
Report from the Southeast Region Workshop*
 on

Integrative Computing Education and
Research (ICER): Preparing IT Graduates

for 2010 and Beyond

October 27-28, 2005
Dallas, Texas

Prepared By:

Dr. Oscar Garcia
Dr. Lillian Cassel

Dr. Kathleen Swigger

* This workshop was sponsored by the National Science Foundation and the College
of Engineering at the University of North Texas under NSF Award 0547299.

Participant List

Antonio, John University of Oklahoma
Bayoumi, Magdy University of Southwestern Louisiana
Bridges, Susan Mississippi State University
Cassel, Lillian * Villanova University
Castaneda, Sheila Clarke College
Cross, James H. II Auburn University
Doran, Mike University of South Alabama
Elmaghraby, Adel S. University of Louisville
Fishwick, Paul University of Florida
Furuta, Richard Texas A & M University
Garcia, Oscar * University of North Texas
Gupta, Sandeep K.S. Arizona State University
Guzdial, Mark Georgia Institute of Technology
Hadzikadic, Mirsad University of North Carolina – Charlotte
Huhns, Michael N. University of South Carolina
Jovanovic, Vladan Georgia Southern University
Lawhead, Pam University of Mississippi
Peterson, Greg University of Tennessee – Knoxville
Pfeiffer, Phil East Tennessee State University
Reed, Dan University of North Carolina
Reichgelt, Johannes "Han" Georgia Southern University
Rodriquez-Rodriquez, Domingo University of Puerto Rico Mayagüez
Rossbach, Uwe ** University of North Texas
Rutherfoord, Rebecca Southern Polytechnic State University
Solano, Judy University of North Florida
Srimani, Pradip K. Clemson University
Swigger, Kathy * University of North Texas
Thompson, Craig W. University of Arkansas
Varanasi, Murali University of North Texas
Vasquez, Ramon University of Puerto Rico Mayagüez
Wardle, Caroline National Science Foundation
Willis, Cheryl University of Houston
Zhao, Wei National Science Foundation

* Workshop Hosts
** Computer Support

Table of Contents

Executive Summary ……………………………………………………. 4
NSF (CISE) Program Executive Summary ……………………………… 5
Workshop Report
 Introduction ……………………………………………………… 6
 Summary of Discussions ……………………………………….... 7
 Conclusions & Suggestions ……………………………………… 10
 Appendix A: Agenda …………………………………………….. 11
 Appendix B: Group Reports
 Group 1 Report & Presentation ………………………….. 13
 Group 2 Report & Presentation ………………………….. 18
 Group 3 Report & Presentation ………………………….. 24
 Group 4 Report & Presentation ………………………….. 30
 Appendix C: Individual Reports
 Antonio, John …………………………………………… 37
 Bridges, Susan ………………………………………….. 38
 Castaneda, Sheila ……………………………………….. 40
 Cross, James H. II ………………………………………. 42
 Doran, Mike ……………………………………………. 44
 Elmaghraby, Adel S. ……………………………………. 46
 Furuta, Richard …………………………………………. 48
 Fishwick, Paul ………………………………………….. 50
 Gupta, Sandeep K.S……………………………………... 52
 Guzdial, Mark ………………………………………….. 55
 Hadzikadic, Mirsad ……………………………………... 57
 Huhns, Michael N. ……………………………………… 58
 Jovanovic, Vladan ……………………………………… 60
 Lawhead, Pam ………………………………………….. 62
 Peterson, Greg …………………………………………... 64
 Pfeiffer, Phil ……………………………………………. 66
 Reichgelt, Johannes "Han"……………………………… 68
 Rutherfoord, Rebecca …………………………………... 70
 Solano, Judy ……………………………………………. 72
 Srimani, Pradip K……………………………………….. 74
 Thompson, Craig W…………………………………….. 76
 Append D: Invited Speaker Presentations (separate document)
 Presentation slides for Shelia Castaneda ……………….. 79
 Presentation slides for Dan Reed ……………………….. 101
 Presentation slides for Murali Varanasi ………………… 119

Integrative Computing Education and Research (ICER):
Preparing IT Graduates for 2010 and Beyond

October 27-28, 2005

Executive Summary

The popularity of computer science at US undergraduate institutions has declined

dramatically since 2001, despite projections of large increases in demand for IT workers, with
enrollment levels dropping to lows not seen since the early 1970s. Educators have attributed the
decline to factors that include changes in the USA workforce, the “geek” image, outsourcing, the
dot-com meltdown, curriculum malaise, and a movement toward courses that apply rather than
program computers. Academic discussions of these and other problems have raised questions
about how well current computing programs are meeting the needs of their constituents and
whether they can address the growing concern about keeping America competitive.

To obtain community input on these issues, an NSF-sponsored workshop was held on
October 27-28, 2005, at the American Airlines Conference Center in Dallas, Texas. Twenty-
seven participants from southern universities, colleges, and foundations with strong interests in
computing and education met to assess the future needs of computing and information education
and career development and develop recommendations to help assure the availability of future
generations of highly-trained professions in the field of computing.

The principle recommendations included:

• identifying a set of principles common to contemporary specializations in computing
(CS/IS/IT/SE);

• publicizing the nature of computing and the need for computing professionals, through public
service announcements, websites, and joint programs between colleges and K-12 instructors;

• improving training for primary and secondary teachers in math and computing;
• modernizing content at all levels of the curriculum, through the presentation of newer

technologies (e.g., robotics, wireless), applications of computing (e.g., bioinformatics,
nanotechnology), and perspectives on computing’s role in the global economy;

• modernizing instruction, using new instructional media (e.g., PDAs, chat rooms, Wikis) and
methods (e.g., visualization, reasoning about problem solving);

• expanding the curriculum’s scope, by providing research experiences for undergraduates that
stress multidisciplinary teams, and offering team-taught courses in ‘hot cross-disciplinary
topics’ like bioinformatics and nanotechnology;

• expanding the focus on research, by offering lower-level courses on innovative technologies,
and studying how engineering research centers can be used to drive change;

• reviewing the role of math in the computing curriculum;
• making the curriculum more open to students without traditional math/science

backgrounds—e.g., by offering a cross-disciplinary degree in applied computing;
• creating modules that facilitate the incorporation of new material into existing curricula;
• rewarding computing faculty for participation in educationally related activities;
• clarifying the role of accreditation in promoting curricular content and quality; and
• offering workshops that promote faculty retraining and curriculum revision, and that focus

attention on the perspectives and needs of today’s students.

4

1

National Science Foundation
Computer and Information Science and Engineering Directorate (CISE)

CISE/CNS Education and Workforce Cluster
Executive Summary

"Integrative Computing Education & Research (ICER):
Preparing IT Graduates for 2010 and Beyond"

Introduction
NSF’s CISE Directorate is proactive in identifying and addressing issues related to undergraduate
computing education in the nation. In this context, CISE is taking a five to ten-year view of the field of
computing education and the impacts of trends such as: decreasing enrollments in academic com-
puting programs, needs of the USA workforce, national demographics, shifts in global competitive-
ness, movement towards multidisciplinary domains of knowledge in computing applications, the in-
tegrative nature of the field of computing, and future grand challenges that may face the field of
computing.

Stimuli for Strategic Planning
The driving forces for ICER planning are domestic and global events and trends that impact on the
nation’s competitiveness and the maintenance of its intellectual resource base in computing includ-
ing:
 The intellectual content of the field of computing has changed radically. It affects other fields, is

affected by other fields, and involves understanding many more complex interactions and inte-
gration than in the past. For the most part, computing curricula do not address an integrative
view of the field nor have curricula kept pace with industry needs and challenges posed by ever
expanding and increasingly complex applications.

 There is no uniform agreement about what constitutes the core of the computing field or how to
produce graduates who are intellectually agile in a dynamically changing discipline. Typically,
multiple IT programs exist on campus. Cross campus coordination and integration of these pro-
grams will improve the efficiency and effectiveness of education and research for every one.

 Graduates of computing programs typically are lacking a systems approach toward solving prob-
lems. They are not adept at dealing with the scale-up challenges associated with complex sys-
tems of the type they will encounter as practitioners.

 The dwindling pipeline of high school graduates majoring in computing and the under-
representation of women and other minorities enrolled in computing programs or working as
practitioners persists. In the past, international students compensated for the dwindling pipeline,
studying both at the undergraduate and graduate levels and most often remaining in the USA
workforce after graduation. However, with restrictions on visas, the USA lost this important
source of students and practitioners.

 National IT competitiveness is threatened by global economies in a number of ways (e.g., off-
shoring/outsourcing, emergence of new information-based centers such as in the mid-east, and
government supported software development industries such as in Ireland, Israel, and Poland).

 Security has become one of the nation’s most pressing immediate needs.

Vision
To foster integrative computing education, CISE envisions a series of activities that will involve major
stakeholder groups in the USA. The proposed stakeholders will be selected from groups such as:
computing faculty, academic administrators, representatives of professional computing societies and
trade organizations, government policy makers and funding organizations, recognized nation leaders
and futurists in the field of computing, and representatives of national research and industrial labora-
tories. The activities will address:

 Campus-wide integration of IT education and research,
 Designing computing curricula that reflect the integrative nature of the field,

The outcomes will be long-term, high impact, and potentially high-risk, strategies to catalyze the
transformation of university computing education throughout the nation.

June 2005

5

Introduction: Workshop Format

In order to prepare for the workshop, participants wrote two-page white papers on the
workshop’s objectives. Each participant was asked to address the following five questions in
this paper:

1. Preparing undergraduates for computing careers: What are the biggest challenges that
you face in your role (i.e., as an educator, employer, administrator, leader, other)?

2. Transforming the educational experience: What might the community do to address the
challenges you identified above?

3. Models for transforming computing education: What might an ideal undergraduate model
for computing education look like in five years?

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from
achieving goals it sets for computing education? Can you identify strategies that may
enable the transformation of undergraduate computing education in the USA?

5. Who might participate: What stakeholders should be involved in designing strategies to
catalyze the transformation of university computing education throughout the nation?
What is the role of government in this process? Professional societies? Universities and
faculty? Others?

These papers were posted on a special website where attendees could view and comment on
content. Additional comments were made during the first session of the workshop, which
included oral presentations of the papers by each participant.

Supplementary ideas were offered to participants through presentations by three major speakers.
Sheila Castañeda, showed Diana Oblinger’s video presentation on the learning styles of the net
generation, and commented on Dr. Oblinger’s findings. The second, Dr. Dan Reed, discussed
the multidisciplinary aspects of the computing field. The third, Dr. Murali Varanasi, described
an innovative course at the University of North Texas that teaches students how to ‘learn-to-
learn.’

To ensure active interaction, opportunities for participation, and adequate consideration of the
workshop’s themes, the participants were divided into four groups, one for each of the
workshop’s four major themes: preparing undergraduates for computing careers, transforming
the educational experience, models for transforming education, and inhibitors and strategies. All
four groups were also asked to incorporate the last theme—who might participate—into their
discussions. Each group maintained focus on its primary question, in spite of the overlap in
expertise amongst the groups and the commonalities amongst the themes. Each discussion
concluded with a summary of findings and recommendations.

Following group discussions, participants presented their views and recommendations in a
plenary session. As a final exercise during the plenary session, each attendee stated the
recommendations they considered to be the highest priorities for research, training, education,
and career development.

6

Summary of Discussions

1. Preparing undergraduates for computing careers: What are the biggest challenges that you

face in your role (i.e., as an educator, employer, administrator, leader, other)?

• The new generation of students is vastly different from the past. They
o are more active and visual learners,
o have shorter attention spans and like to work in groups,
o come to college exposed to many different kinds of media,
o are more ‘connected’ to their peers, and
o are more interested in applications that can solve specific problems or benefit society

(See I.A, II.A, III.C)1.

• Several challenges were identified that relate to how well undergraduate students are
prepared academically for computing curricula. Many freshmen who lack the
prerequisite skills in math and science avoid taking computing courses. Others flunk out
their first year. Some of their math and science phobia is caused by the poor introduction
to mathematics and science by grade-school and middle-school teachers who lack
sufficient preparation in these fields. In addition to the weak preparation of some
elementary and middle school teachers of mathematics and science, the lack of interest in
these topics among many teachers represents a disincentive to children who might have
an interest in pursuing mathematical and scientific careers. (See I.A; III.C, IV.6)

• Core curricula in some computing departments have not been updated to take advantage

of the dynamic approaches to problem-solving and the new advances in computer
science. While most students are comfortable with using tools like PDAs, chat rooms,
and Wikis, these new technologies are rarely incorporated into computing courses (See
I.B.5, II.B, III.A.3).

• The more interesting computer application classes such as bioinformatics, robotics, and

wireless applications are not usually taught in the early stages of undergraduate
education, so students lose interest and drop out before they appreciate the vast array of
career opportunities available to them (See I.B.4).

• Computing curricula usually do not address the new requirements that global economy

demands, especially the kinds of issues that are directed toward project development with
partners who may be overseas (See II.A, Reed).

• Research-oriented computing departments generally do not reward (i.e., tenure or

promote) faculty for participation in educationally related activities such as curriculum
reform. This serves as a disincentive for faculty at these institutions to participate in such
activities (See II.B & E, IV.A.6).

1 Notation refers to items in group reports in Appendix C – eg., I is group 1, II is group 2, etc.

7

• There is serious concern about losing the best and brightest students, including women
and minorities, to other science disciplines. We appear to favor the expansion of
computing curricula, but do not yet understand how to handle totally new areas (e.g.,
bioinformatics, nanotechnologies) (See II.A, Castaneda, Reed, Varanasi).

• Some attendees expressed concern that definitions of computing related programs

approved by accrediting agencies are narrow and restrictive. Interestingly, others
suggested that current requirements lack rigor. Clarification of the appropriate role of
accreditation and the ways in which accreditation criteria reflect and enforce a
community view of meaningful and appropriate post secondary programs is needed (See
II.A & B, IV.4).

2. Transforming the educational experience: What might the community do to overcome the

challenges (cited above).

• Develop middle and high school programs that expand students’ perspectives so that they
might consider careers in computing. Involve teachers and counselors in activities that
deal with computing. Ensure that grade-school, middle-school, and high-school teachers
have sufficient mathematical and scientific background to enable them to instill a love of
mathematics and science in their students (See III.E, IV.A.6).

• Develop materials (online or otherwise) and public announcements that introduce

students to career opportunities in computing (See IV.A.5).

• Provide research experiences for undergraduate majors and stress multi-disciplinary
teams (See I.B.6, II.B).

• Create a program whereby Computer Science and Engineering educators become

‘recertified’ every five or six years by learning about new educational techniques and
best practices. This should include learning about teaching methodologies that best reach
the students who are entering college today (reported in large-group discussion).

• Consider team teaching courses with researchers and educators in the ‘hot-new-areas’

such as bioinformatics and nanotechnology (See I.B.5).

3. Models for transforming computing education: What might an ideal undergraduate model for

computing education look like in five years?

• Schools and Colleges should re-visit the idea of establishing a common core for all
undergraduate majors. Conversations about this subject ranged from introducing courses
in the liberal arts area to re-examining basic computing principles (See I.B.3, III.B,
IV.A.2).

• The computing community should develop curriculum "modules" that are shorter than

courses and can be taught in less than a semester. The idea is to serve the needs of

8

different communities by creating different threads that connect a series of similar
content or career modules (See I.B.4, II.D).

• There is a need for careful review of the mathematics requirements of computing related

programs. Mathematics is important, but there is reason to question whether the
mathematics that is generally required in existing programs is the right preparation. (See
II.D)

• Special research courses should be established that introduce students to innovative

technology in their first or second year (See I.B.6)

• The discipline might want to study the structure of Engineering Research Centers and use
them as a possible model for innovative changes (reported in large-group discussion).

• Departments should consider making their curriculum more open to students who lack a

traditional math/science background and develop niches that allow these people to get
degrees in computer science (See II. B, III.A).

• Workshops in the use of current accreditation criteria to develop creative and innovative

programs in computing should be made widely available. These could form the basis for
a general approach to faculty retraining, curriculum revision, and attention to the needs of
today’s students (See IV.4, Varanasi)

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from

achieving goals it sets for computing education? Can you identify strategies that may enable
the transformation of undergraduate computing education in the USA?

• In the early years, computer science programs were more open to students as well as

faculty with nontraditional backgrounds or eclectic interests. Over the years, computer
science has gotten more narrowly focused and exclusive (See II.D, Reed)

• New forms of computing related programs are emerging. These need to be monitored

and documented with special attention to the goals of various types of programs.
Identification of holes in the fabric of overall computing and information-related career
preparation needs to be identified and filled. One suggestion from this workshop was to
develop a degree in Applied Computing (See I.B.3, reported in large-group discussion).

