if any
are available, they will be assigned to the object “x”. The reason for doing this is so you can then
(once it finishes; it can take a few minutes), you can type “x” and hit the return key to see the
names of the new packages; thus allowing you to decide if you want all of them, some of them, or
none of them.

Next, if you would like to install all of the new packages; then simply type the following line in
the R console and hit the enter key:
install.packages(x)

If you would like to install only some of the packages, then you need to reference which ones
you want using the number associated with the packages you want. For example, perhaps you
only want the 1st package listed (in ”x”) and the 5th, 8th, 9th, and 10th – then you would use the
following script:
install.packages(x[c(1,5,8:10)])
Notice above, we used the brackets to refer to specific elements of “x” and we use theconcatenate
(or combine – “c”) to further specify multiple elements of “x”. You could simply use quotation
marks around the names of each package listed in “x” instead of the numbers (1, 5, and 8 through
10).

2.4.2 Updating installed packages.

Next, click again on “Packages” in the R console and then select “Update Packages...”. Like with
the new packages command, this can take a few minutes. Once done searching for updates, you
will be presented with a list of updated package, you can select all of them, some of them, or none
of them as you see fit.

Congratulations, you now have the most up to date packages.
Now close R and return to the desktop, cut the ’Rprofile.site’ file from the desktop and paste it

back into the ’etc’ folder. Close the ’etc’ window/folder andyou’re on your way.
To determine if a new version of R is available, simply point your favorite browser to:

http://cran.r-project.org/bin/windows/base/

3 Module 3: Getting Data Into R

3.1 Script Files.

Recall that early on in these tutorial notes, it was mentionedthat there are generally three windows
you will use frequently in R: the console window, the graphicswindow, and the script window.
The script window is not necessary; but often preferred for building script or code and proof
reading it prior to submitting it (much like the syntax windows/editors found in SPSS and SAS).
To open a new script window, simply click on ‘File’ then ‘New script’. We can write as much
script here as desired and highlight, right click, then submit individual elements or the entire script

13

http://cran.r-project.org/bin/windows/base/

as necessary. Another benefit to using a script window comes when saving our work. Script files
are extremely small (i.e. virtually identical in size to equivalently lined text files [.txt]) and, if
appropriately thorough can be loaded and run to produce the entirety of our work from a given
session. The alternative; is to save the script file and the workspace image (which is everything
contained in the console); but, a workspace image can grow quite large and thus consume an often
undesirable amount of space. The reason for my discussing script files here is that we will be using
R Commander (Rcmdr) to import data but Rcmdr is not necessary to import data; only the script
is necessary. In future tutorial notes, a script file (e.g. filename.R) will be all that is provided.

3.2 Initial Rcmdr orientation.

*Note: if you’ve been following these tutorial notes from the first, you should have downloaded,
installed, and updated all the packages used on this site. Although this may seem excessive, some
tasks in Rcmdr require other packages (and Rcmdr will load them as needed only if they have been
downloaded and installed), so please take the time to get all the packages used on this site10.

For those of us (me included) who started out with point-and-click statistical software, Rcmdr
represents a somewhat familiar interface for some basic tasks. It also provides script for each task
specified through point-and-click operations; which allows us to see how we might graduate away
from R Commander as we progress to more complex tasks not available in Rcmdr. So, let’s get
started by loading the Rcmdr package:
library(Rcmdr)

10http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module2/InstallPackages_listed_at_R_SC.R

14

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module2/InstallPackages_listed_at_R_SC.R

Right away; you can likely see that Rcmdr was made to be user friendly. Let’s orient ourselves by
starting at the bottom and working upward. At the bottom of Rcmdr we find a ‘Messages’ window
that generally serves to let us know when something didn’t goquite right; in other words error
messages will appear here along with warning messages. Error messages will appear in red and
reflect an error which prevented a function/task from being carried out. Warning messages (and
note messages) will be displayed in blue and do not necessarily reflect a failure of a function/task
to be carried out. The output window is as the name implies where all output will be displayed;
with the exception of graphics which will be displayed in a separate window outside of Rcmdr.
The script window, again as the name implies; displays script which result from specifying some
task, analysis, or function through the use of the point-and-click menus. You can also write/type
script directly into the Rcmdr script window and then highlight and submit it using the ‘Submit’
button between the script and output windows. As an example;type the following into the Rcmdr

15

script window and then highlight and submit it:
x <- function
You will notice the script appears in red in the output windowand no actual output (would be
displayed in blue) appears. The reason no output appeared isbecause there was an error; displayed
in the messages window at the bottom. The rest of the Rcmdr buttons and menu items will be fairly
self explanatory; but, we will be using some of them here.

