Towards Fast, Believable Real-time Rendering of
Burning Objects in Video Games

Dhanyu Amarasinghe and lan Parberry

Technical Report LARC-2010-04

Laboratory for Recreational Computing
Department of Computer Science & Engineering
University of North Texas
Denton, Texas, USA

October, 2010

UNIVERSITY OF

NORTH-TEXAS

Discover the power of ideas.

Towards Fast, Believable Real-time Rendering
of Burning Objects in Video Games

Dhanyu Amarasinghe

Dept. of Computer Science & Engineering
University of North Texas
dhanyuamarasinghe@unt.edu

Abstract

We present a framework for emulating the defor-
mation and consumption of polygonal models un-
der combustion while generating procedural fire.
Our focus is on achieving the best visual effects
possible while maximizing computation speed so
that the processing power is available for other
tasks in video games. We have implemented and
tested our method on a relatively modest GPU
using CUDA. Our experiments suggest that our
method gives a believable rendering of the effects
of fire while using only a small fraction of CPU and
GPU resources.

Keywords Hardware acceleration, volume ren-
dering, freeform deformation, procedural, genera-
tion, fire modeling, CUDA.

General Terms Video games, visualization, al-
gorithms, performance, design and modeling.

1. Introduction

One way a new video game can make an impact
on players is by increasing realism over and above
what the player is accustomed to in other games.
Replicating the details of a physical process such as
fire can increase the believability of virtual worlds,
and draw the player into willing suspension of
disbelief. To date, developers mostly use model-
swapping techniques to implement a crude level of
model deformation by combustion. We introduce
a technique for performing real-time emulation of
a burning object such as shown in Figure 1 while
maintaining system performance.

Achieving high quality visual effects using min-
imum computational resources can obviously be
very challenging. Modeling an object undergoing

Ian Parberry

Dept. of Computer Science & Engineering
University of North Texas

ian@unt.edu

combustion includes, for example, heat boundary
expansion, flame distribution, fuel consumption,
and shape deformation over time. Our aim is to
increase believability by a large amount while in-
creasing computation only minimally. It should be
emphasized that we are looking for plausability
sufficient to trigger willing suspension of disbelief,
not a picture-perfect simulation of real world com-
bustion. While it is true that future advances in
hardware will make today’s slow methods feasible,
we prefer to focus on achieving better results on
hardware currently available to millions of gamers
worldwide.

The structure of the remainder this paper is as
follows. In Section 2 we describe some previously
published related work. In Section 3 we describe
our representation framework for the internal de-
formation and the key features of such a strategy.
Section 4 describes our approach to implementing
the structural deformation framework. Section 5
contains a few notes on our CUDA implementa-
tion. Section 6 contains the conclusion and further
work.

For more images and some video from our
CUDA implementation, see [1].

2. Previous Work

Melek and Keyser [5, 7] discuss techniques that
were used in selected object deformation due to
fire, however, these methods are designed to max-
imize realism at the cost of performance. Seder-
berg and Parry [11] and Hsu, Hughes, and Kauf-
man [4] introduce some adaptive techniques of de-
formation. Miiller and McMillan [9] discuss real-
time techniques for deformation focussing on se-
lected materials. Toivanen [12] discusses free de-

Figure 1: The consumption of a model and the spread of procedural fire.

formation of meshes, but his technique is too com-
putationally intensive for use in video games.

Nguyen and Fedkiw [10] introduce high quality
flame simulations, but do not address object defor-
mation. Wei and Zhao [14] use an approach sim-
ilar to Melek, defining solids as a volumetric im-
plicit field, but also do not discuss object deforma-
tion. Wei and Li [13] use splatting techniques that
help to increase visual impact. Moidu, Kuffner, and
Bhat [8] demonstrate an attempt to animate de-
formable materials such as paper, but they do not
introduce complex heat transfer models. Although
the paper did discuss the spring-mass model tech-
nique to emulate combusting surfaces, they focus
on selective materials such as paper and cloth.
Fuller [3] has a useful method for generating proce-
dural volumetric fire in real time using curve-based
volumetric free-form deformation.

3. Internal Deformation

The geometry and topology of a burning object
changes as heat spreads. Melek and Keyser [7]
noted that there are multiple internal chemical re-
actions at various stages of the process, during
which its properties may change from solid to lig-
uid and from liquid to gas due to volumetric ex-
pansion caused by weakening bonds at the atomic
level. The change in bond strength disturbs the
stability of the internal forces between atoms. This
causes the changes in the shape of the object’s af-
fected areas.