• There seems to be a lack of creativity and fresh ideas that can jump start reform.

Computing educators need to be more future-oriented and incorporate new technology
and educational delivery systems. Opportunities for a group of departments to work
together to explore ideas, implement prototypes and experiment to determine what really
works over a broad spectrum of environments are very rare. Some possibilities for
change impact the entire institution, which raises another level of inhibitor (See I.C,
Castañeda, Reed).

9

• Many faculty feel out of synch with students of the current generation. Instruction of
faculty in the facts about their students’ perspectives on the world should be incorporated
into workshops that support innovation in curriculum design and teaching methods (See
I.B.6; IV.A.5, Castañeda).

• There is generally no support (or tenure) for people who want to develop inter-

disciplinary programs. Yet these are the types of programs that seem to attract this
generation of students (See II.E).

• Women and minorities are not attracted to the computer science field. If the discipline

fails to reverse this trend, then the number of people entering computer science will
continue to fall (See I.A, II.A. Castañeda).

Conclusions and Suggestions

The most important challenge identified in the workshop is to convert the findings into viable
and effective programs that can attract the next generation of computer science students without
compromising the academic quality of the programs. The workshop attempted to provide a
detailed assessment of the challenges facing computing educators and suggested actions that can
be taken to make careers in computing more attractive. This report serves as an overview of
those discussions and conclusions. While there were some differences in how individuals
perceived specific problems, there was noticeable agreement in the need to reform and change
directions in computing education.

10

Appendix A. Agenda

Southeast Region Invitational NSF Workshop on “Integrative Computing
Education and Research (ICER): Preparing IT Graduates for 2010 and

Beyond”
Dallas, Texas

October 27-28, 2005
4501 Highway 360 South

Fort Worth, Texas

Website for Conference: http://www.eng.unt.edu/highlights.htm
Website for Papers: https://webctvista.unt.edu/webct/

Meals – Black Hawke Ballroom 1
Meeting Room – M106 Mercury

Wednesday, October 26
 6:00 - 9:00 PM Registration for Workshop (in Library off the lobby)
Thursday, October 27
 7:00 – 8:30 AM Breakfast in the Black Hawke 1
 8:30 – 9:00 AM Mercury M106 -- Registration for late arrivals
 9:00 – 9:05 AM Mercury M106 -- Welcome to the workshop (UNT Founding
 Dean Oscar Garcia)
 9:05 – 9:20 AM Welcome and overview (Dr. Wei Zhao, Division Director
 CNS, NSF)
 9:20 – 10:20 AM Each attendee will give a 5 minute (max) presentation of
 their paper presenting their views on topics such as:

1. Preparing undergraduates for computing careers: What are the biggest
challenges that you face in your role (i.e., as an educator, employer,
administrator, leader, other)?

2. Transforming the educational experience: What might the community do to
address the challenges that you identified above?

3. Models for transforming computing education: What might an ideal
undergraduate model for computing education look like in five years?

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the
nation from achieving goals it sets for computing education? Can you
identify strategies that may enable the transformation of university
computing education throughout the nation?

• Who might participate: What stakeholders should be involved in designing
strategies to catalyze the transformation of university computing education
throughout the nation? What is the role of government in this process?
Professional societies? Universities and faculty? Others?

 10:20 – 10:30 AM Break
 10:30 – 11:30 AM Continuation of participant presentations
 11:30 - 12:30 PM Lunch

11

http://www.eng.unt.edu/highlights.htm
https://webctvista.unt.edu/webct/

 12:45 -1:45 PM Presentation: “The Net Generation” video by Diana Oblinger with
 commentary and critique by Sheila Castaneda, Clarke College
 1:45 – 2:00 PM Break
 2:00 – 3:30 PM Discussion by all participants on the topics presented during the
 morning session; formation of 4 small groups to address each of
 the specific areas cited above (1-4) with the last one answered by
 all.
 3:30 – 4:00 PM Break
 4:00 – 5:00 PM Continued discussion by small groups on the issues that were
 identified and compilation of ways to address specific problems.
 Each group will designate a speaker for the group and a scribe to
 takes notes of the group’s discussion. These notes will serve as
 the basis for the group’s report, to be presented the following
 morning. Participants should begin writing reports.

 7:00 – 9:00 PM Dinner. Americana 2 - After-dinner Presentation: “Computing:
 The 21st Century Liberal Arts Education” by Dr. Dan Reed,
 University of North Carolina at Chapel Hill.

October 27

7:00 – 8:30 AM Breakfast
8:30 – 11:30 AM Continued small group discussions review of final report.
11:30 – 1:30 PM Lunch followed by Presentation: “L2L: Learning to Learn” by Dr.
 Murali Varansi, University of North Texas
1:30 – 1:45 PM Break
1:45 – 3:00 PM Small group presentations (10-15 minutes) to all participants
 followed by general summary and conclusions.
3:00 PM Dismissal of workshop participants with a thank you to all who
 attended.

12

 Appendix B. Group Reports

I. Group 1 Report

 Question 1 – Preparing Undergraduates for Computing Careers: What are the challenges
 that we face in our role (as an educator, employer, administrator, leader, other) in preparing
 students for computer careers?

A. Incoming Students

The diversity of backgrounds and goals among incoming students is a particular challenge.
Students come to us unprepared for the rigors of a university education (including mathematics,
writing, thinking skills) and with unrealistic expectations of what the computing field
encompasses. Their computing experiences in high school may be limited or non-existent (so
they don’t know what to expect), or may be such a narrow viewpoint of computer science that
they do not want to pursue it as a career. Women, in particular, are turned off by the office
training, game-playing, hacking, vendor-specific training- mentality that is often portrayed as
computer science.

Beginning courses need to educate and engage a wide variety of students. Keeping students
interested (and not dropping out of our discipline) when they have a range of
programming/computer experience from considerable to none, is a daunting task. A related
problem is the influx of community college students two years later who have a wide variety of
backgrounds and expectations that a community college curriculum is equivalent to the content
of a university computing curriculum.

B. Curriculum

B.1. Increasing amounts of material that must be covered: As Moore’s law reminds us, the
complexity of the hardware doubles about every 18 months. This has been extrapolated by
computer science teachers to be interpreted to mean that the complexity of what must be taught
doubles in a similar manner. While this is a bit of an exaggeration, there is some truth to this.
We need to look at more established liberal arts programs and see how they have managed to
incorporate centuries of ideas and material. While their content is not changing as rapidly, it has
existed for a longer time and much filtering has had to occur. In History and Philosophy, the
goal is to identify the questions at each period. In computer science we need to identify the core
material, realize that it is not really static, and put it into a formal curriculum. Emerging
technologies can be handled in project classes and special topic classes until such time as they
are viewed as core material.

If the approach to teaching is that we teach students some very basic, fundamental realities and
then teach them to learn new technologies, (1) they will be prepared for a lifetime in a rapidly
changing discipline and (2) the size of the core will be manageable and (3) the student will be
ready to learn in a work environment.

13

B.2. Curriculum evolves as material moves down from the graduate level and up from the
undergraduate level: In computer science, material tends to move rapidly from being research
topics to being core material. Material also goes the other way. Compilers, for instance, were
considered to be a necessary core topic in the 80’s and 90’s. Now they have been relegated to
the ranks of graduate course work. While networking and distributed computing were originally
part of graduate research, they are now considered to be essential to the undergraduate program.
The role of the computing education professional then becomes one of discerning what material
needs to be taught at what level and under what conditions material needs to be codified and
moved to a different level.

B.3. Closing the Gap: The computing curricula taught in our academic programs tends to
concentrate on the traditional CS knowledge base. While this education generally provides
excellent background for the students to enter the profession, they are at a disadvantage in
applying their knowledge to real applications. Often they are called upon to solve problems in
business, medicine, science and technology applications for which they lack the depth of
knowledge. It may also be necessary for them to function in multinational companies. While it is
impossible to impart education in all application areas, some practical solutions can be pursued,
such as preparing them for:

• Life-long learning
• Project management principles
• Multidisciplinary projects
• Communication skills
• Ethical and responsible behavior
• Team work
• Project-based courses (Computer Science in XXXX)
• Working in a global society

Some of this preparation can be addressed easily in seminars, while others can be accomplished
by projects taught by teams of faculty and industrial partners working together. Industry
colleagues can assist in this endeavor tremendously and will find it an excellent investment.

B.4. Exciting applications of Computing: At the outset, this may appear as a formidable
challenge. Some of these applications, such as games, visualization, multimedia, immersion,
real-time issues, ubiquitous computing, RFID technology, sensor systems, and service-oriented
computing, are hard to introduce into an undergraduate curriculum. However, some of the
faculty in CS and other departments may be working in these research areas. Therefore, we
should take advantage of this rather than see it as a problem. Courses could be broken up into
smaller modules. Faculty would then be able to teach their areas in the small. These class
experiences could then be followed by a research internship in which students would be allowed
to go into the faculty’s laboratory and participate in the work. We can also depend on industrial
internships as well as Research Experiences for Undergraduates (REU) as a mechanism to foster
participation of students in such applications. Many industrial organizations would be willing to
provide the hardware and software needed for such projects free of cost (or at a modest cost).

14

B.5. Conveying the excitement of new computing developments: Computing research is
progressing rapidly, with streams of new applications and developments emerging from both
universities and industry. Recent developments, such as portable video, music, cell phones, and
game players, have captured the imagination of students and become required possessions.
Computing departments are being challenged in how to convey the excitement associated with
the new developments and the sense of accomplishment in constructing one of these
applications, while teaching the more mundane fundamentals of the discipline. The exciting
capabilities readily available and the fascinating and important problems are being obscured by
the low-level aspects of curricula that have not changed in several years. Moreover, there are
many critical application areas that require computing, for example healthcare, education,
entertainment, transportation scheduling, security versus privacy issues, the environment, and
defense. These areas are typically not addressed well within most curricula.

B.6. Using research to stimulate excitement: The new developments in computing represent
an opportunity as well as a challenge. They can provide a motivation for students to learn the
fundamentals. The needs of the new research areas and of industry can help to focus and direct
the learning of more difficult topics. But, researchers must continually work to translate the
advanced concepts of their projects into assignments that their undergraduates can tackle, thus
engendering a feeling of contributing to current problems. This translation needs to bring the
research concepts to the lowest levels of the curriculum, rather than having students wait until
the end of their program before they get to do the new and inspiring things. Educators need to
take advantage of the students’ interests and strengths to motivate and engage them throughout
their academic experience.

 C. Graduates

One of the challenges in preparing undergraduates for computing careers is identifying what we
want our graduating students to be able to do. The problem is that our students are going in
different directions upon graduation. Most will be seeking immediate employment, while some
will be going on to graduate school.

For those going on to graduate school, our task is not so daunting. A solid grounding in the
fundamentals of computing, together with the skills to engage in advanced learning and research
will serve these students.

Those seeking immediate employment present the biggest challenge, as it is envisioned they will
find a wide range of different jobs. For these students the curriculum will need to incorporate a
multitude of disciplines. We will no longer be able to teach the computing sciences independent
of developments in areas such as health care, education, business, and criminal justice. The
challenge will be to provide an environment wherein students can integrate the fundamentals of
computing in the solution of application area problems. If we can succeed in this task, we may
have taken a step toward addressing the problem of attracting students to the computing sciences,
as students today are not interested in technology for its own sake. They are interested in what
they can do with the technology.

15

D. Stakeholders

Designing strategies to catalyze the transformation of university computing education will
require the active participation of a number of different stakeholders. The faculty must continue
to grapple with the definition of a curriculum that will meet the needs of our students and their
future employers. Today’s students can be an invaluable source of information on how best to
present the curriculum, in order to capture and hold the attention of students. Our alumni can
provide information on the demands of industry, telling us how well their education prepared
them for their jobs, which courses were most useful, and what kinds of courses they wish they
might have had. Government, both state and federal, as well as other granting organizations, will
need to provide funding to support our efforts to transform the curriculum and the educational
environment. Funding will be needed to underwrite efforts to develop new models for teaching
and curriculum and to create an infrastructure that will support new and emerging technologies.

16

�����������	
�����

���������������������
����������� ��������������������������������������
� �������� ��� �!!�����"

n #�$������%��������
n &�'�����(����)�$*���������������!����������$��������������+�)�� ,-���

�����������������!

n �����$�!���
n #�$��������������������������!�� ���.����/)��$�'����
n �����$�!����'�!'�������������!���'�����0�������� �����������!�'�!��������

������ ����������������!�'�!
n 1 ��������� ��������)��0����0 ���������� �����$���������$����$�!������

0 ���������$��$���)(�$��������������������!�
n 1 ���2$������� ����������0�(����$���������-- �����+�'����!�3�����+�

��!�������+����������+����!-����+��)�4���(+�56#&�����+��������'�$�-���������
$���������-- �����������!�$������������$����$�!�

n 7�0����$��'�(�� ���2$������������$������0�� �� ����0�������$ �����������
���!�$����������$��������

n 5�����$ �$ �!!������$��� �!��)������� �������������������������������
�2$�������

n ����������
n �������������������������������$ ��!�����������(+�����������$��!�3���������

8)�������+� ��!� $���+������������+��$���$�+�������$��!��$���$�9
n ���������������������!���!����!�����������$��������

�����������	
�����

� ��
�� �������$�����

n ��'��������
n 6���������������!�!�'�!��2���������������0�����!������

���$ ��������$����$�!�

n 6�������������$������������������0���$ ��!���������)���$�+�
�������+����0��*�+���$ ���$�����+���'������!�������+���$:

n ������������$�!�(���������� ��$����$�!�

n ;!�����
n <��������������)��0����$�������������������������

�������(��������

n &�����

n %�����������'�����������������������$����$�!�

n #������(������$�!���������

17

II. Group 2 Report

 Question 2 - Transforming the educational experience: What might the
 community do to address the challenges?

A. Assumed/Perceived Challenges:

• National decline in CS enrollments, lack of interest in computing among middle school
and high school students, computing is perceived as synonymous to programming,
boring, unattractive, geeky, lacking excitement

• We are not attracting enough of the brightest and the most intelligent and curious students
• Lack of public understanding what really the “computing” discipline is. Does the

discipline encompass everything that needs computing to solve its problems more
efficiently and cost effectively or the discipline involves the core theory and practice that
enhances computing capabilities and others are viewed as “applications of computing”?
Inclusive vs. Exclusive definition?

• Women participation has seen precipitous drop while that’s not true in other science
disciplines or in engineering disciplines or in Mathematics

• Decline of US role in global competitiveness

B. Societal needs/Future Trends:

• Numerous applications areas offering significant long term challenges requiring
traditional computing knowledge and knowledge in application domains to develop the
infrastructure (equipment, software, information) to addressing the challenges. As these
intersections broaden, more training in the intersections is required in order to function
more effectively therein; problems unique to these intersections will emerge, requiring
the understanding and study of new underlying principles of computing in these domains.

• Current and future students who seek careers in computing will continue to need a core
knowledge of the fundamentals of hardware and software system design, but such core
knowledge is not enough; deep knowledge of the domain of application of computing is
now a co-requisite for effective problem-solving and discovery

C. Inhibitors:

• In high schools and for freshmen we teach programming in a language (syntax and all),
not computer science let alone computing; we do not emphasize problem solving

• Current department structure in universities do not allow easy knowledge sharing and/or
problem based learning

• We do not provide enough domain specific knowledge to our students to equip them to
solve real life problems, do not provide enough relevance of computing to real life
problems

D. What Needs be Done:

• Assess the graduates in terms of outcomes; they should have integrative experience in
stead of doing things in a piecemeal manner, provide more application specific
knowledge, team experience

18

• Provide more communication (verbal and written) skills, logical thinking skills,
synthesis skills, reuse skills, deemphasize re-inventing wheels

• Reduce the core requirements to a minimal set, provide more flexibility to choose from a
wide range of topics to complete degree requirements

• Use real life problem sets that are motivating, emphasize innovation
• Recognize that not all computing professionals need math or science to the same extent
• Encourage creativity, brainstorming, learning from mistakes, learning to learn by

themselves, teach how to be adaptable
• Provide more design experience from different application domains
• Change granularity of courses to smaller modules, design prerequisite structure in terms

of modules
• Provide training to think logically and precisely under pressure

E. Other Factors to Consider:

• 4 yr colleges vs. 2 yr. colleges – transfer issues, lifelong learning capability of students
• Recognize that students come from diverse social and economic backgrounds – some will

need a more prescriptive approach than others
• Faculty motivation to retrain and/or to adapt – research vs. teaching faculty, faculty

workload issues
• More adjunct faculty from practitioners
• Effect of changes in K-12 education and preparedness of students
• Influx of international students or lack thereof

19

Group 2 Presentation:
Transforming the educational
experience: what might the
community do to address the
challenges?