3.3 Using Rcmdr to import SPSS data.

For now; let’s get some data imported. First, you need to download the example data files from
the web page (Example Data 111, Example Data 212, & Example Data 313) and save them to your
source directory.

In Rcmdr, click on ‘Data’ and take note of the available choices. First, let’s create a simple data
file; so, click on ‘New data set...’ and then enter the name ‘ex1’ then hit the ‘OK’ button. This
brings up the Data Editor where you can type in data values. Notice too, you can click on ‘var1’
and give the first variable a name, as well as specify it as numeric or string. For now; go ahead
and close the data editor and close the ‘New Data Set’ naming window. Again; you will see some
script, output, and an error stating “empty data set”. If we again, click on ‘Data’ and then ‘Load
data set...’ we could open an existing R data file. However, wegenerally want to open an existing
data file that is not in an R format. But, before we do that; left-mouse click then right-mouse click
in the Script Window and select ‘Clear Window’. You can do thisin the Output Window as well.
To clear the Messages window, you need to highlight all the text in that window and then delete it.

In Rcmdr, click on ‘Data’ and then hold the cursor over the ‘Import data’. We will import an
SPSS file first, so click on ‘from SPSS data set...’. Next, we will be prompted to name our data
fileuse the name ‘example1’. We also see that by default the value labels will be converted to
factor levels and the maximum number of value labels for factor conversion is set to infinite. Once
you have typed in the name (example1), click ‘OK’. If you set your source directory correctly and
you downloaded the example data sets into that source directory, you should be looking at them
now. Highlight ‘ExampleData1.sav’ and then click the ‘Open’ button. Now, looking at the Script
Window (and Output Window) you should see the appropriate script for importing an SPSS data
file into R:
example1 <- read.spss("C:/Users/jons/Desktop

/Work_Stuff/Jon_R/Example Data/ExampleData1.sav",
use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)

All you would need to change for future use is the file name (andpath if the data is not located in
your source directory).

*You will need the ‘foreign’ library loaded if you are working with just the R console or from
the R console and a script file (i.e. not using Rcmdr). This is why I have the foreign library listed
in my Rprofile.site file as one of the libraries to load upon start up of R.

Notice also some key features of the script: we have created an object ‘example1’ and as-
signed it ‘<-’ using the ‘read.spss’ function and our object was createdas a data frame (an R

11http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module3/ExampleData1.sav
12http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module3/ExampleData2.xlsx
13http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module3/ExampleData3.txt

16

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module3/ExampleData1.sav
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module3/ExampleData2.xlsx
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module3/ExampleData3.txt

way of saying or identifying a data file matrix). Also notice our specified options from above
(e.g. use.value.lables=TRUE, max.value.labels=Inf); which are important as examples of the way
R specifies conditions using =TRUE or =FALSE. Many functionsuse arguments like these condi-
tional true/false statements as options for further specifying some task within the function. If you
would like more information on the ‘read.spss’ function or you would like an example of using the
console help; then type the following in the R console and hitenter:
help(read.spss)
You should also take note that we now have a current data set specified just above the script win-
dow in Rcmdr. Therefore, we can click on the ‘Edit data set’ button to edit the data or we can click
on the ‘View data set’ button to view it—both of which producescript: fix(example1) and
showData(example1 , ...). Now, close both the data view window and the data editor window
if you have not done so already. An extremely common practicewhen working with script is to
use # to comment out anything that is not used as working script (i.e. notes, reminders, comments,
etc.). For example, type (or copy and paste) the following inthe Script Window of Rcmdr:
This is how we view a data set loaded in Rcmdr.
showData(example1, placement=’-20+200’, font=getRcmdr(’logFont’),

maxwidth=80, maxheight=30)
Now, highlight those two lines and click the ‘Submit’ buttonbetween the Script Window and the
Output Window in Rcmdr. Next, close the data view window and then copy and past those two
lines into your R console. Next, close the data view window again and then, in the R console, click
on ‘File’ and ‘New script’. Now, copy and paste those two lines into the new script window you
have just opened. Next, highlight those two lines in the new script window and then right-mouse-
click on the highlighted text and select ‘Run line or selection’. Now go ahead and close the data
view window for a final time.

