
Hybrid Computer Architectures
Motivations for Research

What Is a Hybrid Processor?
Hybrid processors combine two traditionally separate types of computational
devices on a single chip. Current commercial hybrid chips provide fixed
processing cores and Field Programmable Gate Array (FPGA) elements to
permit customization. By including an FPGA with a fixed processor, you
obtain a performance and power benefit over that which is available with
generic processors, while retaining more flexibility than an Application
Specific Integrated Service (ASIC) can provide.

How Do We Use Them?
Hybrid chips seem uniquely qualified to allow designers to optimize and
configure the available resources for their applications. However, currently
available tools require substantial knowledge of hardware and significant
human interaction to obtain the performance and power improvements.

To realize the potential of hybrid
computing systems, we need automated
tools to map application programs to
existing hardware. While the goal of
hardware and software co-design is to
design hybrid hardware specifically
optimized for a single application, our
goal is to map applications written in a
procedural programming language to a
hybrid architecture that has already been specified.

Using the fully automated tool Hy-C, we will evaluate the potential of hybrid
computing to execute a wide range of programs that are efficient both in
execution time and power consumption.

How Do We Evaluate The Hybrid’s Potential?
To evaluate our hybrid computing model, we need a tool to iteratively
partition, analyze, and
repartition input source code to
execute in either FPGA or
CPU. Since we wish to evaluate
potential of different hybrid
architectures, it is insufficient to
build tools that are applicable to
only a single architecture.
Therefore, evaluation of hybrid
computing potential requires
the ability to easily target our
code generation tools to a wide
range of multiprocessor and multi-FPGA architectures to allow for
experimentation.

The Hy-C tools will map the C language to a given architecture. Thus, Hy-C
will provide the infrastructure necessary to evaluate the potential of hybrid
computing.

The tools will facilitate research in hybrid
computing. Our Hy-C infrastructure design
relies on three principles:

• Re-use available research tools.

• Ease of use.

• Inserting new tools and modifying existing
tools should be simple.

Design using these principles facilitates system-
level and tool-level research within Hy-C.

The Hybrid Computing Model
Figure 1 illustrates our schematic view of a generic hybrid architecture. Current
hybrid chips provide fixed processing cores and reconfigurable resources
(represented as FPGAs in Figure 1), permitting customization.

Reconfigurable resources could just as easily be ASICs or some combination of
ASIC and FPGA resources. By including an FPGA with a fixed processor, we
achieve performance and power benefits while retaining more flexibility than an
ASIC.

The biggest obstacle of a hybrid approach is the difficulty of mapping high-level
programs to efficient machine-level structures to take full advantage of provided
hardware. Currently available mapping tools are limited in their generality and
scope. A major goal of our research is to provide this flexible and general
mapping.

Figure 2. provides a high-level view of how our tools will generate code for hybrid
architectures, based upon the generic target system architecture of Figure 1.

What Tools Generate the Hybrid Architecture?
As shown in Figure 2, our code-generation tools can be divided into six basic parts:
a specification language, a partitioning compiler to assign computation to either

• fixed-CPU or FPGA elements

• fixed-CPU C compilers

• high-level synthesis tools

• SPARK

• maps part of the computation to be done in reconfigurable logic into VHDL

• a form that can allow for automatic generation of FPGA code

• an FPGA compiler that takes VHDL specifications of computation and
generates the FPGA “program”

• performance and power estimation tools.

Our code-generation tools will make significant use of available compiler, CAD,
and power-estimation tools. We plan to build only those tools necessary to fill in
the gaps in current hardware and software co-design, shown in yellow in Figure 2.
Those parts of Hy-C that will require significant new implementation are shown in
green.

What Do the Tools Do?
Given a system specification and application source code, our tools first partition
work among the processing resources. With successful partitioning, separate
translation tools for both the general-purpose CPU, high-level synthesis
transformations, and FPGA components generate a machine-level program for the
specific computational resources.

At this point, each processing resource access performance power models to allow
an accurate estimate of the performance and power characteristics of the runtime
program. We can then feed this information back to the partitioning phase to
consider a possible repartitioning of the computation. By supporting an iterative
partitioning process, we can refine code generation for the hybrid system, selecting
that partitioning which best meets the optimization requirements of execution
performance and power constraints.

CPU 1

CPU 2

CPU M

FPGA 1

FPGA 1

FPGA N

On-Chip
Communications
Among Resources

Figure 1. Generic Hybrid Computer

Figure 2. Outline of the Hy-C Tools

By Dr. Philip Sweany, Dr. Hao Li, and Cameron Palmer

System
Specification

Source Code

Part C

CPU
Compiler

C to VHDL
SPARC

VHDL to
FPGA
Bitstream

FPGA Power-
Performance
Model

CPU Power-
Performance
Model

SPARK