The remainder of this section addresses the topic
if internal deformation in two subsections. Sec-
tion 3.1 first discusses how to model heat spread.

We then show how to mimic atomic behavior by
vertex displacement in Section 3.2.

3.1 The Heat Boundary

In the real world, the temperature of a burning
object changes over time and space. The elevated
temperature generated in the model due to fire ef-
fects have a strong influence on the mechanical be-
havior of the object and conversely, the mechanical
behavior of the given object influences the ther-
mal response due to the thermal conductivity of
the material. Heat transfer calculations depend on
many parameters including environmental factors
such as humidity (see Ang and Gumel [2]).

To speed computation, we approximate ex-
pansion of the heat boundary by calculating it
around a single fixed point. This creates a roughly
spherical but irregular heat boundary around the
heat source. However, heat sources multiply when
the flame distributes throughout the model. Heat
spread over a given material depends on the ther-
mal conductivity of that material (Melek and
Keyser [6]), which indicates its ability to conduct
heat. We model thermal conductivity using a heat
index constant 1. The value of v should depend on
the size of the triangles used in the model and the
material that the model is made from. We then use
the following function to emulate an approximated
heat boundary expansion:

R? = |sin(n©/Ar) + sin(70) +
(@ —20)* + (y — y0)* + (2 — 20))],

where R = r + Ar, the radius r is incremented
by Ar in each At time period. The angle O is a

random value in order to make the expanding heat
boundary irregular in shape (otherwise the heat
boundary will be perfectly spherical, which would
appear unnatural). The location of the heat source

is <$0a Yo, ZO)'

Il Single Heat Source

Multiple Heat Sources

Figure 2: Heat boundary for single vs. multiple heat sources

Figure 2 illustrates the similarity of the approxi-
mated heat boundary expansion for single versus
multiple heat sources. The multiple source heat
boundary expands throughout the model with be-
havior similar to our single heat source approxi-
mation implemented using the above function. Be-
cause determination of the authentic heat bound-
ary expansion is computationally expensive, we be-
lieve our single source heat boundary expansion is
a viable alternative for use in video games.

In Figure 3 we divide the heat boundary into
three different areas, the initial heat boundary area
in which combustion is actively taking place and
vertices are being deformed, the combustion-ready
area in which ignition starts, and the deformed
area which has been burned and is a candidate for
surface removal.

3.2 Deformation

Internal deformation is achieved by displacement
of the vertices of the model mesh. The position of
each vertex will depend on three properties: vertex
distance, gravitational force, and material index.
While we may assume that material is a constant
over large areas of the model, vertex distance and

Deformed Area

Combustion Ready Area

/ Initial Heat Boundary Area

%

Figure 3: Division of the heat boundary into three parts,
(bottom to top) the initial heat boundary area,
the combustion-ready area, and the deformed
area.

gravitational force are more complicated, and will
be examined next.

We consider each vertex of the object to be anal-
ogous to an atom, and we take the distance be-
tween vertices of a given triangle as the strength
of the bond between those vertices. The bond be-
tween two vertices of a triangle is taken to be in-
versely proportional to the distance between them.
Vertex displacement is inversely proportional to
bond strength, that is, directly proportional to dis-
tance, and scaled by material index.

B=(x4,y5.2p)

78\

(X222 (x,y121)

d> o

A=(XaYaZa)

Cz(xcayc,zc)

Figure 4: The deformation coordinates of a single triangle.

We make use of the following designer-set con-
stants, L,e, 3, p, ¢ described in Table 1. The first
is an integer, the remainder are real-valued con-

’ Name ‘ Type ‘ Description ‘ Level ‘
L Integer Flammability Vertex
€ 0 < e <1 | Meltability Edge
15} 0 < B8 < 1 | Displacement scale | Block
p 0 < p <1 | Material density Block
10) 0 < ¢ <1 | Bond strength Block

Table 1: Designer set constants.

stants between zero and one. All of the values can
be made constant for the entire model, but in prin-
ciple L can be different for each vertex, € can be
different for each edge, and 3, p, and ¢ can be dif-
ferent for each block.