3.4 Using Rcmdr to import Excel data.

Click on ‘Data’ and then hold the cursor over the ‘Import data’. Then click on ‘from Excel, Access,
or dBase data set...’. Next, we will be prompted to name our data file—use the name ‘example2’
and click ‘OK’. Highlight the ‘ExampleData2.xlsx’ and click ‘Open’. It’s just that simple. One
thing to note is that now when you click on the ‘Data set: example2’ button in Rcmdr, above the
Script Window; you can now select which data set you would like to use (example1 or example2).
Meaning, you can have multiple data sets available during a single session and simply switch
between them as necessary.

3.5 Using Rcmdr to import text data.

Click on ‘Data’ and then hold the cursor over the ‘Import data’. Then click on ‘from text file,
clipboard, or URL...’. Next, we will be prompted to name our data file—use the name ‘example3’
and notice all the options for specifying the nature of the data. None of these default options needs
to be changed with this file, so click ‘OK’. Highlight the ‘ExampleData3.txt’ and click ‘Open’.
Again, it’s just that simple.

You will now notice that with a data file loaded into Rcmdr you can click on the different menu
options and a variety of functions, analysis, graphs, etc. are only a mouse–click away. Also

17

remember, virtually any script generated in Rcmdr can be usedin the R console with the necessary
libraries loaded.

3.6 Importing data Without Rcmdr

Rcmdr is not necessary (as mentioned above), one can simply import data directly using the proper
script (e.g., read.table & read.spss). If we were starting anew session of R, close R and then re-
open the program, we could open a script window by clicking on‘File’, then ‘New script’ in the R
console. In this new script window, type the following to import the ExampleData3.txt file:
example.3 <- read.table("http://bayes.acs.unt.edu:8083/

BayesContent/class/Jon/R_SC/Module3/
ExampleData3.txt", header=TRUE, sep="",
na.strings="NA", dec=".", strip.white=TRUE)

summary(example.3)
In the script window, type the following to import the ExampleData1.sav file:
library(foreign)
example.3 <- read.spss("http://bayes.acs.unt.edu:8083/

BayesContent/class/Jon/R_SC/Module3/
ExampleData1.sav", use.value.labels=TRUE,
max.value.labels=Inf, to.data.frame=TRUE)

summary(example.3)
That’s it, you simply need to have the ‘foreign’ library loaded in order to use the ‘read.spss’ func-
tion. If you have data on your machine and want to import it using a browse function, simply
replace the"http://www.webaddress.com" with file.choose() in each of the above
read functions (i.e., read.table & read.spss).

3.7 Importing many Excel files, each with multiple sheets.

Excel is extremely popular as a tool for organizing data and it has fairly easy-to-use functions
for rudimentary statistics and data displays (i.e. graphs &charts). However, it is not a statistical
software package and therefore, it is often necessary to import Excel data structures into other,
more statistically oriented software. For this reason, DSApersonnel do not recommend using
Excel; for data storage, data display, or data analysis. An often quoted phrase14 is the following; the
only thing worse than using SPSS, is using Excel. For more information on the known problems
with Excel and other spread sheet based software, see Burns (2013). DSA recommends storing
data in plain text (.txt) files with comma delimiters; also known as a comma separated values
(.csv) file type. The reason DSA recommends text (.txt) or comma separated values (.csv) file
types is because those file types can be easily opened or imported into all the statistical software
packages. However, if you feel you must use Excel, then this article should help you with the
inevitable task of getting data from Excel into a more worthysoftware package for statistical data
analysis; and there really is no more worthy software for that purpose thanR15.

14The phrase is believed to have originated with respected statistician and prominent R user Frank Harrell of Van-
derbilt University at the 5th annual Bayesian Biostatistics Conference.