Group 2

Susan Bridges,
Adel Elmaghraby,
Richard Furuta,
Greg Peterson,
Pradip Srimani

and Oscar Garcia

Assumed/Perceived Challenges:
• Decline in CS enrollments, lack of interest, CS is

programming, boring, unattractive, geeky, lacks
excitement

• Not attracting the brightest and most intelligent

• What really the “computing” discipline is?
• Does the discipline encompass all computing

• Or the discipline involves the core theory

• What is “applications of computing”?

• Inclusive vs. Exclusive definition?

• Women participation is down!

• Decline of US role in global competitiveness

20

Societal needs/Future Trends:
• Long term challenges requires traditional

computing knowledge and knowledge in
application domains.

• Infrastructure (equipment, software, information)
is needed to address new challenges.

• As the intersections broaden, more training in the
other disciplines is needed.

• Students seeking careers in computing will
continue to need core knowledge of hardware and
software system design.

• Core knowledge is not enough; deep knowledge
of the domain of application of computing is now
a co-requisite for effective problem-solving and
discovery.

Inhibitors:
• High schools and freshmen focus too much

on programming languages details and not
CS and problem solving

• Current department structure in universities
do not allow easy knowledge sharing
and/or problem based learning

• We do not provide enough domain specific
knowledge to our students to equip them to
solve real life problems, do not provide
enough relevance of computing to real life
problems

21

What needs be done:
• Outcomes-based assessment;

• integrative experience in stead of doing things in a piecemeal
manner,

• more application specific knowledge,
• team experience

• Include a sequence of multiple courses so that students
can acquire and apply skills such as:
• communication (verbal and written) skills (both in formal and

informal settings),
• logical thinking skills,
• synthesis skills,
• reuse skills, deemphasize re-inventing wheels.

• Reduce the core requirements to a minimal set, provide
more flexibility

• Use real life problem sets that are motivating, emphasize
innovation

What needs be done: (contd.)
• Recognize that not all computing professionals need math

or science to the same extent
• Encourage creativity, brainstorming, learning from

mistakes, learning to learn by themselves, teach how to be
adaptable

• Provide more design experience from different application
domains

• Change granularity of courses to smaller modules, design
prerequisite structure in terms of modules

• Provide training to think logically and precisely under
pressure

• Provide courses that provide multidisciplinary work and
projects

• Provide multiple entry points in the programs to increase
the diversity of incoming students.

22

Other Factors to consider:
• 4 yr colleges vs. 2 yr. colleges – transfer issues, lifelong

learning capability of students
• Recognize that students come from diverse social and

economic backgrounds – some will need a more
prescriptive approach than others

• Faculty motivation to retrain and/or to adapt – research vs.
teaching faculty, faculty workload issues

• More adjunct faculty from practitioners
• Effect of changes in K-12 education and preparedness of

students
• Influx of international students or lack thereof
• Retraining and lifelong education of graduates
• Technology support for preparing students to enter

computing curricula
• Distance learning should be considered as a tool and

technology should be improved to provide distance
learning especially for retraining and lifelong learning.

23

III. Group 3 Report
 Question 3 - Models for transforming computing education: What might an ideal
 undergraduate model for computing education look like in five years?

 A. Introduction
While it may be impossible to “predict” the precise role of computing in society in ten or even
five years, our objective is to develop a model that itself is adaptable. In the proposed model, we
define first a desired profile for students graduating with a computing baccalaureate degree. We
believe that these proposed desired qualities will remain relevant for some time, although we do
not want to rule out adjustment and even revolutionary changes to this initial proposed list. The
second component of the model is to attempt to match the characteristics (both strengths and
weaknesses) of students entering the program, with the desired qualities of graduating students.
This exercise provides some clarity related to where more, or less, emphasis may be required in
achieving the desired outcome. This process informs the delivery mechanisms that are used to
implement the learning process. In particular, we encourage the use of techniques that resonate
with the current generation of incoming students. Finally, any program, we believe, should have
a core upon which the entire program relies. We have proposed a list of topics for a core. In
summary, a key innovation of our proposed model is to leverage the characteristics of incoming
students instead of force fitting mechanisms on current students that they perceive as irrelevant,
while still meeting program outcomes.

B. Baccalaureate profile in computing
This document presents recommendations as a suggested model for transforming computing
education at the baccalaureate level. We believe that any graduate from a baccalaureate program
in computing must display the following attributes:
 (a) An ability to apply knowledge of computing, mathematics, the humanities, and social
sciences appropriate to the discipline;
 (b) An ability to analyze a problem, and identify and define the computing requirements
appropriate to its solution;
 (c) An ability to design, evolve, implement, and evaluate a computer-based system, process,
component, or program to meet desired needs;
 (d) An ability to function effectively on teams to accomplish a common goal, display
leadership, and mentor;
 (e) An understanding of professional, ethical and social responsibilities including the ability
for self-evaluation;
 (f) An ability to communicate effectively with a range of audiences;
 (g) An ability to analyze the impact of computing on individuals, organizations and society,
including ethical, legal, security and global policy issues;
 (h) Recognition of the need for, and an ability to engage in, continuing professional
development and develop intellectual maturity;
 (i) An ability to use current techniques, skills, and tools necessary for computing practice;
 (j) An ability to create new products, services, processes, and jobs and for innovation and
entrepreneurship;
 (k) General problem solving, critical/logical thinking
 (l) Personal insight

24

C. Matching the Abilities of the Net Generation with the Profile
The attributes in second 2 have been formulated with longevity in mind; however, the way in
which programs are designed to allow students to achieve the objectives has to depend critically
on the attributes of the incoming students.
We have identified certain characteristics of net generation that can be leveraged when they
reach campus. These include team work, social interests, general technology skills, excellent
communication skills albeit limited to peer to peer, and the use of technology to solve problems
albeit in an ad hoc manner.
There are certain limitations that have to be overcome in order for students to successfully
achieve programs outcomes. Examples include weak math skills and formal problem solving
methodology.

D. Architectural Framework for Computing Curricula
Any curriculum model in computing must cover following areas

D.1 Computing Core
It is important that any program cover the core of computing, although different computing
programs may vary as to the level of detail to which the core concepts are covered. We offer the
following as suggested preliminary list of core topics
System Theory
Language Theory
Algorithm Design
Hardware
Information
Representation
Abstraction/Modeling
Discrete Mathematics
Statistics
We recommend that further inputs to any effort to define the core of computing be sought from
the Ontology project: http://what.csc.villanova.edu/twiki/bin/view/Main/OntologyProject

D.2 Components
Every computing program must cover a set of components, that is, artifacts, resources, such as
software, information, hardware, communication, people and organizations, and their
interactions, as well concerns such as security and quality that transcend individual components.
Again, the type of components covered and the depth to which they are covered will vary from
computing discipline to computing discipline.

D.3 Methods
Any program must also cover appropriate methods provide depth of know-how and currency in
the discipline.

D.4 System Level Integrative Experience within Selected Application Domain
Finally, the program must allow students the opportunity to integrate the knowledge that they
have gathered, and include work on systems development, evaluation and integration in
application domains.

25

http://what.csc.villanova.edu/twiki/bin/view/Main/OntologyProject

E. Delivery Mechanism
We have tentatively identified two delivery mechanisms for achieving the program outcomes.
We believe that both build on the strengths of the net generation, while addressing their
weaknesses.

E.1 Continuing Interesting and realistic Project-Based Experiences
Project sequences begin in the initial course to introduce core topics. Later courses continue to
utilize this project while reinforcing and expanding core topics. Appropriately planned projects
will allow “situated learning” in which students are exposed to core concepts as and when
needed. Students should also be allowed to repeatedly complete and improve projects under the
guidance of a mentor, as this will enable students to develop reflective and self-assessment
skills. Ideally, projects involve students from different levels in the program and from different
disciplines.
The following barriers must be overcome to implement this learning experience:
Formulating performance expectations - Performance expectations will provide artifacts that can
be used in the assessment process
Scheduling – The synchronization of this learning experience with more traditional course may
prove difficult
Faculty load – Faculty effort is likely to increase significantly and it may, therefore, prove
difficult to insure faculty buy in.

E.2 K-12 Outreach

These students will visit K-12 schools to demonstrate and explain their projects. This allows
these students to utilize existing skills that they bring to the program while at the same time
building and expanding other necessary skills. In particular, appropriate presentation skills
including the creation of websites will be addressed. It provides an indication to prospective
students of the excitement of computing and the expectations of students enrolled in computing
programs. It therefore is likely to prove a highly successful recruitment tool.

F. Conclusion

This report has presented recommendations for transforming computing education at the
baccalaureate level.

John Antonio
Mike Doran
Vladan Jovanovic
Han Reichgelt
Domingo Rodríguez
Ramón Vásquez

26

SummarySummary

Models for Transforming Models for Transforming
Computing EducationComputing Education

Group 3 PresentationGroup 3 Presentation

Han Han ReichgeltReichgelt

Group LeaderGroup Leader

Dallas, Texas, October 27Dallas, Texas, October 27--28, 200528, 2005 Group #3Group #3

Modified ABET CAC OutcomesModified ABET CAC Outcomes

u (a) An ability to apply knowledge of
computing and mathematics appropriate to
the discipline;
ww Discrete MathematicsDiscrete Mathematics

ww StatisticsStatistics

u (b) An ability to analyze a problem, and
identify and define the computing
requirements appropriate to its solution;

u (c) An ability to design, evolve, implement,
and evaluate a computer-based system,
process, component, or program to meet
desired needs;

27

Modified ABET CAC Outcomes (2)Modified ABET CAC Outcomes (2)

u (d) An ability to function effectively on
teams to accomplish leadership,
mentoring, and a common goal;

u (e) An understanding of self-evaluation,
professional, ethical and social
responsibilities;

u (f) An ability to communicate effectively
with a range of audiences;

u (g) An ability to analyze the impact of
computing on individuals, organizations
and society, including ethical, legal,
security and global policy issues;

Modified ABET CAC Outcomes (3)Modified ABET CAC Outcomes (3)
u (h) Recognition of the need for intellectual

maturity, and an ability to engage in,
continuing professional development;

u (i) An ability to use leadership, mentoring,
current techniques, skills, and tools
necessary for computing practice;

u (j) An ability to create new products,
services, processes, and jobs and for
innovation and entrepreneurship;

u (k) General problem solving,
critical/logical thinking

u (l) Personal insight

28

CORECORE

u System Theory

u Language Theory

u Algorithm Design

u Information

u Representation

u Abstraction/Modeling

u Discrete Mathematics

u Statistics

29

Group 4 Report

 Question 4 - Inhibitors and strategies: Can you identify inhibitors that might
 prevent the nation from achieving goals it sets for computing education? Can you
 identify strategies that may enable the transformation of undergraduate computing
 education in the USA?

A. Inhibitors with accompanying strategies

1. Lack of vision for computing disciplines for the future
a. Task force made up of visionary faculty from the five computing disciplines,

industry representatives, government representatives and accreditation
representatives should be established to create over-arching vision statement for
computing of the future (10 years and beyond)

b. Ontology effort, Computing Curriculum 2005 and model curricula can be studied
for current baselines and conversation starter

2. Lack of common core across current computing disciplines; fragmentation/silo effects
have been created for separate areas – CS, IT, SwE, IS, CpE

a. The task force mentioned in #1 should establish a common core based on the
future computing vision

3. Lack of funding for college/university implementation of Computing Curricula 2010-
2015 recommendations

a. Establish funding from government and industry sources
b. Creation of the National Computing Foundation (NCF)
c. Connect with state/regional funding sources

4. Formal model curricula, Computing Curriculum 2005, IT Model Curriculum 2005, etc.
should be on a continuous improvement cycle (5 years) – major and minor revision cycle

a. Professional organizations should assume this recommended cycle
b. Professional organizations should consider appropriate linkages with accreditation

boards
5. Misconceptions about the fields and professions of computing, and unwarranted

negativity of the profession keep students from considering and pursuing computing
degrees and careers. Two of the areas that need to be addressed (especially for minorities
and women) are the concepts of creativity in computing, and computing as a social
activity that requires teamwork and collaborative activities in the work environment
(such as assisting users).

a. Government agencies, industry partners and private foundations, such as the
National Academy of Science should create and fund public service
announcements that dispel the myths, rumors and negativities of computing
careers. These announcements will be used to raise the awareness and excitement
for careers in computing. We need positive role models including young people
for these adds.

b. Creation of computer based instructional materials for elementary and middle
schools to develop an awareness of the rewards of computing careers.

c. Local colleges/universities establish connections with middle and high schools to
help educate teachers, counselors, students and parents concerning the computing

30

profession, career paths and the rewards of pursuing post-secondary computing
education.

d. Increase scholarships for students choosing computing majors by seeking external
funding from business partners, advisory boards, professional organizations and
private foundations.

6. Uneven quality of teacher preparation and enthusiasm for teaching math in K-12. Many
elementary teachers convey their own insecurities, distaste and fears about math to the
students. There is a lack of certified math teachers in middle and high school.

a. Colleges/universities need to address the math phobias for elementary teachers in
their methods classes.

b. Schools need to increase the number of certified math teachers for middle and
high school.

c. Colleges/universities need to offer courses for teacher education in logical
thinking and problem solving.

James Cross
Sandeep Gupta
Phil Pfeiffer
Becky Rutherfoord
Cheryl Willis

31

Group 4 Presentation:
Inhibitors and Strategies for

Promoting Computing

James Cross
Cheryl Willis

Sandeep Gupta
Phil Pfeiffer

Becky Rutherfoord

28 October 2005

Inhibitor 1: A lack of vision for
“computing” disciplines for the future

• Establish task force to create an over-arching
vision statement for the next-generation of
computing

– membership: visionary faculty from the five computing
disciplines, industry representatives, government
representatives and accreditation representatives

– time frame: 10 years and beyond

• Study appropriate artifacts for current baselines
and conversation starters.

– Ontology Project (what.csc.villanova.edu/twiki/bin/
view/Main/OntologyProject)

– Computing Curriculum 2005
– Other model curricula

32

Inhibitor 2: Lack of common core
across current computing disciplines

• fragmentation/silo effects for separate
areas–CS, IT, SwE, IS, CpE

• Strategy
– Use the task force mentioned in #1 to

establish common core based on the vision.

Inhibitor 3: lack of funding for
implementing Computing Curricula

2010-2015
• Establish funding from government and

industry sources.
• Create a National Computing Foundation

(NCF) to promote development of
computing currricula.

• Establish connections with state/regional
funding sources.

33

Inhibitor 4: failure of model curricula to
track technological change

• Put formal model curricula on a 5-year
continuous improvement cycle

– Computing Curriculum 2005, IT Model
Curriculum 2005, etc.

– Major and minor revision cycles.

• Professional organizations should
assume this recommended cycle.

• Professional organizations should
consider appropriate linkages with
accreditation boards.

Inhibitor 5: Misconceptions about the
fields and professions of computing,
and unwarranted negativity (1 of 2)

• Create and fund public service announcements that
dispel the myths, rumors and negativities of computing
careers.

– Government agencies, industry partners and private
foundations, such as the National Academy of Science

– Must include vision of computing as a creative, social activity
that requires teamwork and collaborative activities in the work
environment (such as assisting users).

– Goal: raise awareness and excitement for careers in
computing.

– Need positive role models including young people for these
adds.

34

Inhibitor 5: Misconceptions about the
fields and professions of computing,

and unwarranted negativity

• Create computer based instructional materials for
elementary and middle schools to develop an
awareness of the rewards of computing careers.

• Establish connections with local colleges/universities
and middle and high schools

– Use to educate teachers, counselors, students and parents
concerning the computing profession, career paths and
rewards post-secondary computing education.

• Increase scholarships for students choosing computing
majors

– seeking external funding from business partners, advisory
boards, professional organizations and private foundations.

Inhibitor 6: Uneven quality of teacher
preparation, enthusiasm for math

in K-12
• Many teachers convey insecurities, distaste

and fears about math to students.
• Lack of certified math teachers in middle and

high school.
• Strategies:

– Colleges/universities need to address math phobias
for elementary teachers in methods classes.

– Schools need to increase the number of certified
math teachers for middle and high school.

– Colleges/universities need to offer courses for
teacher ed. in logical thinking and problem solving.