Suppose B is a vertex to be displaced in triangle
ABC, where A = (4, Ya, 24), B = (xp, Ys, 2), and
C = (¢, Yey 2¢). B is to be displaced to (X,Y, Z),
as follows:

X = (7172(Ya — Ye) + T127a(Ye — Y2)

+zer2(Y1 — Ya) + TaTe(y2 — y1))/

(e — 22)(Ye — y1) — (Tc — 21) (Yo — Y2))
Y = (niy2(ra —zc) + y1ya(re — 22)

+yey2(21 — Ta) + YaYe(2 — 21))/

((Ya — y2)(Te — 1) = (Ye — Y1) (@0 — 72))
Z = (2122(Ya — Ye) + 212a(Ye — Y2)

+2c22(Y1 — Ya) + ZaZe(y2 — 1))/

((za — 22)(Ye — y1) — (2¢ — 21)(Ya — ¥2))

where
(x1,91,21) = pC+(di —p)B
(z2,y2,22) = AA+(d2—\)B.

Figure 4 illustrates the coordinates and param-
eters used in these equations. The values A and p
are the contraction amounts along each edge due to
the effect of heat. The lengths of BC' and BA are
dy and dy respectively. The points (z1,y1,21) and
(22, Y2, 22) are a p and A fraction respectively of the
length along the edges (respectively BC' and BA)
of the triangle. The values p and A are displace-
ment parameters specifically for vertex B. They
measure the amount that the bond between B and
its neigboring vertices is changed by temperature.

In addition we use a displacement adjustment
parameter (3 to allow for the variation in trian-
gle size from one model to another. p denotes a
material density index. When both vertices of an
edge are inside the heat boundary, bond strength
is weaker by a factor of ¢ than when one vertex is
outside of the heat boundary.

Burning objects are consumed by combustion,
and combustion subsides when there is nothing
left to consume. We model this with a flammabil-
ity value L at each vertex. The counter decreases
each time vertex displacement is processed. A the
level counter of zero indicates that there are no
consumable resources left at the vertex. The de-
signer sets the initial flammability value for each
vertex to mimic the effect of having different parts
of the model constructed from physical materials
of varying flammability such as wood or metal. X is
then defined to be SpL/dy if A is outside the heat
boundary, and ¢fpL/dy otherwise p is defined sim-
ilarly, replacing ds with d;.

Finally, among all of the external forces, gravity
plays a major part in every physical based sim-
ulation. Let € be a constant that represents the
amount that the model melts due to heat, and ¢
be the gravity vector. Then the effect of gravity is
computed as follows: Y =Y — ¢g.

4. Structural Deformation

Deformation of a burning object can be caused
by factors such as the expansion and weakening
of the internal bonds, and the relative weights of
cantilevered parts of the object. Exact calculation
of these complex processes is costly. Therefore,
we simplify the process by considering only the
weight of a given point of the structure. The weight
changes of the burning structure will occur due
to consumption of the object by fire. Following
Melek and Keyser [7], we divide the object into
uniform blocks and treat each block as a single
unit, propagating changes to neighboring blocks.
We start by constructing an oriented bounding
box around our object, then decompose it into
a grid of smaller axially aligned bounding boxes
which we will call blocks. Deciding the number of
blocks per model is up to the designer. Higher
numbers of smaller blocks will make the effect
more realistic at the cost of lower performance.

Figure 5: Structural deformation of the object: On the left we see the original model, and moving left to right we see the
results of three separate runs of our implementation with increasing values of . Notice how the model has slumped

compared to the straight line in white.

We weight the blocks according to the number of
vertices in them, and discard the empty ones of
weight zero. Figure 6 shows a model subdivided
into blocks. Only nonempty blocks are shown. We
use block weight to model flame distribution, under
the assumption that a block with more vertices
contains more material, and thus will produce more
flames.

Figure 6: The model subdivided into blocks.

We store for each block the amount of rotation,
the midpoint of each box, the number of vertices,
and the list of neighboring blocks. Since all the
blocks are interconnected, a change to one block
may affect all of the blocks in the model. To limit
the computation required we apply changes to only
immediate neighboring blocks, and rely on time to
propagate the effects further.

The weight of each block changes as vertices
are removed during the process. The change of the
weight in the block is indicated by a slight rotation

of the box around its midpoint. The direction of
the rotation will be determined by the placement
of the displaced vertex compared to the midpoint
of the box. Interestingly, we have found applying
a random rotation also gives satisfactory results of
the structural deformation.

For video game applications the random rota-
tion may actually be sufficient, and more eflicient
since calculating the position of displaced vertices
can be costly. Stability will change due to the rota-
tion of the immediate neighboring boxes. In order
to cope with this we keep track of neighbors of each
subunit by maintaining a data structure that con-
tains neighbor indices, rotation amount, number of
vertices, etc.