15http://cran.r-project.org/

18

3.7.1 Context of the Example

An example has been created to illustrate a procedure for importing several Excel files, each with
multiple sheets, into the R workspace and merging them together as a single data frame. The
premise of our example is a research design with 10 participants, 3 lighting conditions, and 5 time
series (chin movements, left eye [pupil] movements, right eye [pupil] movements, left wrist move-
ments, right wrist movements). Each participant was exposed to each lighting condition and their
movements were measured throughout a 10 minute typing task –all three body-part measuring
apparatus’ took samples 100 times per minute to measure positional changes (in millimeters) from
an enforced baseline / start position, while each eye’s pupil movement reflects the movement (in
millimeters distance) from looking at the center of the screen. In other words, the eye (pupil) move-
ment refers to changes of movement in gazing at the center of the screen to gazing at the edges of
the screen, or the keyboard. Again, the time series data was sampled at 100 times per minute for
the full 10 minutes of typing (n = 1000, per time series). Motion capture software exported the
resulting data into 10 Excel files. Each Excel file corresponds to each participant (participant.1.xls,
participant.2.xls...etc.) and each Excel file contains 3 sheets; one sheet per lighting condition (Off,
Dim, Bright). Each sheet contains five time series corresponding to the five measured variables
(Chin, R eye, L eye, Rwrist, L wrist). The resulting simulated data is available on the DSA
servers so that the reader can download the data files16 and replicate what is illustrated below. Our
goal was to import all the data and merge it into a single data frame.

3.7.2 Illustrative Example

First, ‘set’ the working directory (wd) to the (path) location on your computer where the files are
located; in this example, we have the 10 Excel files on our desktop. Below, and throughout the
example, we are using black, Times New Roman, font for text andwe are using Courier New font
for R script (in red) and R output (in blue).

setwd("C:/Users/jds0282/Desktop/")

Next, load the packages which will allow us to import Excel data files; the XLConnect package is
the package we want and it requires the rJava package.

library(rJava)
library(XLConnect, pos = 4)

16The data can be downloaded from the following links:
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.1.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.2.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.3.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.4.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.5.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.6.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.7.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.8.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.9.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/Benchmarks/ExcelFiles/participant.10.xls

19

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.1.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.2.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.3.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.4.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.5.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.6.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.7.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.8.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.9.xls
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/Benchmarks/ExcelFiles/participant.10.xls

XLConnect 0.2-5 by Mirai Solutions GmbH
http://www.mirai-solutions.com ,
http://miraisolutions.wordpress.com

Next, create an object with the file names. Here, we are using the paste function to create sequen-
tial character string names.

pre1 <- "participant"
pre2 <- seq(1:10)
suf <- "xls"
file.names <- paste(pre1, paste(pre2, suf, sep = "."), sep = ".")
rm(pre1, pre2, suf)
file.names
[1] "participant.1.xls" "participant.2.xls" "participant.3.xls"
[2] "participant.4.xls" "participant.5.xls" "participant.6.xls"
[3] "participant.7.xls" "participant.8.xls" "participant.9.xls"
[4] "participant.10.xls"

Next, create an object with the sheet names. Recall, each file contains 3 sheets; each sheet corre-
sponds to a lighting condition.

sheet.names <- c("Off","Dim","Bright")
sheet.names
[1] "Off" "Dim" "Bright"

Next, we create a vector of names which will be the column names for the final data frame. The
data frame must include columns (factor level variables) which contain coding information which
identifies each row’s data. In this example, we need three such factors; one for the participant, one
of the condition, and one for the sampling frame (1 to 1000) which represents each of 100 samples
per minute (for 10 minutes). The other five names (and columns) represent the five motion capture
time series distance measures.

e.names <- c("participant.id","condition","sampling.frame",
+ "Chin","R_eye","L_eye","R_wrist","L_wrist")
e.names
[1] "participant.id" "condition" "sampling.frame" "Chin"
[2] "R_eye" "L_eye" "R_wrist" "L_wrist"

The last step in preparation is to create the final data frame (data.1), keep in mind, this data frame
only has one row (for now) and that row includes only ‘NA’ values. However, some simple math-
ematics allows us to compute the size of the final data frame. It will have 8 columns and 30,000
rows (10 participants * 3 conditions each * 1000 rows per condition). It is important to remember
the first row is made up of ‘NA’ values and represents a place holder (it will be deleted after all the
data is imported).