35

Appendix C: Individual Reports

36

John Antonio – White Paper for ICER Workshop

1. Preparing undergraduates for computing careers: What are the biggest challenges that

you face in your role (i.e., as an educator, employer, administrator, leader, other)?
Encouraging CS faculty to become more engaged in commercial applications and issues.
Often, faculty focus their energies on specific research problems, perhaps because they
have no real institutional incentive to become more cognizant of commercial issues or
concerns. This problem is not unique to CS, however, and is present in all disciplines of
engineering.

2. Transforming the educational experience: What might the community do to address the
challenges you identified above? Provide incentives for faculty by broadening the
traditional definition of creative activity beyond the “single-PI, curiosity driven” research
mode in which most faculty find ourselves. We have made progress in this direction at the
University of Oklahoma by increasing the value of technology development activities.

3. Models for transforming computing education: What might an ideal undergraduate model
for computing education look like in five years? I think it is important to not loose the
fundamentals of the curriculum; concepts that have stood the test of time. However, an
ideal curriculum also needs to instill a sense of confidence in the graduate. One approach
in this direction that we are considering is to create a “Hot Technologies Course” that
students take near the end of their program. This course would overview the latest and
greatest tools and technologies being used in industry, and provide soon-to-be graduates
the confidence to realize they can learn new technologies quickly. More involvement in
multi-disciplinary capstone projects is another idea we are currently implementing.

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from
achieving goals it sets for computing education? Can you identify strategies that may
enable the transformation of undergraduate computing education in the USA? My sense
over the past ten years is that kids in K-12 have the wrong idea about computing.
Actually, I think it might be a mistake to introduce programming in high schools, because
it gives a negative perception to many students about what computer science is all about. I
have often found that well-rounded high-school graduates (with good math and science
skills) perform better in our program than the stereotypical “high school hacker” that
enters our program convinced she knows it all, and that there is nothing left for us to teach
her.

5. Who might participate: What stakeholders should be involved in designing strategies to
catalyze the transformation of university computing education throughout the nation?
What is the role of government in this process? Professional societies? Universities and
faculty? Others? As I mentioned in item 1, I think it will be better to immerse faculty into
commercial environments rather than the other way around. Often, when commercial
stakeholders come to campus with curriculum ideas, it often agitates faculty, and creates
barriers. This may be because commercial stakeholders have a more focused view of
curriculum needs in the area of current technology, rather than the longer and broader
view of faculty. I think the professional societies can help by marketing to the public in
general what our discipline is, with an emphasis on problem solving (not just coding).

37

Integrative Computing Education and Research (ICER): Preparing IT Graduates
for 2010 and Beyond

Susan Bridges

Department of Computer Science and Education
Mississippi State University

The focus of this paper will be on that part of the computing spectrum that encompasses
the traditional disciplines of Electrical Engineering, Computer Engineering, and
Computer Science, and the newer but closely related discipline of Software Engineering.
These are often thought of as the most technical of the computing disciplines and at our
land grant institution, like many others, are housed in the College of Engineering.
Although we were asked to put aside notions of curricula, university education programs
operate within specific curricula and evolve slowly. It may be that some new
“disciplines” or “multi-disciplinary fields” will be added to university offerings, but I
believe that most growth in computing will come, if it comes, in the traditional
disciplines. Graduates from these degree programs are highly recruited and are predicted
to continue to be in high demand for the next 10 years. However, the press coverage
surrounding the burst of the dot-com bubble and outsourcing of computing jobs has led
many prospective students to believe that the job market in this area is weak. Our most
immediate challenge for educating students in computing is to convince them to enter the
field. In order to do this we must convince them of two things: 1) there will be jobs
available when they graduate and 2) the jobs will be interesting and fulfilling. In my
opinion, the first will be much easier than the second.

Enrollment in computer science has plummeted in recent years, particularly for women
and minorities. From my conversations with women and minority students, many of
whom have entered one of our programs and then changed majors, the biggest problem is
the “computer geek” factor. Several students have told me that computer science
“destroyed my creativity.” The perception is that those who enter a career in computing
will spend their days sitting in a cubicle writing code, will have limited interaction with
other people, and will have little influence on people’s lives. This perception is
reinforced by the way we teach our classes and by the current population of students we
attract. We must take bold steps to overcome these perceptions if we are to attract not
only the geeks (and make no mistake, we will continue to need the geeks) but also those
students who want to change the world and want to spend their days interacting with
other people.

We can use public relations campaigns to change some of the perceptions listed

above, but we must fundamentally change the way we educate our students if we are to
keep them interested in computing as a career, if we are to nourish innovation in the field,
and if we are to adequately prepare them for computing careers. Although we have said
for years that computer science is more than programming, most introductory courses in
computer science are programming courses. The introductory courses that we teach have
changed little in 25 years except that students now use laptops instead of submitting card
decks and C++ or Java instead of Fortran or Pascal. One of the first things we should do

38

is to throw away all introductory computing textbooks. The example programs and
assignments in most textbooks have changed very little. Who cares about the Towers of
Hanoi? Introductory computing texts and introductory computing classes completely
ignore innovations in computing such as GUIs, the World Wide Web, and email that have
dramatically changed our lives. The use of computers for communication is not
mentioned in our introductory courses even though this is one of the most pervasive uses
of computing technology. Although we, like many other departments, now introduce
software engineering concepts early in the curriculum, we only look at those aspects of
software engineering that are directly related to programming.

The following are some suggestions for transforming computing education:

• Institute a first course in computing that includes but does not focus on
programming.

• Emphasize the multidisciplinary nature of a computing career early in the
curriculum by asking students to design computational solutions for problems in
other disciplines.

• Use pair programming early and often in the curriculum.
• Team with faculty from other disciplines to teach “linked” courses. Examples

might include biology and computing, physics and computing, accounting and
computing.

• Require writing and oral presentations in all courses.
• Develop “fast track” sets of courses for people to transition from other disciplines

into computer science.
• Integrate concepts from faculty research into undergraduate courses as soon as

possible.

There are a number of factors that make it difficult to make substantial changes in
undergraduate curricula. The demands on faculty time for research and publication at
research universities make it difficult for faculty members to dedicate substantial
amounts of time to innovation in undergraduate education. Even incremental change in
curricula is can be difficult and dramatic change is much more challenging. Almost all
computer science faculty members have painful memories of battles over the relatively
unimportant topic of changing programming languages for introductory courses. It is
more difficult to demonstrate that innovative curricula meet accreditation criteria.

The shortcomings listed above also define the stakeholders. Faculty and administrators
must buy into the need for change and support efforts to implement change. This
includes defining career paths for tenure track faculty whose major mission is improving
education. Accrediting agencies must encourage and support innovation. Companies
who are hiring computer graduates must be willing to hire students from non-traditional
programs.

39

Integrative Computing Education and Research (ICER)

Preparing IT Graduates for 2010 and Beyond

Sheila E. Castañeda
Clarke College

Dubuque, Iowa 52001
cast@clarke.edu

The computing discipline has been faced with many challenges in its young existence. However,
the kinds of problems facing us now are being compounded by societal and economic issues as
never before.

1. Preparing undergraduates for computing careers: The biggest challenges facing educators are
recruiting enough students into the computing field and keeping them interested and engaged once
we have them enrolled. This is a daunting task when high school students, and their parents, hear
about outsourcing, layoffs, long hours, and H-1B visas affecting career opportunities and prestige.
Though students have ubiquitous access to technology and utilize it seemingly effortlessly, they do
not understand how it works nor do they care – and they are not interested in trying to find out.
Technology has become so mainstream to them that they look at it like other technological
innovations that were marvels in their time, but have now become so common that we do not think
about the technology that went into creating them – the automobile, television, phone, refrigerator,
... How many of us really understand how these technologies work – or want to take the time to
find out – or even need to? We hire experts to fix them when they break down or just throw them
out and buy the next better model. Students look at computer technology the same way, wanting
to use these tools to solve problems or make their lives easier – but they do not want to study them
to create new innovations.

2. Transforming the educational experience: To reach the millennial students, we must understand
how students who were born after we began our careers learn best. These students work best with
visual images (not text), crave interactivity, want inductive discovery rather than being told what
they should know, have short attention spans, and move quickly from task to task without taking
time to reflect. We will need to transform the ways we learned our disciplines to new curricula
that are more experiential and collaborative, utilizing the strengths and characteristics of these
young people to challenge them to make our society better by creating innovations in the
computing field.

3. Models for transforming computing education: We can build on the characteristics of the
millennial students to develop creative curricula that engage these students, such as utilizing
graphics, games, robots, handheld devices, community-based projects. Because the millennial
generation wants to responsibly solve societal problems, undergraduate education must include
real-world applications for problem-solving. Expecting students to read large amounts of text is
proving to be unrealistic – many students do not even buy the textbook, or only scan it for the
outcomes and summaries provided. They use Google, Wikipedia and blogs to find out all the facts
they think they need to know. Utilizing tools that build on students’ visual preferences will be

40

mailto:cast@clarke.edu

important; but accomplishing this while balancing an ever-expanding knowledge base with
computing basics in a finite curriculum structure is a huge challenge.

4. Inhibitors and strategies: The lack of highly qualified math and science teachers in grade school
and high school is a national calamity. Without instilling an inherent interest in these fields at a
young age, we will not be able to interest students in studying computing in college. This is
especially alarming when we consider the number of women and minorities that are entering
computing. We must make computing more friendly to these groups – not making aggressive
game playing and high school hacking look like the prerequisites to studying computing in college
and pursuing it as a life-long career.

5. Who might participate: It is going to take a concentrated effort by the entire nation to change
the direction of computing. Industry will have to value a college degree and make employees feel
respected. Grade school and high school teachers need to encourage more students, especially
girls, to consider computer science in college. Education departments in colleges and universities
need to encourage more future teachers to pursue certification in math and science. Computing
departments need to engage students by focusing on students’ strengths and talents within new
curricula utilizing collaborative, experiential and socially responsible projects and close interaction
with faculty members. Small colleges may be particularly well-suited to tackle this challenge due
to small class sizes and personal contact with students. Colleges and universities need to
encourage more students to go to graduate school to make sure we have enough future professors
and innovators. NSF needs to support curricular changes in colleges and universities – even if the
proposals are not innovative at the national level, they may be new at the local level. Model
curricula need to be developed, with faculty development workshops taking place around the
country to ensure adoption by the entire computer science community.

41

Preparing Computing Graduates for 2010 and Beyond
White Paper (9/30/2005)

James Cross, Auburn University

1. Preparing undergraduates for computing careers: What are the biggest challenges that

you face in your role (i.e., as an educator, employer, administrator, leader, other)?

a. Attracting and Retaining Majors to Combat Declining Enrollments – The U.S.

Bureau of Labor Statistics has predicted software engineers to be one of the top ten
fastest growing job occupations during the period 2002-2012 (see
http://www.bls.gov/news.release/ecopro.t04.htm), yet the enrollments in computer
science and similar programs are currently declining. The burst dot-com bubble and the
extensive press regarding off-shore development of software have taken a toll on the
available jobs for computing majors.

b. Meeting Industry’s Needs – Perhaps a more important issue is whether our degree

programs are meeting industry’s needs. To this end, “off-shoring” of the middle of the
software life-cycle, which is the very focus of many CS programs, will most likely
continue to increase.

2. Transforming the educational experience: What might the community do to address the
challenges you identified above?

a. Attracting and Retaining Majors – Efforts to attract students to the discipline may need

to begin as early as middle school and continue through the first year of college. Many
projects to address this issue are underway including efforts to broaden participation by
minorities and women. However, the lack of retention of students that enter the program
is somewhat more troubling. The first few “formative” courses can be critical to the
success of students. At public institutions, experience indicates that as many as half of
the students who begin in computing do not complete their degrees. While a portion of
these are indeed in the wrong major, others just do not get “hooked” or simply cannot
get past some hurdle in an early course. Twenty years ago, object-oriented
programming and design, with its inheritance and polymorphism, were advanced topics.
Now that these topics are commonly taught in the first course, care must be taken not to
lose our prospective majors as a result of technical overload. Fortunately, pedagogically
sound tools and environments that help reduce the complexity of these topics are
becoming available. With a solid foundation in the first courses, students are more
likely to be successful in the core software engineering courses such as software
construction, design and modeling with UML, quality assurance, and process. A
capstone senior design project, which is found in most curricula, should be one of the
most important activities in the curriculum. This team-oriented activity is intended to
emulate a professional experience as it draws together much of the student’s previous
coursework.

b. Meeting Industry’s Needs – An industrial advisory board consisting of technical leaders

and project managers can provide useful insight into current and future industry needs.
In addition, carefully designed surveys for employers of current graduates can also be
useful in determining the characteristics of an ideal graduate from the viewpoint of the
company. As major industry players continue to off-shore detailed design and

42

http://www.bls.gov/news.release/ecopro.t04.htm

implementation, we may have to focus our attention on upstream activities such as
requirements analysis and software architecture, as well downstream user support
activities such as system administration. Clearly, system admin jobs are not likely to be
sent off-shore.

3. Models for transforming computing education: What might an ideal undergraduate

model for computing education look like in five years?

a. Multiple Degree Program Options for Students – While other countries have had

undergraduate software engineering degree programs in place for years, these are just
beginning to be implemented and accredited in the U.S. IT degree programs are also
being created at numerous institutions. However, the effect these new programs will
have on enrollments is unclear. The Computing Curricula 2005: The Overview Report
(http://www.acm.org/education/Draft_5-23-051.pdf) provides a description of CpE, SwE,
CS, IS, and IT degree programs in general. Together these perhaps form the union of
computing education. The report also attempts to describe the intersection of these
degree programs. In the future, departments of CS may need to provide multiple degree
programs which share a common core.

b. Topics and Tools for the Future – Many of the special topics courses in today’s

curricula will become part of the advanced core in the future. There will likely be
increased reliance on managed code for the Java and .Net platforms. Platforms for
software projects will include small devices such as PDAs and cellular phones, as well
as embedded systems. As advanced architectures with multiple CPUs become
commonplace, programming techniques for multithreading will need to receive more
emphasis in upper level undergraduate courses. To make these topics less formidable
for undergraduates, it will become increasingly important to make the use of appropriate
software tools and environments an integral part of the courses. For example, special
environments for cell phone software development and certification will be needed.

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from

achieving goals it sets for computing education? Can you identify strategies that may enable
the transformation of undergraduate computing education in the USA?

a. Fragmentation in Computing Curricula – While much good can be said about the new

subdisciplines of computing, they do have a splintering effect with respect to traditional
CS. Strategies directed at unifying the subdisciplines and mapping out ways for CS
departments to reinvent themselves are clearly needed.

b. Lack of Flexibility Among Faculty – Tenured faculty may not be inclined to welcome
new directions. However, if presented in the right unified format, they may become
surprisingly more nimble with respect to new directions.

5. Who might participate: What stakeholders should be involved in designing strategies to
catalyze the transformation of university computing education throughout the nation? What
is the role of government in this process? Professional societies? Universities and faculty?
Others?

Clearly, government, professional societies, institutions, faculty, and industry must all be
involved. The professional societies, which include representatives from both academia
and industry, should provide the leadership while NSF provides funding for the effort.

43

http://www.acm.org/education/Draft_5-23-051.pdf

Dr. Michael V. Doran, mdoran@usouthal.edu
Professor and Coordinator of Computer Science
University of South Alabama
School of Computer and Information Sciences
Mobile, Alabama 36688

1) Preparing undergraduates for computing careers:
With the recent downturn in enrollments we face many challenges.

Perhaps the most critical occurs before our students reach our campus. K-12 now
uses technology in many settings but seldom addresses the fundamental issues of
computing which would encourage or prepare students to enter an undergraduate
program of study. Students today know how to use tools and search the web or
use PowerPoint, but are not exposed to how computing professionals create,
manage and deploy these tools. It is almost as if a miracle occurs and the next
version of software will appear. The career in computing that leads to these
developments are seldom, if ever, discussed or considered. K-12 schools still
teach the appropriate math and science to prepare students to enter the field;
however, those students are often attracted to science and engineering since CIS
has lost the luster it enjoyed in previous years. Now the numbers who consider
CIS are down, and to compound the problem, they might not be the ones who
have acquired the necessary math and science background to be successful. K-12
advisors know what is necessary to be a successful scientist or engineer and those
students are guided without problem. Computing and technology have evolved
and perhaps the K-12 understanding has not evolved at the same pace. It might be
as simple as getting K-12 to again view CIS as a viable and growing field, and
that it requires the same or similar K-12 preparation as engineering or most other
sciences.

