A Language Independent Algorithm for Single and Multiple Document Summarization

Rada Mihalcea, Paul Tarau

Department of Computer Science, University of North Texas, {rada,tarau}@cs.unt.edu

Text as a Graph

Ranking

Vertex B links to vertex A \Leftrightarrow vertex B "votes" for vertex A algorithm Iterative voting \Rightarrow Ranking over all vertices

The Idea

Text as a graph

- lexical or semantic networks
 - semantic relations between concepts
- definitional links among words • graph models of text meaning
- word senses connected by semantic relations
- graph models of text cohesion
 - text units (e.g. sentences) connected by their similarity

Graph-based ranking algorithms on text graphs

- ranking of word senses to identify the correct sense
- ranking of words in a text to pinpoint the important keywords
- ranking of sentences in a document to identify the most important ones

Main Steps

- 1. Identify **text units** that best define the task at hand, and add them as **vertices** in the graph
- 2. Identify **relations** that connect such text units, and use them to draw edges in the graph. Edges can be directed or undirected, weighted or unweighted.
- 3. **Iterate** the graph-based ranking algorithm until convergence.
- 4. **Sort** vertices based on their final score. Use the values attached to each vertex for ranking/selection decisions.

Mathematical Model

Ranking Algorithm

<u>Terminology</u>: G = (V,E) a directed graph with vertices V and edges E $In(V_i)$ = predecessors of V_i $Out(V_i) = successors of V_i$

$$S(V_i) = (1 - d) + d \sum_{j \in In(V_i)} \frac{1}{|Out(V_j)|} S(V_j)$$

Assign a random initial value to each vertex in the graph Iterate the scoring function until convergence (on text: 25-30 iterations) Score based on PageRank (Brin and Page, 1998) d – damping factor $\in [0,1]$ (usually 0.85)

– indicates the probability to jump to a random page

Undirected Graphs

Ranking algorithms are traditionally applied on directed graphs Can be also applied to undirected graph \Rightarrow more gradual convergence

Weighted Graphs

Weights can model the *strength* of the relations between textual units Original definition of ranking algorithms assumes unweighted graphs We introduce new ranking formula to take into account edge weights

$$WS(V_i) = (1 - d) + d \sum_{j \in In(V_i)} \frac{w_{ji}}{\sum_{V_i \in Out(V_i)}} WS(V_j)$$

Graph Structure

- Undirected a sentence can recommend any other sentence in the text
- Directed forward a sentence can recommend only sentences that follow in the text (movie reviews)
- Directed backward a sentence can recommend only sentences that precede it in the text (news articles)

— Directed/Unweighted — Directed/Weighted — Undirected/Unweighted — Undirected/Weighted

Single Document Summarization

The Problem

• Identify sentences that are "important" for the understanding of a given text • Useful (needed?) for text summarization

Previous work

• DUC evaluations http://www-nlpir.nist.gov/projects/duc/

• E.g.: Supervised learning (Teufel 97), Unsupervised extraction (Salton 97)

TextRank – fully unsupervised

Build graph

Vertices = sentences in the text

Edges = similarity relation \Rightarrow weights

other similarity metrics: cosine. string kernels, etc.

Table 2: Results for top 5 DUC 2002 multi-document

summarization systems, and baseline.

2. Ranking

Run weighted ranking algorithm and keep top N ranked sentences

4. BC-Hurricane Gilbert . 0348 5. Hurricane Gilbert Heads Toward Dominican Coast 6. By RUDDY GONZALEZ

• 567 news articles from DUC 2002 –

English

- create 100-word summaries • Automatic evaluation with ROUGE
- (Lin & Hovy) Ngram(1,1)
- 15 systems from DUC 2002 (table top 5) • Baseline = top sentences in each document

		Graph	
Algorithm	Undirected	Forward	Backward
HITS _A W	49.12	45.84	50.23
HITS _H W	49.12	50.23	45.84
PR_W	49.04	42.02	50.08

	PRw		49.04		.02	50.08	
ſ		Top 5 sys	stems ([DUC 2002	2)		
Ī	S27	S31	S28	S21	S29	Baselir	
	50 11	49 14	48 Q	48 69	46.81	<i>4</i> 7 90	

Evaluation Portuguese

- 100 news articles in the TeMario data set (Pardo & Rino, 2003)
- 40 documents from Jornal de Brasil • 60 documents from Folha de Sao Paulo
- Summaries consisting of 25-30% of the original document

Algorithm	Undirected	Forward	Backward
HITS _A W	48.14	48.34	50.02
HITS _H W	48.14	50.02	48.34
PRW	49.39	45.74	51.21

Graph

Baseline: 49.63

Multi-Document Summarization

The Problem

- Summarize all documents in a cluster
- Cluster identified manually / automatically

TextRank - fully unsupervised

- Multi-document summaries are built using a `meta" summarization procedure.
- 2. First, for each document in a given cluster of documents, a single document summary is generated using one of the graph-based ranking algorithms.
- Next, a ``summary of summaries" is produced using the same or a different ranking algorithm.

Document 1 Document 2 Document N Single-document Single-document Single-document summarization summarization sum marization Meta-document Summary Document 1 Summary Document 2 Summary Document N Single-document summarization Multi-document summary

Evaluation

- 567 news articles from DUC 2002 grouped into 59 clusters
- Create 100-word summaries
- Automatic evaluation with ROUGE (Lin & Hovy) Ngram(1,1)
- 10 systems from DUC 2002 (table lists top 5)
- Baseline = top sentence in each document

Single do	С	"Meta" summarization algorithm						
summarization PageRank ^W -U PageRank ^W -DB HITS ^W _A -U HITS ^W _A -DB		PRW-U 35.52 35.02 33.68 35.72		PRW-DE	PRW-DB 34.99 34.48 32.59 35.20		S ^W _A -U	HITSW _A -DB
				34.99			6	34.65
				34.48			9	34.39
				32.59			2	34.23
				35.20			2	34.73
	S26		S19	S29	S25		S20	Baseline
35.78			34.47	32.64	30.56	5	30.47	29.32

Why TextRank Works

A "Recommendation" Process

- A text unit "recommends" another text unit
- Strength of recommendation recursively computed
- Preference given to recommendations made by the most "influential" units
- A sentence that addresses a certain concept gives the reader a recommendation to refer to other sentences in the text that address the same concept
- Highly recommended sentences are likely to be more important
- A similar process can be applied to other problems: keyword extraction

 - document reranking concept extraction

Text Surfing

PageRank: "random surfer model" – a user surfs the Web by following links from any given Web page

TextRank: "text surfing" – from a given concept C we are likely to follow links to related/connected concepts

text cohesion (Halliday & Hasan 1979)

– text knitting (Hobbs 1974): facts associated with words are shared in different parts of the discourse; such relations serve to

"knit the discourse together"

Cohesive text = "Web" of connections – approximates human memory models

All the pros ...

- Unsupervised information exclusively drawn from the text itself
- Goes beyond sentence connectivity (see sentence 15)
- Gives a ranking over all sentences in the text can be adapted to longer/shorter summaries
- No training data required can be adapted to other languages
- Can be used for both single and multiple document summarization