20

data.1 <- data.frame(matrix(rep(NA,length(e.names)),
ncol = length(e.names)))

names(data.1) <- e.names
data.1
participant.id condition sampling.frame Chin R_eye L_eye R_wrist L_wrist
1 NA NA NA NA NA NA NA NA

Now, we’re ready to use two ‘for-loops’ to import each sheet of each file and row bind (rbind)
them to the original / final data frame. However, it may be beneficial to elaborate on what each
line of each ‘for-loop’ is doing. Line numbers have been added to the script below in order to
help facilitate explanation of each line. Obviously, theseline numbers are not functional R script
(red, Courier New) or R output (blue, Courier New) and therefore are printed in black (Times New
Roman) font.

1: for (i in 1:length(file.names)){
2: wb <- loadWorkbook(file.names[i])
3: for (j in 1:length(sheet.names)){
4: ss <- readWorksheet(wb, sheet.names[j], startCol = 2, header = TRUE)
5: condition <- rep(sheet.names[j],nrow(ss))
6: sub.id <- rep(file.names[i],nrow(ss))
7: s.frame <- seq(1:nrow(ss))
8: df.1 <- data.frame(sub.id,condition,s.frame,ss)
9: names(df.1) <- e.names
10: data.1 <- rbind(data.1, df.1)
11: rm(ss, condition, s.frame, sub.id, df.1)
12: }
13: rm(wb)
14: }; rm(e.names, file.names, i, j, sheet.names)

Line 1 above simply initiates a ‘for-loop’; which is nothingmore than a way to tell the computer
to read all the lines between the curly braces and before proceeding, it should read those lines
again, and again, and again...until ‘i’ equals the length ofthe ‘file.names’ object. The length of
the ‘file.names’ object is 10 because we specified earlier 10 file names. So, line 1 is essentially
instructions which say; read the following lines, or iterate through the following lines, 10 times.
The character ‘i’ is assigned a zero until the first iterationis complete, at which time it is assigned
a 1; next iteration i = 2, and so on until i = 10. The closing curly brace is on line 14 and the script
after that curly brace will only be read when all 10 iterations have completed. So, lines 2 through
13 will each be read, or processed, 10 times in sequence (i.e.read lines 2 through 13, then read
lines 2 through 13, then...etc.).

Line 2 above simply imports an Excel workbook (file) and assigns it to ‘wb’ (an arbitrary or
temporary name of the workbook). We are telling the softwarethe file name to look for by passing
the file.names object to the loadWorkbook function and because the file.names object contains
all 10 names, we specify the one which corresponds to the iteration number (i). So, for the first

21

iteration, the loadWorkbook function looks for “participant.1.xls” because that is the first object of
the file.names object.

Line 3 initiates a second ‘for-loop’ but instead of labelingeach iteration ‘i’ we are labeling
each iteration in this loop ‘j’ - which differentiates the iterations of the two loops. The ‘j’ loop
will iterate from 1 until the length of the sheet.names object. Recall, we specified 3 sheet names;
corresponding to the 3 lighting conditions (Off, Dim, Bright). Keep in mind, the closing curly
brace for the ‘j’ loop is on line 12; which means, there will be3 iterations of loop ‘j’ occurring
inside each single iteration of the ‘i’ loop. Another way to think about this is; we read in an Excel
file with the ‘i’ loop and that file contains 3 sheets which mustbe imported before going to the next
Excel file.

Line 4 imports or reads the jth sheet and assigns it as an object of ‘ss’. The ‘ss’ is simply an
arbitrary or temporary name for the sheet. Each sheet contains the data from the five measurements
(chin, right eye, left eye, right wrist, left wrist) – this includes 1000 time series data points for each
of the five measures or columns. Take note of the arguments of the readWorksheet function. First,
we pass the wb object (the workbook) to the readWorksheet function, then we specify which sheet
to import using the vector of sheet names (here, the jth sheet, with j = to the iteration number of
the ‘j’ loop). Subsequent arguments allow us to specify the particular column and row (startCol;
startRow; Header = TRUE or FALSE) of the sheet which contains the data. We could (although
not shown) use other arguments (endCol; endRow) to specify specific places in the sheet to stop
reading or importing data.