We keep track of the orientation of each block
as a triple of Fuler angles. The change in roll
angle R (pitch and yaw are similar) for a block is:
R = ypw/NM, where ~ is a scaling factor chosen
by the designer, p is a measure of the material
density of the model in that block, IV is the number
of vertices in the block, and M is the current
number of nonempty neighboring blocks. Figure 5
shows an example of the resulting deformation.
Mapping of deformation from the block level to
the vertex level is done by a vertex shader in our
CUDA implementation.

Surface removal is handled at the block level.
A block is removed when it contains no vertices,
provided its removal does not disconnect the object
into separate parts.

5. CUDA Implementation

All the images of a burning model shown in this pa-
per are screenshots from a CUDA implementation
of our algorithm. The flames are generated using

3000 fire particles and 1800 smoke particles. The
model has almost 16K triangles. The animation
runs at 70fps) on relatively modest hardware; An
Intel®Core ™2 Duo CPU P8400 @ 2.26GHz pro-
cessor with an NVidia GeForce 9800 GTS graphics
card. This performance will be much better on the
current generation of graphics hardware

6. Conclusion and Future Work

We have proposed a method for the real-time de-
formation and consumption of a polygonal model
during combustion by procedurally generated fire.
We have focused on the performance with a reason-
able amount of realism sufficient to trigger willing
suspense of disbelief in the game player. We be-
lieve this our method is the first of its kind. It takes
into account a variety of physical properties includ-
ing material density indexes, material indexes, heat
distribution, gravity, structural and internal defor-
mation, and flame distribution.

Our method performs well on a model with fairly
high polygon count and small triangles. It remains
to apply our results to models with a low polygon
count. We suggest that triangle subdivision is an
intelligent first move. Most of the models used in
video games are so-called shell models. Deforma-
tion of shell models is different from solid models,
and they should burn differently. Emulation of con-
sumption and deformation of solid models is left as
an open problem, as is a more realistic approach
to the heat boundary.

References

[1] D. Amarasinghe and I. Parberry. Fire, 2010.
http://www.eng.unt.edu/ian/research/fire/.

[2) W. Ang and A. Gumel. A boundary integral
method for the three-dimensional heat equation
subject to specification of energy. Journal of Com-
putational and Applied Mathematics, 135(2):303—
311, 2001.

[3] A.R. Fuller, H. Krishnan, K. Mahrous, B. Hamann,
and K. I. Joy. Real-time procedural volumetric fire.
In 18D ’07: Proceedings of the 2007 Symposium on

Interactive 3D Graphics and Games, pages 175—
180, New York, NY, USA, 2007. ACM.

[4] W. Hsu, J. Hughes, and H. Kaufman. Direct manip-
ulation of free-form deformations. In Proceedings of
the 19th Annual Conference on Computer Graphics
and Interactive Techniques, pages 177-184. ACM,
1992.

[5] Z. Melek and J. Keyser. An interactive simulation
framework for burning objects. Technical Report
2005-03-1, Department of Computer Science, Texas
A&M University, 2005.

[6] Z. Melek and J. Keyser. Multi-representation in-
teraction for physically based modeling. In Pro-
ceedings of the 2005 ACM Symposium on Solid and
Physical Modeling, pages 187-196. ACM, 2005.

[7] Z. Melek and J. Keyser. Driving object deforma-
tions from internal physical processes. In Proceed-
ings of the 2007 ACM Symposium on Solid and
Physical Modeling, pages 51-59, New York, NY,
USA, 2007. ACM.

[8] S. Moidu, J. Kuffner, and K. S. Bhat. Animating
the combustion of deformable materials. In ACM
SIGGRAPH 200/ Posters, page 90, New York, NY,
USA, 2004. ACM.

[9] M. Miiller, L. McMillan, J. Dorsey, and R. Jag-
now. Real-time simulation of deformation and frac-
ture of stiff materials. In Proceedings of the Fu-
rographic Workshop on Computer Animation and
Simulation, pages 113-124. Citeseer, 2001.

[10] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Physi-
cally based modeling and animation of fire. In Pro-
ceedings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques, pages
721-728, New York, NY, USA, 2002. ACM.

[11] T. Sederberg and S. Parry. Free-form deformation
of solid geometric models. ACM SIGRAPH Com-
puter Graphics, 20(4):151-160, 1986.

[12] J. Toivanen. A Non-Linear Mesh Deformation
Operator Applied to Shape Optimization.

[13] X. Wei, W. Li, K. Mueller, and A. Kaufman. Sim-
ulating fire with texture splats. In IEEE Visualiza-
tion, pages 227-234, 2002.

[14] Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin.

Voxels on fire. Visualization Conference, IEEE,
page 36, 2003.

	LARC-2010-04 cover
	Paper