Once the students arrive on campus, we must retain and motivate them to
be excited about a career in computing. The rigor of the discipline must be in
place, but it must also be merged with the glitz and appeal of the use of modern
technology. If students leave the discipline for academic reasons, as discussed
above, that is often outside our control. It is unacceptable if a prepared and
talented student leaves CIS for lack of interest in a static or stale curriculum and
delivery of content.

2) Transforming the educational experience:
During the “Space Race” of the 1960’s there was a national mission to

advance science and technology. The field of computing enjoyed this national
focus probably more than any other field of study. It is critical that again the
nation renews and draws attention to the area of technology development. Some
key endeavor should be identified which would unite education on a similar
mission. Just as in the 1960’s, when kids thought it was appealing to study and
prepare for a career in science and technology, we must foster a new generation
with the same ambition. A clear picture must be presented that without this
renewed emphasis on computing, our national technological advantage will soon
disappear (if it hasn’t already). K-12 has the curriculum available in the

44

fundamental areas as well as the technology areas. Students must be motivated to
undertake this career and have a renewed “national mission.”

3) Models for transforming computing education:

This is difficult to address. The body of knowledge grows each day. The
core of necessary courses has long defined the established curriculum and can
already fill more than four years of study. The need for breadth as well as depth
continues to struggle for a balance. This is considered while still needing an ever
diverse and broad general education curriculum of supporting areas in all
disciplines. A practical approach might look to define an absolute core of central
topics to computing. In the traditional curriculum this might include data/file
structures, software engineering and language theory. Beyond that core,
flexibility might be achieved by diverse focus tracks. Such focus tracks might
include theory as found in many traditional curricula today. Other tracks could
focus on more practical and/or appealing areas of computing such as: robotics,
networks, game development, graphics, real-time systems, numerical methods,
etc. This plan does not propose a vo-tech approach to CIS education, but rather
the same rigor as present today carved into more focused areas of depth and
practical courses. In order to assure some breadth, perhaps several focus areas
might be required. Supporting and general education courses would likewise be
crafted to coordinate focused learning in disciplines such as: science, business,
education, psychology, economics, mathematics, etc.

4) Inhibitors and strategies:

Probably the main factor that drives most any successful thing in the
country is the economy. Not being an expert in the field, it is hard to predict or
understand the factors that influence it. As the recent hurricanes have proved,
some economic factors are completely beyond anyone’s sphere of control. The
main factor in our sphere of control that can impact CIS education is the ability to
make the discipline attractive to K-12 students and have them understand how to
be prepared to enter our discipline. With the turn around cited in much of the
literature recently of the increasing demand for CIS professionals, the job market
should help attract more students in the coming years.

5) Who might participate:

The usual stakeholders must participate and desire these changes to take
place. Starting with the existing university community, the need for change must
be identified and agreed to. Industry and other employment groups, which depend
on qualified graduates from universities, must likewise recognize the need for
change and work to bring it about. The stakeholders who control the financial
direction of universities must participate. This includes local, state and national
government and funding sources. Finally, the students are the main stakeholder
and must be an integral part of the changing learning environment. The new
environment must appeal to them and attract them to it. This transformed
environment must meet their needs but not cater to unreasonable or unsound
educational desires.

45

Alternative Perspective on Integrative Computing Education and Research

Adel S. Elmaghraby
adel@louisville.edu

Identifying the Challenges:

Understanding the challenges facing Computing education is essential. We all agree that a
well-defined problem is much likely to be solved, and therefore highlighting some of these
problems is needed.
• Too many conflicting goals in terms of managing our programs. These goals affect

educational, research, and administrative efficiency and some examples include:
o Various emphasis on teaching versus research – is there a perfect balance?
o How can you justify professional service in times of limited resources?
o Research quality versus research funding.
o Accreditation focus on process as an alternative definition to “quality”.

• Employer needs are changing and employment period of an IT professional is getting too
short. These changes require consideration of issues such as:

o How much training versus fundamentals of the field.
o Need for increased laboratory experience.
o Growing needs for understanding legal, ethical and globalization issues.

• Better understanding of outsourcing and how it affects preparation of graduates.
• Basic funding of educational institutions is not necessarily at the desired baseline. This may

have different reasons and levels at various institutions and may not hold for some, but for
those who face it, these issues are of significance:

o Increased pressure on generating soft money causes shifts in focus from long-term
goals to immediately achievable opportunities.

o Balance between full-time faculty, adjuncts, and graduate assistants in the classroom
and a laboratory does not necessarily provide the best possible education.

Responding to the Challenges:

By following a structured approach, we can better respond to these challenges. The ICER
workshop is certainly a step in this direction. Let me identify some steps:
• Identify goals, resources, and opportunities for our individual programs.
• Prioritize our goals and seek consensus among our stake holders.
• Seek alternative and innovative approaches that may leverage our resources and target our

unique opportunities.
• Plan our strategies and “sell” our approach to those we need for support.

Considering Alternative Models:

By seeking alternative models, I would like to emphasize that these can be in relation to
teaching, research, and service. Some examples of alternative models include:
• Partnerships with other institutions, departments, government agencies, industry, and alumni.

These partnerships can be at a local, regional, national, and international dimension.
• Consider changes in the methods of delivering your education content such as:

o Distance learning.
o Web-assisted instruction.

46

mailto:adel@louisville.edu

o Lecture, lab, and discussion sections.
o Group learning activities and communities of learners.
o Leveraging independent and extra curricular learning activities.
o Studio Learning Approach and this, I will expand in more detail.

A Studio Model for Computer Education:

Observation of art and architecture models of studio-based education demonstrates that
they provide students with immersive experiences that are much closer to reality as compared to
traditional classroom and recitation approaches. In addition, the studio approach provides better
communication and team skills – a much-valued outcome for the work environment.
Experiments have demonstrated usefulness of this approach to other disciplines in engineering
[1] and science [2] and others have considered using it for post-graduate education [3]. So, is
studio-based education relevant, desirable, or feasible for computing education?
My perspective is that is one of our best alternatives – several reasons support this argument:
• Current educational models are not well-suited for the job market.
• Increased challenges due to globalization require a more balanced and integrated

understanding.
• Carving the curriculum in the traditional modular approach does not promote integration.
• Skills and theoretical fundamentals are better integrated and understood in a studio setting.
• Research experiences and industrial projects can be part of the studio curriculum and provide

case studies and realistic learning challenges.

Concluding Remarks:
 Achieving a studio-based approach is only one possibility towards an integrated
computing education and research that can better adapt our graduates with the changing global
environment. Partnership is essential to leverage resources and to improve the learning
environment. Accreditation at various levels is providing, in some cases, an excessive overhead
and has trivialized the measurements to focus on process and possibly miss on the more difficult
to measure “quality” of experience and long term benefits to the graduates and the profession.
Universities, communities and government agencies need to address education funding in a
comprehensive way and include the students in the equations – innovations in funding students
during undergraduate studies will allow them to spend adequate time in campus and have a
comprehensive experience in a studio setting.

References:
1. The Influence of Technology on Engineering Education, by John R. (EDT) Bourne, A.

(EDT) Brodersen, M. (EDT) Dawant. CRC Press, December 1, 1995 (page 98).
2. Improving Undergraduate Instruction in Science, Technology, Engineering, and

Mathematics, Steering Committee on Criteria and Benchmarks for Increased Learning from
Undergraduate Stem Instruction, Committee on Undergraduate Science Education, National
Research Council - National Academies Press, January 1, 2004.

3. Design Education for Engineers, Lord St John of Fawsley - Royal Fine Art Commission,
Publisher Thomas Telford, December 31, 1996.

47

Richard Furuta
Professor
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112

Email: furuta@cs.tamu.edu

Computing education faces challenges related to external perception and to internal
focus. Turning first to the issues of external perception, it is evident that in the broader
community, computer science is viewed as synonymous with programming. Yet as the
continuum of computing disciplines identified by the workshop’s organizers illustrates,
programming is only a single skill out of many that must be acquired by today’s
computing students. Beyond the recent enrollment drops, increasingly attributed to
parental concerns about outsourcing of programming jobs, a longer-term concern is the
effects of prospective students’ perceptions as it restricts their interest in becoming
involved with our field.

Computers, computing applications, and high-speed networks are commonplace in
today’s society. Nielsen//NetRatings, quoted in the Chicago Tribune of September 29,
2005, reports that 42% of all Americans now have access to broadband network
connections at home. Nearly all K-12 schools are connected to the Internet. In my
experience, for today’s high school students, computers are a commodity and perhaps
as a result, many view programming as a dull and tedious choice of career. Since
computer programming is what is emphasized in high school classes (and indeed, in
many college program’s first year or two of courses), many students never have the
opportunity to discover the true nature of computing careers.

Expressing the breadth of the scope of computing to prospective students is an
important goal, but in addition we must take steps to reflect the breadth in our
curriculum. The diagram provided by the workshop’s organizers is informative in
focusing thoughts about this, showing a continuum from “Electrical Engineering” on the
left to “Users” on the right. Both ends are grounded in well-developed, and quite
different, theories and traditions. The left draws from a mathematics-based theory and
from engineering practice. The right draws from a theory derived from the social
sciences and incorporates a tradition with strong influence from the arts. I think it is
accurate to say that the common perception of Computer Science more strongly
identifies it with the left side of the diagram rather than the right. Similarly, the students
in most departments encounter the theory and practice from the left side of the diagram
in introductory classes, moving to the right only in upper division elective classes.

While the perception that Computer Science is just about programming may have
played a role in our recent enrollment declines, I think that the perception that Computer
Science is primarily about the left hand side of the diagram has played a role in our
longer-term decline in diversity. We are clearly appealing to only some of the students

48

mailto:furuta@cs.tamu.edu

with talents and interests of importance to employers in our field. Perhaps an important
distinction might be to recognize that while it is critical that our students’ education be
well grounded in a discipline’s theoretical framework, there most likely is not a single
theoretical framework of relevance to computing.

There are many departments in the university with a primary focus on computing—
some of the traditional ones include Computer Engineering, Computer Science,
Information Science, and Management Information Systems. Perhaps the “right” way to
address these issues will be to retain a status quo—for each department to focus on its
traditional strengths—to give the student a palette of entry points to studying computing.
An alternate approach within the context of Computer Science would be to modularize
the classes offered so that a student could build a program that was centered in one of
the several relevant areas of theory with supporting coverage of the others.

As a final point, I would like to note that beyond providing an equal footing to the range
of areas affecting computing, computing programs must expand their scope to
incorporate skills not emphasized traditionally. One such skill is writing proficiency.
Increasingly, the focus of undergraduate engineering and computer science majors on
purely technological topics is being called into question by employers, who point out the
importance of effective written communication in the workplace. It goes without question
that this skill is important for students who decide to pursue advanced degrees.

49

Aesthetic Computing in Computer Science Education
Paul Fishwick

CISE Department
University of Florida
fishwick@cise.ufl.edu

Introduction

Despite significant and long-term progress made by computer scientists over the past
five decades, we are at a turning point in the discipline. There are several problems that
have led to this juncture. The first problem is the most recent: students out of high
school see less relevance in computer science as a major when they get to college. The
causes for this are not clear, and theories range from outsourcing and the “dot com”
economic bust to notions concerning how computing is viewed as generally less
relevant or important to real life when contrasted against other areas such as the
biological and medical sciences.

Part of the problem rests with the observation that computer science is fairly abstract,
almost by definition. Abstraction, while central to mathematics and computer science,
requires a balance with reification. Abstraction in the form of symbol mapping does not
imply “abstracting away the senses.” The reification process has actually been occurring
for many years in the form of new metaphors for computation. By adding concepts like
classes, objects, inheritance, and agents into software engineering, we think
differently—through analogy and metaphor—about how computing is defined. The user
interface adds to the collection, with loosely defined metaphors for a functioning office
(i.e., folders, copying, printing, desktop) dominating the scene for the past twenty years.
However, the use of metaphors is not sufficient, unless such use is accompanied by
reified objects (pictures of folders and trash cans). We might ask ourselves why we
have not taken this metaphorical evolution back to programming language
development, or perhaps even further to mathematics itself? To some extent, we have.
There is a rich history of visual programming, and curiously enough it is beginning to
finally surface in mainstream computing in the guise of model-driven architecture
(MDA). Another area that seems to hold significant promise is “serious gaming” where
game-based approaches are used to teach computer science. If we can weave gaming
into the curriculum, this partially addresses the reification problem and hopefully
motivates students to program and learn more about computer science.

Our approach has been to consider reification, gaming, and visual programming and
then to ask ourselves “where we might go from here?” The elements of gaming,
graphical user interfaces, and visualization involve a celebration of the senses: seeing,
touching, hearing, and the unifying field that combines them is art. By applying art as
method (i.e., aesthetics) to model and program representation, we can manifest

50

mailto:fishwick@cise.ufl.edu

structures that can be anything from games and cinema to designs, spaces, and
sculptures. This new emphasis is termed aesthetic computing, and we have been
working on it for the past six years.

Aesthetic Computing

In 2001, we obtained a grant from the National Science Foundation, EIA-0119532,
entitled “An Investigation into Aesthetic Computing within the Digital Arts and Sciences
Curricula.” We have been teaching the course each spring semester. Students learn a
method of starting with a formal mathematical expression, computer program, or data
structure. They then take this structure through a set of transformations to yield a final
representation. The three types of representations are 2D, 3D, and Physical, with the
physical representation being shown for one week in a public gallery toward the end of
the semester. The method has also been employed for a year in a class in Computer
Simulation at the undergraduate and graduate levels. In this class, the approach is to
teach simulation skills using art and design as catalysts for creativity. Model structure
and behavior are subject to the creative skills of the students.

In September 2005, we held a workshop for mathematics teachers who teach algebra,
with the idea that aesthetic computing can be used to 1) create a structured way of
organizing algebraic expressions (in concept maps), and 2) introduce qualitative
benefits into the classroom including improved student motivation, interdisciplinary
connections with art and English, and an emphasis on individualization.

Bibliography

Fishwick, P. (2002) “Aesthetic Computing: Crafting Personalized Software”, Leonardo,
MIT Press 35 (4), pp. 383-390.

Fishwick, P., Diehl, S., Prophet, J., and Lowgren, J. (2005) “Perspectives in Aesthetic
Computing”, Leonardo, MIT Press, 38 (2), pp. 133-141.

Fishwick, P. ,Ed (2006), Aesthetic Computing, MIT Press, due in early 2006.

Aesthetic Computing Course Site: http://www.cise.ufl.edu/~fishwick/aescomputing

Math Ed Web Site: http://www.cise.ufl.edu/~fishwick/acworkshop

51

http://www.cise.ufl.edu/%7Efishwick/aescomputing
http://www.cise.ufl.edu/%7Efishwick/acworkshop

Guiding Principles for Redesigning Computer Science Education for the 21st Century – A White Paper
Sandeep K. S. Gupta (Sandeep.gupta@asu.edu), Department of Computer Sc. & Engg., Fulton School of Engineering, Arizona State

University, Tempe AZ 85287. http://impact.asu.edu.
1. “Computer Science Educators – We have a Problem!”

A recent May 2005 CRA article “Computing, We Have Problem” by Jim Foley, CRA Board Chair, identifies a current
problem in Computer Science (CS) education – a trend towards lower enrollments in many undergraduate computing
programs. In the same CRA issue, the article “Challenges for Computing Research”, by Peter Freeman and Lawrence H.
Landweber from NSF, identifies an “increasing competition for international students” due to “upsurge in the economies of
countries, such as India and China and the attendant professional opportunities for students who remain at home, increasing
numbers have opted for local universities”. This is partly due to the recent trends of off-shoring numerous programming
related jobs to these countries to tap their cheaper workforce. And while the potential CS enrollments are falling, the
projected demand for CS graduates is on the rise due to expected increase in the use of computing in all areas such as
healthcare and security. As indicated in Foley’s article, computing education has an “image problem” due to its focus on
programming – an activity which is mainly associated with nerds and hackers. How did we get here and what is a way out?
To quote Einstein “We cannot solve our problems with the same thinking we used when we created them.” In order to
address the problems created by off-shoring of CS jobs and decrease in CS enrollment there is a need to rethink CS
pedagogy.

Early problems in CS education were pointed by D. L. Parnas (DLP) specifically “… top industry researchers and
implementers … prefer to take engineers or mathematicians, even history majors, and teach them programming.”[LDP90].
However, such concerns were debunked partly due to availability of umpteen jobs for CS graduate first due to Y2K problem
and then the arrival of Dotcom era. However, the problems so clearly stated in DLP’s article and the doubts about nature of
computer science [see ACM Computing Surveys 27(1) March 1995] are now resurfacing. It is time to take these concerns
seriously in light of current problems. A serious redesign of CS curriculum can serve as a “Rite of Passage” to a more mature
and respected discipline. In the following four guiding principles for redesigning CS education are discussed:

1. Move away from “reductionistic” approach to “holistic” - a more systems oriented - approach.
2. Emphasize convergence and identification of “fundamental principles” and merging of traditional courses.
3. Revise curriculum to reflect Dave Patterson’s SPUR (Security&Privacy, Usability, Reliability) manifesto [DAP05].
4. Evolve CSE curriculum to incorporate fundamentals of important emerging areas such as biomedical informatics.