Line 5 simply creates a vector containing the sheet name (of the sheet just imported) replicated
the same number of times as the number of rows of that sheet (n = 1000) and assigns that vector
the name ‘condition’. Line 6 does the same thing for the workbook name or Excel file name which
corresponds to the participant whose data is being imported. Line 7 creates a vector of sequential
values from 1 to the number of rows of the sheet being imported. These values simply number
each sample from the motion capture software (1000 samples =100 samples per minute of the
10 minute task). Line 8 simply creates a temporary data frame(df.1) which has 1000 rows and 8
columns. The columns correspond to the participant identification (participant.id), the sheet name
or condition (1 of three lighting conditions), the sequential sampling frame numbers (1 to 1000)
and then the five motion capture measures (chin, right eye, left eye, right wrist, left wrist). Line 9
assigns the proper names to these columns, which are the samenames and will match the columns
of the final data frame (data.1). Line 10 ‘row binds’ (rbind) the newly imported data (df.1) to the
bottom of the final data frame (data.1) - simply adding rows tothe final data frame.

Line 11 removes (rm) all the no longer needed objects. Line 12ends the ‘j’ loop. Line 13
removes (rm) the no longer needed workbook (wb). And finally,line 14 ends the ‘i’ loop and
then removes objects no longer needed. Line 11 and line 13 arenot strictly necessary because each
iteration of each loop will re-write the objects contained in those lines. However, programming has
some best practices which can be described as similar to somerules learned in kindergartenalways
share and always cleanup after yourself.

Now, to point out one of the benefits of using R: after having read the above section and having
studied the R script it describes; it is plain to see that an object oriented programming language,
such as the R programming language, is much more efficient than written American English. It
took several paragraphs to explain only 14 lines of programming.

Once the looping functions have completed (it should take less than 10 seconds), you can run

22

a summary of the final data frame. You’ll notice there are someoddities associated with the data
frame, which are revealed in the summary output.

summary(data.1)
participant.id condition sampling.frame Chin
Length:30001 Length:30001 Min. : 1.0 Min. :-501.606
Class :character Class :character 1st Qu.: 250.8 1st Qu.:-249.776
Mode :character Mode :character Median : 500.5 Median : 0.044

Mean : 500.5 Mean : -1.056
3rd Qu.: 750.2 3rd Qu.: 247.143
Max. :1000.0 Max. : 501.578
NA’s :1 NA’s :1

R_eye L_eye R_wrist L_wrist
Min. :-5.022 Min. :-5.018 Min. :-502.524 Min. :-502.926
1st Qu.:-2.504 1st Qu.:-2.508 1st Qu.:-249.220 1st Qu.:-249.948
Median : 0.000 Median :-0.001 Median : -0.330 Median : 0.234
Mean : 0.008 Mean :-0.000 Mean : -0.994 Mean : -0.718
3rd Qu.: 2.500 3rd Qu.: 2.521 3rd Qu.: 248.641 3rd Qu.: 248.372
Max. : 5.013 Max. : 5.028 Max. : 503.390 Max. : 502.568
NA’s :1 NA’s :1 NA’s :1 NA’s :1

The first thing to notice is the participant identification (participant.id) and condition columns con-
tain character string information instead of factor level data. Also, notice the number of rows (for
all columns) is 30001 instead of 30000. The extra row is the first row of the data frame which
contains all NA as a result of how we created the data frame prior to importing the data. So, we
need to remove the first row and we need to convert the first two columns to factors.

data.1 <- data.1[-1,]
data.1[,1] <- factor(data.1[,1])
data.1[,2] <- factor(data.1[,2])
summary(data.1)

participant.id condition sampling.frame Chin
participant.1.xls : 3000 Bright:10000 Min. : 1.0 Min. :-501.606
participant.10.xls: 3000 Dim :10000 1st Qu.: 250.8 1st Qu.:-249.776
participant.2.xls : 3000 Off :10000 Median : 500.5 Median : 0.044
participant.3.xls : 3000 Mean : 500.5 Mean : -1.056
participant.4.xls : 3000 3rd Qu.: 750.2 3rd Qu.: 247.143
participant.5.xls : 3000 Max. :1000.0 Max. : 501.578
(Other) :12000