2. Holistic or Systems Oriented Educational Approach
According to E. W. Dijkstra (EWD), “Computer Science is no more about computers as astronomy is about telescope.”

This profound statement about the nature of computer science has many implications on how it ought to be taught. Some of
his ideas on CS pedagogy are stated in his article “The cruelty of really teaching computer science” which had sparked an
early debate on teaching computing science [PD89]. This article points a fundamental problem in today’s reductionist
approach to computer science education – if a student can understand all its parts – OS, compilers, PL, Database Systems
then he or she can understand how a computing system functions as a whole. Incidences such as various security attacks on
computer systems point towards the needs to pay more attention to the interaction of various components in a computer
system. As rightly indicated by EWD, a computer scientist needs to think holistically – a more systems thinking approach –
with emphasis on the whole system functionality and the interdependence of its various components. EDW’s ideas about
how to teach computer science are debatable due to his believe that computer programming is a branch of mathematics and
his exclusive emphasis on training CS students in formal logic. Nevertheless, it is a fact that computer systems are becoming
increasingly complex. Multiple agents (both within a computer and distributed across a network and maybe within the
network) interact in various ways – P2P, client server, etc. – with dynamic trust relationships. Overall behavior of a
networked computer system cannot be simply understood by understanding its parts individually. This behooves us -
educators - to ensure that the computer science curriculum and pedagogy evolves to train the future generations of computer
science professionals in systems oriented (top-down) methods.

One possible way to improve the image of CS – as a field for training programmers - may be to take a “top down
approach” with an “inverted curriculum” similar to B. Meyer’s (BM) idea for teaching software engineering (SE) [BM2001].
Observations made by BM in the context of SE education are very pertinent to overall CS education in general and systems
education in particular. The right emphasis on principles, practices, applications, tools, and mathematics are essential for a
well-balanced university education which aims to provide not just vocational training to the student but prepare them for ever
evolving field like computer science.
3. Need for Convergence

Thanks to proliferation of computers in scientific research, the sciences are seeing convergence [GWF01]. However,
CS itself seems to be resisting convergence of its traditionally core areas. An as example consider how systems software
courses (OS, compiler, networking) are currently taught. In most CS programs, there are dedicated courses on OS, compilers,
and networking. OS courses focus on topics such process and memory management, synchronization primitives, and access
control. Compiler courses teach lexical analysis, parsing, and code generation and optimization. Many of the networking
courses teach the seven layer architecture covering protocol details at each layer. However, a typical CSE graduate is neither
going to be writing OS, compilers, nor networking protocols. Then what is the rationale for having these courses in an

52

mailto:Sandeep.gupta@asu.edu
http://impact.asu.edu/

undergraduate CS curriculum? Can we extract the essence of these traditional courses – e.g. concurrency, layered
architecture, syntax and semantic analysis – and merge them into fewer, more integrative courses?

On the other had there seems to be a lack of emphasis on the fundamentals. Books such as Keshav’s book on
networking [Kesh98] have identified common design techniques for computer systems – but this is rarity as opposed to
common practice. Normally, undergraduate networking books focus too much on protocol details and do not pay much
emphasis on fundamental principle such as end-to-end principle for layering [SRC84, MBDC01]. Hints on computer systems
designs have been only informally stated [BWL83] and there is a need for formalizing them and teaching them to
undergraduate students. This will only happen if we take a more holistic approach to teaching computer science. In fact a
new balance between reductionist and holistic approach should be forged – a kind of balance between Yin and Yang
[ACS98].
4. SPURing CS Curriculum

We are seeing the proliferation of C&C (computer and communication) devices - thanks to the push for faster and
cheaper C&C in the last century [DAP05]. However, the cost of operating these devices (in terms of end user involvement
and worries) has dramatically increased. We hear daily of identity theft cases due to someone breaking into a credit card
database. One has to deal with distributed storage in multiple devices. Lack of penetration of information technology in
important area such as Healthcare is due to privacy and reliability concerns. If we have to solve these problems the CSE
curriculum has to change to more seriously address Security, Privacy, Usability, and Reliability (Dependability). New
software engineering approaches such as Trusted Components [BM03] which have great potential to revolutionize how
dependable software is developed in the context of off-shoring and security concerns. Ubiquitous computing and bio and
health related topics are common recurring themes in a recent “Grand Challenges in Computing Research” by T. Hoare and
R. Milner (eds) [THRM04]. We need to train our undergraduates to ensure that they understand these challenges – since
they are the one who will be involved in developing the solutions.
5. Need for Evolution – Bridging CS and Other Sciences & Engineering

Since its inception, the modern computers (as simulation tool) have revolutionized (revitalized) many fields by bringing
together theoreticians and experimentalist and enabling virtual explorations at vast spatio-temporal scales. Computers have
been used as a “[Silicon] Laboratory and a Metaphor for Understanding the Universe” [GWF01]. Current interest in
bioinformatics is one such area where computers are helping in understanding the “human code” in the quest to address
various maladies including cancer and aging that affect humans. As the US population ages there would be increasing
shortage of health care professionals. A recent article in the Time Magazine
(http://www.time.com/time/magazine/article/0,9171,1074139,00.html) on e-health, on-going National Academy of
Engineering project on “engineering the delivery of Health Care” (http://www.nae.edu/nae/naepcms.nsf/weblinks/MKEZ-
5LWQVN?OpenDocument), a recent medical data bill by Senator Clinton and Frist
(http://www.tennessean.com/apps/pbcs.dll/article?Date=20050617&Category=NEWS08&ArtNo=506170412&SectionCat=
NEWS&Template=printart), and workshops such High-Confidence Medical Devices Software and Systems (HCMDSS
http://www.cis.upenn.edu/hcmdss/index.php3) all identify the urgent need for increasing the use of information technology
in healthcare. Currently, SPUR technology which would form the backbone of healthcare delivery is virtually non-existent.
Who would want a networked medical device which can be infected by computer viruses and fail at inopportune time? A
fundamental question to ask is how the future generation of CS undergraduates can be educated so that they can help in
development of SPUR technology in other fields. Imparting CS students knowledge of the fundamentals of other science and
engineering fields would make them more appealing for employers developing computing based solutions for fields such as
healthcare.
6. Conclusions

CS undergraduate curriculum needs to be redesigned to address the dramatic changes in the role of computers in the
society, the “negative” image of computer science profession, and increasing importance of computers in emerging areas
such as bioinformatics and e-health. This paper identified four principles for redesigning CS undergraduate curriculum – a
way to reach a more balanced and refocused SPURized curriculum with stronger bridge to other engineering fields and
sciences.

References

EWD88 E. W. Dijkstra, The cruelty of really teaching computer science, 1988.
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF

THRM04 T. Hoare and R. Milner (Eds), Grand Challenges in Computing Research, The British Computer Society, 2004.
BM01 B. Meyer, Software Engineering in the Academy, IEEE Computer, pp 28-35, May 2001.
BM03 B. Meyer, The Grand Challenge of Trusted Components, May 2003.
GWF01 G. W. Flake, The Computational Beauty of Nature – Computer Explorations of Fractals, Chaos, Complex Systems, and

Adaptations, MIT Press, 2001.
DAP05 D. A. Patterson, 20th Century vs. 21st Century C&C: The SPUR Manifesto, CACM 48(3), Mar. 2005.
Kesh98 S. Keshav, An Engineering Approach to Computer Networking, Addison Wesley, 1998.
SRC84 J. Slatzer, D. Reed, and D. D. Clark, End-to-End arguments in systems design, ACM ToCS, 2(4), 1984.
MBDC01 M. Blumenthal and D. Clark, Rethinking the Design of the Internet: The End-to-End Arguments vs. the Brave New

World, ACM Transactions on Internet Technology, Aug. 2001.
BWL83 B. W. Lampson, Hints of Computer Systems Design, 9th ACM Symp. on OS Principles, Oct. 1983.

53

http://www.time.com/time/magazine/article/0,9171,1074139,00.html
http://www.nae.edu/nae/naepcms.nsf/weblinks/MKEZ-5LWQVN?OpenDocument
http://www.nae.edu/nae/naepcms.nsf/weblinks/MKEZ-5LWQVN?OpenDocument
http://www.cis.upenn.edu/hcmdss/index.php3
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF

ACS98 A. C. Sodan, Yin and Yang in Computer Science, CACM, April, 1998.
PD89 P. J. Denning, A Debate on Teaching Computing Science, CACM 32(12), Dec. 1989.
LDP90 D. L. Parnas, Education for Computing Professionals, IEEE Computer 23(1), 1990.
DAP04 D. A. Patterson, The Health of Research Conferences and the Dearth of Big Idea Papers, CACM, 47(12), 2004.

54

Computing for Everyone: Improving Global Competitiveness and
Understanding of the World
A White Paper for ICER Workshop

Mark Guzdial, Georgia Institute of Technology

The goal of computing education for the next five to ten years is to establish computing as

part of a liberal, general education. Like mathematics or laboratory sciences, taking computing
courses should be a presumption of an educated professional or academic. Everyone would take
some computing, and most would take more.

There are three reasons for the necessity of this goal. The first is that that’s where the future
jobs are, in the mix of computing with other disciplines. As Thomas Friedman argues in his book
The World is Flat (Friedman, 2005), forces of global competitiveness require future workers to
become Versatilists. “The world ‘versatilist’ was coined by Gartner Inc., the technology
consultants, to describe the trend in the information technology world away from specialization
and toward employees who are more adaptable and versatile…Enterprises that focus on technical
aptitude alone will fail to align workforce performance with business value.” Even technological
powerhouses like Microsoft is looking for versatilists, as Bill Gates said, “The nature of these
jobs is not closing the door and coding. The great missing skill is somebody who’s good at
understanding engineering and bridges that to working with customers and marketing
(Montalbano, 2005).”

The second reason is that a liberal education is about understanding one’s world, and
computing is a huge part of today’s world. We ask students to take laboratory sciences (like
biology, chemistry, and physics) in order to better understand their world and to learn the
scientific method for learning more about their world. The virtual world is an enormous part of
the daily lives of today’s professionals. Understanding computing is at least as important to
today’s students as understanding photosynthesis.

The third and most significant reason is to meet the potential of computing and other fields.
Alan Perlis first called for computing as part of a liberal education in 1961 (Greenberger, 1962).
He argued that the ability to specify and execute process would offer a whole new method of
exploring domains and learning. If you understand something well, you should be able to define
its process well enough for a machine to execute it. If you can’t, or the execution doesn’t match
the observed behavior, we have a new kind of feedback on our theories. He used examples from
economics in his 1961 talk, but the entire field of computational science demonstrates his
prescience. Computing has enormous potential in many fields where its use today is limited to
whatever Microsoft Office can do.

Computers are workhorses for plowing mental fields, but to harness these beasts of burden,
one has to know how to command them. Most professionals today are limited to using
applications developed by technology specialists, who can’t possibly understand all other
professions as well as their practitioners. To follow the analogy, it’s as if farmers and mill owners
of the past were told, “Look, horses are only good for pulling wagons for merchants. I can’t help
you with your plows and mills, but I can sell you wagon.” The potential for computing in our
society will only be met when all professionals have the capacity for understanding and
commanding computing workhorses. When educated people across our society realize what
computing really can do for them, the demand for software development professionals will
increase to scale and disseminate the good ideas of the versatilists.

Our current computing education cannot meet this goal. Our track record for educating
students about computing is dismal. We can’t attract and retain the students who claim that they

55

want to focus on computing, and it’s much worse with non-majors. The percentage of women and
minorities taking computing courses continues to drop, even with all the attention paid to it.

The largest change that must occur in our computing education in order to create computing
for everyone is to recognize that the goal of computing education is not only to produce software
development professionals. Creating software development professionals will be a fraction of the
challenge of our education task if everyone on every campus studied computing. We
overemphasize techniques and methods for large scale software development in our classes,
which are not the most important benefits that we have to offer the rest of academia.

A computing for everyone should emphasize the laws, limits, uses, and wonders of
computing. A few examples include:

• That we can define better or worse processes, and that processes can be proven
correct (something that Perlis thought everyone should be taught).

• That there are processes that can’t be successfully defined like a solution to the
Halting Problem, or if defined for a computer to execute, may not finish in your
lifetime.

• That the line between ‘program’ and ‘data’ is permeable, and that exploiting that
permeable boundary is how many viruses attack.

• That information, once digitized, can be mapped and re-encoded into other media,
forms, and representations.

Our proof of concept is the new courses at Georgia Tech’s College of Computing. We have
been creating contextualized computing education where we teach non-CS majors in classes that
draw on relevant examples and uses in their field and that emphasize computing concepts and
skills that go beyond just software development. We teach engineering students MATLAB with
engineering-oriented problems, and we teach management, architecture, and liberal arts students
computing for creating and manipulating media (Guzdial, 2003). We are enjoying dramatically
higher retention rates in these contextualized courses than in more traditional computing courses,
with women and minorities succeeding at the same rates as white men (Rich et al., 2004). It’s a
portable innovation: the courses are being adopted at other institutions with similar improvements
in retention (Tew et al., 2005). But most importantly, follow-up studies have students telling us a
year later that the courses have changed how they think about computing and use it in their daily
lives (Guzdial & Forte, 2005). GT’s new BS in Computational Media degree, a versatilist
combination of computing and liberal arts, drew over 100 majors in the first year and is nearly
one-quarter female. Our field needs similar innovations in many contexts to draw in everyone
across the academy into computing.

References

Friedman, T. L. (2005). The world is flat: A brief history of the twenty-first century: Farrar, Straus, and Giroux.
Greenberger, M. (1962). Computers and the world of the future: MIT Press.
Guzdial, M. (2003). A media computation course for non-majors. Paper presented at the Proceedings of the Innovation

and Technology in Computer Science Education (ITiCSE) 2003 Conference.
Guzdial, M., & Forte, A. (2005). Design process for a non-majors computing course, Proceedings of the 36th SIGCSE

technical symposium on Computer science education. St. Louis, Missouri, USA: ACM Press.
Montalbano, E. (2005, July 18). Gates worried over decline in us computer scientists. Computer World.
Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of women. Paper presented at the

Proceedings of the ACM SIGCSE Conference.
Tew, A. E., Fowler, C., & Guzdial, M. (2005). Tracking an innovation in introductory cs education from a research

university to a two-year college, Proceedings of the 36th SIGCSE technical symposium on Computer science
education. St. Louis, Missouri, USA: ACM Press.

56

Mirsad Hadzikadic
University of North Carolina - Charlotte

1. Preparing undergraduates for computing careers: What are the biggest challenges

that you face in your role (i.e., as an educator, employer, administrator, leader,
other)?

Understanding the true needs of the industry/businesses is exceedingly hard (despite
the usual claims that “softer skills like communication, team focus, and problem solving”
is what is needed). They want graduates who understand both business and computing.
However, they are not willing to define, in terms of skill set, what will be needed long-
term. Part of the problem is that their business needs/goals change quickly. The short-
term profits, not long-term planning, drive their decisions. It is hard to promote IT as a
field under those circumstances (job security issues, etc.).
Under-representation of women and minorities in IT is troublesome. IT is still seen as a
career for “nerds.” The key to the success here might be in accepting and promoting IT
as an interdisciplinary field. IT is becoming an integral component of so many
disciplines. Why not teach it that way?
Separating fads from true “sub-disciplines” is getting harder, primarily because of (a) the
speed of changes in technology itself and (b) the degree of integration between
technology and business processes.
2. Transforming the educational experience: What might the community do to address

the challenges you identified above?

Form partnership with universities. Help us define the curriculum, with an eye toward
long-term. Help with funding (especially in the case of state universities).
3. Models for transforming computing education: What might an ideal undergraduate

model for computing education look like in five years?

I believe that the key words will be: flexibility; interdisciplinary, customized curricula;
hands-on experience; highly integrated internships.
4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from

achieving goals it sets for computing education? Can you identify strategies that may
enable the transformation of undergraduate computing education in the USA?