R_eye L_eye R_wrist L_wrist
Min. :-5.022 Min. :-5.018 Min. :-502.524 Min. :-502.926
1st Qu.:-2.504 1st Qu.:-2.508 1st Qu.:-249.220 1st Qu.:-249.948
Median : 0.000 Median :-0.001 Median : -0.330 Median : 0.234
Mean : 0.008 Mean :-0.000 Mean : -0.994 Mean : -0.718
3rd Qu.: 2.500 3rd Qu.: 2.521 3rd Qu.: 248.641 3rd Qu.: 248.372

23

Max. : 5.013 Max. : 5.028 Max. : 503.390 Max. : 502.568

Now that we have the data imported and merged into a single data frame, we can then ex-
port that data frame by writing it to our working director, which was set at the beginning of
the script (‘setwd’) to our desktop. The file which is saved tothe desktop will be named “typ-
ing experimentdata.txt” and it will contain comma delimited (or comma separated) values, with-
out row names but with column names. Any missing data (there is none in this example) will be
recognized as ‘NA’ and a decimals will be represented with a period (‘.’).

write.table(data.1, file = "typing_experiment_data.txt",
sep = ",", na = "NA", dec = ".", row.names = FALSE,
col.names = TRUE)

3.7.3 Conclusions on importing many Excel files

Keep in mind, there are a variety of different ways of accomplishing what was accomplished in
this article. The example here merged all the data into one data frame. Different situational needs
might dictate keeping the data separated by participant (i.e. workbook or file) or separated by
condition (i.e. sheet); in those instances it may be preferable to import the data structures to
multiple list objects or multiple data frames. That is another benefit of using R, the flexibility
it affords the analyst in deciding what to do and how to do it. An R script17 file with the same
information as contained in this article is available at theResearch and Statistical Support Do-It-
Yourself Introduction to R course website18. Lastly, for those interested in seeing how the example
data was created in R, and how it was exported from R into Excel.xls files; please take a look at
the script19 which was used.

4 What’s next.

This concludes the first 3 modules of the DSA Do it Yourself (DIY) Introduction to R short course.
In future tutorial notes, we will be using R console and script files exclusively; but remember all
scripts can be copied and pasted into the Script Window of Rcmdr; or simply loaded into the Script
Window using ‘File’, ‘Open script file...’ in the Rcmdr top task bar.

When reading the script files, you’ll notice the common convention of using # to start a comment
line (which is not working code), while lines without # are working code. So, without further
ado, onward; TO INFINITY AND BEYOND..., or perhaps just Module 4 and some Initial Data
Processing:

http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module4/M4_InitialProcessing1.R

References & Resources
17http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module3/M3_ImportManyExcel.htm
18http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/
19http://bayes.acs.unt.edu:8083/BayesContent/class/Jo n/R_SC/Module3/MultiExcelDataCreation.R

24

http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module3/M3_ImportManyExcel.htm
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/R_SC/Module3/MultiExcelDataCreation.R

Burns, P. (2013). Spreadsheet Addiction. Available at:
http://www.burns-stat.com/documents/tutorials/spreadsheet-addiction/

This document was created using LATEX

25

http://www.burns-stat.com/documents/tutorials/spreadsheet-addiction/

	Module 1: Download and Install R
	Introductory Notes 1
	Downloading R.
	Installing R.
	The first time you open R.

	Introductory Notes 2
	Some initial orientation to using R.

	Module 2: Packages and Libraries
	Packages
	Explanatory Notes.
	Download and Install Packages.
	Choose Packages.
	Updating packages.

	Libraries
	Loading a Library.
	Detaching a Library
	Preloading Libraries

	Finding Help
	What's in a Library.
	Finding the right library.

	Keeping R Up-To-Date
	Installing new packages.
	Updating installed packages.

	Module 3: Getting Data Into R
	Script Files.
	Initial Rcmdr orientation.
	Using Rcmdr to import SPSS data.
	Using Rcmdr to import Excel data.
	Using Rcmdr to import text data.
	Importing data Without Rcmdr
	Importing many Excel files, each with multiple sheets.
	Context of the Example
	Illustrative Example
	Conclusions on importing many Excel files

	What's next.