Clearly, the funding is an issue. However, equally important are: the quality of secondary
education (math and science), emphasis on quality teaching, modifying the concept of
tenure, and re-thinking the hierarchical structure (disciplinary silos) of universities.
5. Who might participate: What stakeholders should be involved in designing strategies

to catalyze the transformation of university computing education throughout the
nation? What is the role of government in this process? Professional societies?
Universities and faculty? Others?

I do not believe that it is up to any particular committee to sort things out. We simply
need to let universities respond directly to the changing needs of the society without any
restrictions imposed by the accreditation bodies. Several interesting ideas will emerge.
The problem will be in insuring that the public is aware of the differences in the quality of
offered solutions and offered education/degrees.

57

ICER Workshop White Paper
Michael N. Huhns

Department of Computer Science and Engineering
University of South Carolina

Huhns@sc.edu

There is a huge gap between what is taught in computing curricula and what is practiced
by computing professionals. (This problem is not unique to computing education: in
electrical engineering there is a similar gap between a traditional course in circuit design
and the way that electrical/electronic components and systems are designed and
constructed.) Very few practitioners write individual Java programs, as is taught in CS1,
or write compilers, as in a senior course on compilers, or design digital circuits consisting
of a few gates and flip-flops, as taught in a sophomore course on digital logic design.

There are many exciting things underway in computing: games, visualization,
multimedia, immersion, real-time, ubiquity, RFID tags, and service-oriented computing.
These are not reflected in most curricula.

There are many critical needs that require computing: healthcare, education,
transportation (flight rescheduling), entertainment, security vs. privacy, the environment,
and defense. These are not addressed by most curricula.

The Web provides massive amounts of information, but it is impoverished in its
connection to sensors and effectors. This will soon change, and curricula must support
this.

1. Preparing undergraduates for computing careers: What are the biggest challenges that
you face in your role (i.e., as an educator, employer, administrator, leader, other)?

As an educator, my biggest challenge is conveying the excitement of new computing applications
and the sense of accomplishment in constructing one of these applications, while trying to teach
where semicolons belong in Java. The exciting capabilities readily available and the fascinating
and important problems are being obscured by the low-level and mundane aspects of curricula
that have not changed in several years.

We are on the brink of major changes in computing, brought about by two hardware advances—
unlimited and ubiquitous bandwidth and multicore processors—and one software advance—
service-oriented computing. These advances will cause profound changes not only in how
computer applications are developed and executed, but also in the very nature of the applications
themselves. Computing curricula should be leading, not lagging the changes. Unfortunately, the
number of things that seemingly ought to be taught in an undergraduate computing curriculum is
increasing, but the time available for the curriculum is fixed.

2. Transforming the educational experience: What might the community do to address the
challenges you identified above?

58

It would be helpful if there were community-wide consensus about the necessary fundamentals
for an undergraduate computing curriculum that reflected the new capabilities in hardware and
software and that narrowed the gap between the curriculum and practice.

3. Models for transforming computing education: What might an ideal undergraduate model
for computing education look like in five years?

• Software development will be taught more from a methodologies standpoint. This will

enable the consideration of testing, maintenance, and security from first principles.
• Both hardware and software will emphasize the role of development teams and a

consideration of the social aspects of both implementation and use.
• Programming will distinguish between client-side and server-side systems, and will

emphasize the role of services as an enabler for “programming-in-the-large.”
• Theory will remain largely unchanged.
• Operating system and compiler courses will become graduate specialties.

4. Inhibitors and strategies: Can you identify inhibitors that might prevent the nation from
achieving goals it sets for computing education? Can you identify strategies that may
enable the transformation of undergraduate computing education in the USA?

The major inhibitors are (1) the lack of course materials to support the new computing
capabilities, (2) the cost for departments to acquire the multimedia, sensing, and robotic/effecting
systems, and (3) simply the inertia within the educational system to revamp the curricula.

A strategy is to first develop a model curriculum that reflects the new computing attributes and
capabilities. Once it becomes widely adopted, there will be an incentive for new materials to be
produced. But, state and federal agencies must be convinced to provide the requisite funding.

5. Who might participate: What stakeholders should be involved in designing strategies to
catalyze the transformation of university computing education throughout the nation?
What is the role of government in this process? Professional societies? Universities and
faculty? Others?

All of the above have a role to play, especially because it is in their vital interests to do
so. However, the major impetus and effort must come from university educators.

59

Vladan Jovanovic, College of IT, Georgia Southern University

Developing Student Potential: The Framework for Education in IT

This ICER white paper identifies direction for IT education and characterizes an
Architectural Framework for a Research Oriented Model of Evolving Computing (IT)
Curricula. The world is changing by automation of routine work by IT and this can only
intensify. The only viable response for Universities is fostering challenging environment
for intellectual pursuits conductive to the full development of students.

By 2010 evolving IT disciplines will be sufficiently established, increasingly experienced
in working together, and probably shifting more efforts towards direct student
involvement in a shared multidisciplinary research. One additional assumption is that
improvement and sustainability oriented mindset will replace the ‘next killer application’
or the ‘silver bullet’ mentality.

Challenge: Focus IT educators/leaders of educational establishments decisively on
increasing their involvement in relevant research with students, in order for students to
become more reflective and experienced practitioners in use of scientific methods and
industry best practices. Direct consequence of such focus on development of student
potential will be more mature, able and competitive students. Integration and adaptation
abilities in a changing world require mature students with cultivated insight. IT education
must address nurturing of these abilities and the premier way to do so is exposure to
variety of viewpoints in a challenging environment.

Responding Strategy: Framework for architecting an integrated research oriented
curriculum in computing. Proposed framework covers: Outcomes as requirements,
Learning Areas as components, Policies as enabling mechanisms, and identifies the need
for feedback from students Pre and Post University. Setting the stage for the new faculty-
student collaboration includes recognizing:

a. Grand challenge areas in improving human conditions to be addressed like
Life Information Processes and Semantic Web

b. Important Goals regarding students development, specifically: Character,
Maturity, and Capabilities for research of practice and of systems design

c. Principles include: Relevancy, Involvement, Flexibility, and Consolidation.
For example (consolidated) curriculum should explore significant overlap of
fundamentals for all IT disciplines and effectively incorporate missing elements
of systems and information theory, focus on knowledge representation, integrate
theory with solved problems and deliver most fundamentals early.

Outline of the proposed Framework for Architecting Computing Curricula follows:

1 Outcomes as explicit Maturity and Capability Requirements

i. Understanding of systems and of technology
ii. Personal Insight

iii. Professional Insight

60

iv. Careful and logical thinking
v. Fast acquisition of knowledge and skills

vi. Communication and persuasiveness
vii. Experience in solving application domain problems

viii. Organizational skills, time and project management,
ix. Experience in leadership and contribution to projects and development of others
x. Systematic design and evaluation of systems and processes

xi. Demonstrated Knowledge and Skills achievement at appropriate levels (for
example at a Design level on the Bloom’s cognitive taxonomy scale)

2. Learning Areas

i. Fundamentals
ii. Resources and interactions

 People,
 Organizations and Society
 Information,
 Hardware,
 Software,
 Communication (Networks)

iii. Cross-cutting concerns (security, process design, qualities, …)
iv. Design and Enhancement of Systems (methods, standards, artifacts)
v. Application Domains, Issues and Topics in their context

vi. Capstone Experiences (projects, internships, research work)

3. Policies as Enabling Mechanisms
vii. Institutionalization of student research as a method of study

viii. Free movement of people and ideas (no department boundaries etc.)
ix. Early delivery of a broad conceptual foundations in ICER
x. Teamwork for substantial process learning and study of artifacts

xi. Standards of work and achievement of outcomes
xii. Engagement of students assuring appropriate achievement of standards of ethical

behavior and social responsibility
xiii. Research Faculty responsibility for involving students in challenging study

activities, relevant problem solving and assuring use of scientific methods and the
achievement of demonstrable ability of students to participate in the creation of
respectable results.

4. Explicitly integrate feedback from Pre and Post University experiences of students in
tailoring specific programs locally.

In conclusion: I hope that a research oriented curriculum is to be given a proper
attention in IT. It is a controversial idea mainly because of the current reputation of
university 'research' as inaccessible to students, devoid of attention to real problems, and
the reason for shortchanging education with two-tiered system of Teaching vs. Research.

61

Preparing IT Graduates for 2010 and Beyond

A White Paper
Pamela B. Lawhead

Computer and Information Science
The University of Mississippi

University, MS 38677
lawhead@cs.olemiss.edu

In my lifetime as a teacher computers have moved from being an expensive tool for high level
researchers to a pervasive part of our every day lives. I have moved from being someone who
teaches people how to think in a structured way and to then translate those thoughts into a
computing language, to someone who must devise ways to teach an overstimulated group of
young people how to survive in a world driven by vast quantities of data and controlled by
embedded systems.

We need to take a step back, stop following fads, stop chasing the problem and, instead, try to
review our goals. We should not be driven by industry needs but rather by the nature of the
problems being addressed. If we identify first principles, and then attempt to understand the
tools that students need to solve problems using first principles, we will be able to teach students
to solve problems that emerge and make them immune to following fads and dead end streets.
We do need to avoid the “Saber Tooth”1 problem of teaching “fish grabbing” after the invention
of the hook, but, that does not mean that we don’t still need to catch fish. In teaching
programming language principles, I tell the students that when they finish the class they should
answer the question “In what language do you program?” with “Any for which I understand the
paradigm and have a manual.” We need to find that approach to computer science in general.
For that reason, I think that the “history of computing” should become a required course in the
undergraduate curriculum. While the history is short, a careful review of it finds that we keep
doing things in a spiral format, always coming back to position very similar to a position
previously attempted by someone else but shifted just a bit in time. If our students don’t
understand that then they will be forever either following fads or reinventing the wheel.

All students should be required to have a course or two in formal logic, translating ideas into
systems is a large part of what they will do with the rest of their lives, if they do not understand
how to formally represent an idea then they are forever crippled.

It is important to remember that the current group of students has two characteristics never
before seen in institutions of higher learning, 1) they have had the last bastion of abstraction,
music, made into videos for them so their ability to abstract has been severely compromised
(their songs are videos and their books are movies) and 2) they are totally connected. They have
never spent a moment of their short lives very far away from a network, the internet, their cell
phones, or IM to name a few. So, they need instant gratification and have little patience for the
task of solving problems requiring long hours of solitude and extreme levels of abstraction. As

1Peddiwell, Abner J., The Saber_Tooth Curriculum, Classic Edition, 07/27/2005, McGraw-Hill

62

we look forward to determining ways of teaching them, we must look to the gifts that they do
have and build on those.

So, how do we prepare this unique group of students? Well, we must start with where they are,
they deal with classical abstractions very poorly so, in preparing them to enter the computing
workforce we must first teach them to abstract. There are many courses in the classical
undergraduate curriculum that teach them to do this, we must, therefore now include those
courses, not just the sciences but the liberal arts as well. We must put them back into classical
philosophy, music and literature. Once the students become good thinkers, proficient with
abstractions and understand their own history then they will have the maturity to capture domain
knowledge and program.

Now, at the same time, this group of students deals with multiple simultaneous events very
proficiently. With that in mind, we need to work with them with their strengths. They naturally
deal with parallelism very quickly, they are very visual and extremely comfortable and
competent in 3-D environments. This needs to be exploited when we attempt to teach them. If
we pose problems to them in a story board environment then they become quite comfortable and
are able to move to the implied abstractions very readily. What is sometimes disconcerting,
especially as a teacher, is that we know that we would have had to work very hard attain the
student’s level of comfort with these 3-D, parallel areas and we presume that they must have
done the same. We think that they are so sophisticated and thus we tend to overlook the fact that
they not understand very fundamental language and math skills. The disconnect comes when we
attempt to teach them things that require these skills, thinking that if they can build 3-D objects
or text-message with one hand without looking at the key board then certainly they understand
more sophisticated ideas. They do not.

The challenge for the next ten years then becomes one of recursing to levels of an earlier time,
levels a little bit less sophisticated than the student’s current level, teach the identified missing
fundamentals and then moving forward to a marriage between the gifts of the current students
and the demands of the world of pervasive computing. Students live now with our frustrations
because we tend to expect more of them that the educational world has provided to them. Once
they speak from a world well founded in fundamental principles they will be able to ask the
questions that will arise in the future and move forward from a well-grounded position using the
gifts of their current world to solve the problems of the future.

63

Improving Undergraduate Computer Science and Engineering Education:
A White Paper Concerning Integrative Computing Education and Research

Gregory D. Peterson and Don Bouldin
Electrical & Computer Engineering

University of Tennessee
Knoxville, TN 37996-2100

[gdp, dbouldin]@tennessee.edu
Abstract
Advances in technology and changing economic conditions due to globalization present profound
challenges and opportunities to computing education. The rapidly changing landscape for computing
makes it necessary to update the topics in undergraduate curricula. The same technological advances
present exciting opportunities in developing adaptive, individualized pedagogical tools.

Introduction: Challenges Facing Computing Educators
A number of trends dramatically impact the educational landscape, particularly with respect to
computing. Technology continues to move ahead at a tremendous pace (e.g., Moore’s Law for
semiconductors), resulting in constantly shifting skills and expertise. Inflection points have been reached
or are imminent across a spectrum of computing topics:

1. Computer architectures are no longer bound solely to the von Neumann paradigm as new
architectures and computational models become available. Examples include quantum
computing, nano/biocomputing, configurable processors and reconfigurable computing.

2. Device technologies based on CMOS with silicon may not be able to continue their historic
growth as predicted by Moore’s Law. New devices, circuits, design tools, and methods may be
required for developing microelectronic computing systems.

3. Materials for computing may soon shift to bio/nano devices, with profoundly different
characteristics for design, manufacturing, timing, power, and behavior.

4. Networking is shifting from wired to wireless to ad hoc networks, with resultant changes to
protocols and distributed algorithms.

5. Networked, embedded devices will become ubiquitous, resulting in an explosion in the number of
computing devices and their potential interactions.

6. Mobile, robust code (e.g., agents) are becoming popular to enable searches, distributed control, or
similar applications.

7. Distributed peer to peer networks, data, and applications remove centralized control, with
implications for resource allocation, intellectual property, and governmental control.

8. Open source, collaborative development are becoming more of the norm, potentially with ad hoc,
self-organized development teams of geographically distributed, diverse skills.

9. Broader societal issues are becoming more prevalent (e.g. security, privacy, freedom of speech,
crime, infrastructure protection).

In addition to the technological advances related to computing, economic and social changes resulting
from globalization must be addressed.

1. Employees (engineers, programmers, etc) must provide value or their jobs will be eliminated.
2. Employees can come from any region, ethnicity, gender, or background, so long as they are

productive.
3. Employees must have the ability to work with diverse, geographically distributed teams.
4. Virtual laboratories or design centers for scientific discovery and product development enable

accelerated advances while reducing dependence on capital equipment.

Taken individually, each of these points would present interesting pedagogical challenges to computing
educators. Together, they illustrate the tremendous challenge facing educators that strive to prepare
undergraduate students for the workforce of the 21st century. The educational system in the U.S. is
inadequate in preparing the workforce to fully participate in the global economy. In the primary and

64

secondary schools, students are not provided enough background in math and science to enable success in
computer science and engineering. All levels of education need to be more effective in teaching skills
related to computing. We need to ensure that future ideas about undergraduate education are not too
limited by technological anachronisms.

Opportunities for Improvement
The traditional method of teaching based on a lecturer addressing an audience of students is outmoded
and inefficient. Politicians and clergy have transformed their presentations from structured speeches or
sermons (e.g. three points and a poem) to multimedia presentations. These newer forms of
communication better reach newer generations of listeners raised in a post-literate society driven by
rapidly changing cinematic/television scenes. Computing educators need to embrace the collection of
technologies that adapt to enable the students to learn based on their particular preferences and
capabilities. The powerful, networked computing systems provide the potential for adaptive and
cooperative learning that can tap into the vast resources of the web.
As a nation, we cannot afford to lose students during their undergraduate studies. The ability to learn at
one’s own pace and to explore various topics in more detail should help with retention. Better marketing
of the field to potential students and engaging current students in exciting projects that include broader
issues should help as well. More internships and “real world” experiences should be sought within
courses and the curriculum to provide motivation for the studies and to reinforce learning.
Collaborative development should be pursued to better prepare students for current design practice. For
example, at UT we have teams of students develop portions of behavior for SoC designs. Other
universities can build on this infrastructure as well. Collaboration between students in different regions or
countries can then be aggressively pursued to allow each group to take part in a much more challenging
design than could be pursued otherwise.
New technologies provide exciting opportunities for outreach. Computing educators need to make
projects more fun and approachable to reach students beyond computer science and engineering. For
example, using cellular automata or game of life types of exercises in logic and exploring emergent
behaviors are intuitive and students like them. Similar topics could be adapted for primary or secondary
students in math, science, social studies, etc. Simulations of behavior (including applications similar to
Sim City) can also be used to engage students. Changing the rules of behavior can then be explored to
see what happens as an exercise in anthropology or political science. For computing students, more
exciting (“fun”) projects should be employed and publicized. For example, students could program
robots or virtual players (e.g., soccer or football players in a game between student programmed player
teams) with a highly visible playoff during the Superbowl/March Madness/related sporting event.

NSF/Government Role
Government funding of research into advanced pedagogical techniques, tools, and infrastructure is
needed. Specific focus should be given to research that enables adaptive, individualized teaching and
learning, particularly for bridging cultural differences. (Why isn’t there a high quality, adaptive teaching
module/web site for calculus or related topics to enable students from all cultural and economic
backgrounds to learn the necessary skills for success in computer science and engineering?) For
advanced topics, particularly for skills of high value in the job market, the free market system should be
effective in creating and extending an efficient set of such tools and modules, although the government
will need to seed the development for this industry. For primary and secondary schools, government
funding will be essential for the development of a spectrum of educational tools and curricula that span
the necessary ages and topics. This funding could come from federal, state, or local sources.

References
Computing Curricula for Computer Engineering Joint Task Force, “Computer Engineering 2005:
Curricular Guidelines for Undergraduate Degree Programs in Computer Engineering.” (draft) October
2004.

65

Phil Pfeiffer, East TN. State University

1. What are the biggest challenges that ETSU’s CIS Dept. faces in undergraduate education?

a. obtaining enough resources to maintain enrollments and recruit new students, while meeting increases in
professional expectations. We offer CS and IS concentrations; added an IT concentration in 1999; and, still,
our major classes are down 60% from 2001. In an effort to attract students, we’re now adding emphases in
security and game programming. In the meantime, we’ve lost a faculty line; may lose a second; and are
laboring under the new, heavyweight CSAB/ABET standards for accreditation and IS/IT/CS differentiation.

b. coping with the perception that outsourcing has made computing a dead-end profession in America.
c. addressing the lack of female computing majors. Our percentages of new, incoming females in our fall 2005

undergrad and grad programs were 5% and 0%, respectively. The only bright spot for most of our students
is that we’re about to co-locate with the college of nursing ..

d. coping with the decline in basic reading, writing, and thinking skills amongst our incoming students.
e. teaching students to read and write well enough to be competent computing professionals. See also d.
f. finding room in a liberal arts curriculum to adequately train CS students. Employers hire our CS graduates

because they’re skilled in software development. However, our students, as a rule, need five four-credit
programming courses (CS Ia, CS Ib, data structures, file structures, and assembler) and two semesters of
software engineering to obtain these skills. When you add in the obligatory systems courses for us,
operating systems, computer org, networking, and database, and piggyback this onto the general education
curriculum, you’re close to the state-mandated 120 credit-hour maximum. We also teach ethics throughout
the curriculum. As a result, we don’t have much room for teaching like problem decomposition and solving,
software maintenance, testing, scripting---let alone programming languages, algorithms, parallel
programming, professional issues, scientific programming, embedded systems, NA, AI, and theory.

Our other concentrations face similar issues, relative to concerns like HIPPA and FERPA (IS) and
currency with emerging technologies and hardware maintenance (IT).

g. encouraging students to think creatively about computing as a profession—e.g., to engage in research, and
to do internships. This concern is addressed, to some extent, by our capstone experience course in our IT
concentration. The CS and IS concentrations, unfortunately, don’t have the same room as the IT.

h. threat of faculty burnout.

2. What might the community do to address the challenges you identified above?

To paraphrase Warren Zevon, forget the lawyers and guns; send money ☺. Here are a few ideas for using
additional resources to buttress undergrad education:

a. start computing education sooner. Encourage high schools to offer courses like programming and discrete
math, and to send more gifted students in grades 9-12 to community colleges and colleges for training. This
would take closer cooperation between K-12 and post-12 educators, and possibly additional training for HS
instructors, including help with building these courses. The time for this has to come from somewhere.

b. alternatively, lobby for, and move to, a five-year model for CS education. This would require a change in the
political climate, and maybe a joint effort with other engineering professions. But, maybe, the time scale has
already lengthened, given the increasing importance of the MS in the computing fields.

c. educate America about the value and continuing importance of computing. Speaking to questions of value
might help to address the perception problem, along with the female majors problem—if, indeed, American
women tend to focus more on the uses of technologies, rather than the technologies proper (cf. Why Gender
Matters, Leonard Sax, Doubleday). One member of our faculty suggested that a prime-time, computing-
oriented equivalent of CSI might help ☺.

d. provide more scholarships and summer work opportunities to undergraduates. Another reason that many
undergrads do “little” outside of class is that they must (or feel that they must) work 20-40 hours a week to
help meet expenses, while taking full course loads (to qualify for loans).

e. organize more regional low-cost workshops that allow undergraduates to witness research in action, and to
get involved in it. Here, I don’t mean refereed, multi-day affairs like ACM regionals, but, rather, informal, no-
frills, one-day workshops, designed primarily for BS, MS, and Ph.D. students in computing. I organized such
one workshop in the mid-Atlantic states that’s lasted ten years (cf. http://www.research.ibm.com/masplas),
and am currently organizing another for southern Appalachia (cf. http://www-cs.etsu.edu/sasplas). You can
find a paper on a model for these workshops at http://www.research.ibm.com/people/h/hind/97-108.ps (co-
authored with Mike Hind of IBM). Such workshops also cost money, if you want to waive admission (which
helps), and buy release time for the organizers (which I’ve never seen happen).

66

http://www.research.ibm.com/masplas
http://www-cs.etsu.edu/sasplas
http://www.research.ibm.com/people/h/hind/97-108.ps

f. raise the standards for written work and critical thinking throughout the curriculum, beginning with our own
classes. This will take lots of close reading, and frank, hard, and careful critiques of the crap that often
passes for technical writing in homework assignments (e.g., SRSes and documentation) and term papers. It
might also mean (re)training in technical writing for computing instructors.

The argument that money would help is probably quixotic, given the impact on government budgets from
Hurricanes Afghanistan, Iraq, Katrina, and Rita. But you asked ☺.

3. What might an ideal undergraduate model for computing education look like in five years?

In April 1993, I heard a lecture on a similar concern at Yale’s Alan Perlis Memorial Computing Symposium: a
talk by Peter Naur on the 1960’s-era quest for the Ideal Programming Language. After explaining the rationale
for the vision—a hope for a language that would help programmers to Do Right—Naur gave his reason for the
quest’s failure: the existence of irreconcilable differences in how people grasp ideas. I draw similar conclusions
from the literature on learning styles, on project management, and, unfortunately, on education.

Now, would someone care to rephrase this question? ☺

4. Can you identify inhibitors that might prevent the nation from achieving goals it sets for computing education?

I mentioned a lack of resources in 1. Other concerns include the lack of a clear rationale for why computing still
matters and why more majors are needed. Beyond this, where in America today can we find a champion for
science education like JFK?

Can you identify strategies that may transform undergraduate computing education in the USA?

First, identify good reasons to study computing, and promote them. During the 1950’s and 1960’s, fear and the
quest for a better life helped to drive the national investment in education. Unfortunately, the focus on science
that began with Sputnik ended with the collapse of the Evil Empire. And, as for the quest for a better life, Mike
Royko wrote a telling column during the 1980’s in which his alter ego, Slats Grobnik, said that America’s #1
problem was too much Stuff. “Kids”, said Grobnik, “learn their VCRs before their ABCs.”

I would hope that a vision of computing as a profession that allows people to earn a good living while creatively
serving others could replace the old motivators. We also need to say that the 1) the most desirable positions
are not outsourced; 2) these positions are currently being filled by baby-boomers, who 3) will soon retire, leaving
lots of opportunity for well-prepared, highly motivated individuals—the kinds of student we need to attract.

If this message seems reasonable, then it needs to be sold in elementary and high schools, using partnerships
between colleges and school districts, to the extent that this is doable in this imperfect world. I fear that people
who teach K-12 are embroiled in their own nasty set of problems, and might not have the time to listen. Still, it
would be good to try, all the same—in part, by beginning by listening to their problems, and seeing what we can
do to help, in this same spirit of service.

Our department currently supports two goodwill-building, outreach efforts for local K-12 students. One, PASTA
(Providing Area Schools with Technological Assistance), sends surplussed computers to elementary, middle,
and high schools, together with senior IT students to help with installation, training, and support. The other,
GIST (Girls In Science and Technology), hosts a series of three summer computing camps for 10-, 11-, and 12-
year old girls, respectively.

In the meantime, we have finally started, as of this year, to conduct recruiting visits to area schools. This, of
course, takes even more time and resources.

A colleague also suggested more co-op work as a way of supplementing what people are learning in school. As
Michaele puts it, “Mandatory co-op work (back to 2d) would go a long way to help students teach themselves
and understand/appreciate what they are getting in the classroom.”

5. What stakeholders should be involved in designing strategies to catalyze the transformation of university
computing education throughout the nation?

Whatever stakeholders get involved, the watchword should be, “First, do no harm”. I fear grand initiatives
because those who promote these tend to produce grand-sounding but imperfect, even wrongheaded, fixes for
educational quandaries: e.g., the “new math”, the abandonment of grammar, and, more recently, “no child left
behind”. I hope people are wise enough to apply Frederick Brooks’s insight—“No Silver Bullet”—to the current
“crisis” in computing education, and to be content to work steadily to find effective, if generally unspectacular,
strategies for achieving long-term progress.

67

ICER Workshop White Paper

Han Reichgelt, College of Information Technology, Georgia Southern University

Challenges. To my mind, the greatest challenge facing computing education over the next
few years is the ability to attract high ability students into the field. Information Systems
has already seen a precipitous drop in the number of undergraduate students. One
suspects that an important reason for this is the fact that many students who might
potentially be attracted to a career in computing are put off by the incessant media
campaign against overseas outsourcing1 of manufacturing and information technology
operations. Such campaigns usually focus on the number of jobs that have been lost and
ignore the number of typically higher paying jobs that have been created in this country
because of globalization. While such noises may have little effect on those potential
students who in the words of Margolis and Fisher (2002) feel a “magnetic attraction” to
the computer, it is likely to affect those who are more interested in “computing with a
purpose.” The much more rapid drop in enrollment in IS programs, compared to the
enrollment in other computing programs, fits this pattern. Students who might be
interested in a program in Information Systems are more likely to be attracted to a more
applied form of computing, and may therefore be more interested in an IS program that
covers “computing with a purpose” than a more theoretically focused programs in
Computer Science.

Reacting to the challenge. There are two ways for the computing education community
to deal with the phenomenon of overseas outsourcing and the concomitant “disappearing
students” problem. First, the community can lobby the public or government to
somehow ban overseas outsourcing. Second, the community can accept overseas
outsourcing as a fact of life and redesign its curricula to prepare students for those careers
that are harder to outsource.

I regard the first reaction as misguided. Any jobs that may be saved in through
lobbying efforts of this type are likely to result in increase inefficiencies in the overall
economy. Thus, while decisions by some local and state governments to have their call
center operations performed by companies based in the United States using US labor may
have saved some jobs, the increased cost of running of these operations amounts to a
heavy public subsidy of such jobs. In general, subsidies of this kind have proven to be an
inefficient way of spending public money and by distorting international trade have
helped keep poor countries poor, an argument which is now widely accepted when it
comes to farm subsidies.

Given my skepticism about the viability or desirability of the first reaction, it will
come as no surprise that I strongly believe that the computing education community
should accept overseas outsourcing as a fact of life, and should redesign its curricula to

1 Most of the media fail to distinguish between outsourcing and overseas outsourcing. Outsourcing of jobs
by organizations is a well established and widely accepted practice that allows organizations to concentrate
on their core competencies and reduce cost. Very few organizations run their own office cleaning
operations and many hire external logistics companies to run their logistics operations. In general, the
media do not object to outsourcing if it increases the operational efficiency of an organization and leads to
the establishment and growth of outsourcing organizations, as long as these organizations are US based.

68

prepare students for those careers that are harder to outsource overseas. Clearly, this can
only be done after a thorough and wide-ranging discussion on what computing jobs are
hard to outsource overseas. This discussion should involve not only the computing
education community but also organizations that employ a large number of IT
professionals, including those that have outsourced some of their IT operations overseas.
It is also important that the results of these discussions are widely disseminated, and in
particular, that potential students are made aware of the results of these discussions.

Models for Transforming Computing Education. While it is presumptuous for me to
pretend to know the answer to the question which IT related jobs are hard to outsource
overseas, I offer the preliminary suggestion that attempts to outsource the following two
types of jobs overseas might lead to problems:

1. Jobs that require high levels of security;
2. Jobs that require the IT professional to develop an intimate knowledge of

the organization.
If the above analysis does indeed stand up, then there are two potential

consequences for computing education. First, information assurance and security has to
be given a higher level profile in computing education than it currently has and must be
woven throughout the curriculum, rather than be the subject of a few isolated courses.
The recently draft IT Model Curriculum (www.acm.org/curriculum) might be a good
place to start for this discussion.

Second, in order for computing students to be prepared for the second type of job,
they must be given the opportunity to develop the skills that allows them to gain intimate
knowledge of organizations and communicate with members in those organizations. It is
ironic that students enrolled in IS programs are more likely to develop these skills than
students enrolled in many other computing programs. However, it is also important to
recognize that computing is used in many more areas than just business. It might
therefore be good if computing programs allowed students the leeway to develop in-depth
knowledge of some area in which computing is likely to prove useful, whether this is the
administration of justice, business, education, military science, music or policy making.
The current ABET CAC accreditation criteria for Information Systems explicitly mention
the inclusion of an “IS environment” in the curriculum criterion, while the ABET EAC
accreditation criteria for Software Engineering mention the “ability to work in one or
more significant application domains.” Both, it seems to me, point in the right direction.

Margolis, J. & Fisher, A. (2002) Unlocking the Clubhouse: Women in Computing.

Cambridge, Mass: MIT Press

69

http://www.acm.org/curriculum

Integrative Computing Education & Research (ICER)
Preparing IT Graduates for 2010 and Beyond

Rebecca H. Rutherfoord

Southern Polytechnic State University
Marietta, GA 30060
brutherf@spsu.edu

1. Preparing undergraduates for computing careers: as an educator, I find that there

are several challenges for myself with students majoring in information
technology, computer science and software engineering. First, the students still
come to college prepared with a variety of computing skills – from general
“WORD” knowledge, to having programmed JAVA in high school. It is still hard
to have beginning programming classes with such a variety of skill levels.
Second, students seem to be technology “savvy” – in other words, they have their
technology toys (iPods, etc.), but don’t really understand what the world of
computing work entails. One of the biggest challenges is to get the students to
“learn how to learn” with our dynamically changing computing environments.

2. Transforming the educational experience: companies can help with initiating
contacts with local educational institutions. Normally, a faculty member has to
try to go out to a company to get speakers, projects, etc. It would be a much
appreciated thing if companies would seek out and foster relationships with
education.

3. Models for transforming computing education: if we take a more multi-
disciplinary approach, I believe such a curriculum will need various “tracks”of
study. There still should be some basic computing skills that would be needed –
programming, op systems, basic architecture, database – but after that, I believe
that we will also need to think more seriously about how the world is changing –
the web, networks, security, business domain knowledge. A curriculum can’t be
everything to everyone, but we have spent so much time trying to identify the
differences in CS, IT, SWE, IS and EE that it will now be difficult to come up
with a generalized computing model.

4. Inhibitors and strategies: first of all, business needs to understand that when they
ask for job applicants – they are usually advertising for “skills” – “We need a
JAVA programmer who has worked for 5 years”. I understand where companies
are coming from – they need someone to get to work immediately, however, with
technology and computing changing so rapidly, it is very difficult for applicants
to have lots of experience in a particular thing, and moreover, new graduates may
not have the type of “skill” companies are looking for. Companies need to adjust
their mindset and learn that computing graduates are educated in computing
basics and that they have the ability to “learn” and learn quickly – adjusting to
changing technologies. Second, since schools are in a competition game (for
students), it is hard to get much cooperation between entities. National
accrediting agencies (such as ABET) help to standardize curriculum guidelines,
but each school puts their own slant on their particular curriculum. Schools
would do better to cooperate and participate in shared degrees. Third, we have

70

mailto:brutherf@spsu.edu

almost no Information Technology doctorate degrees at this time – most are CS or
IS. We have broadened undergraduate majors (CS, SWE, IS, IT, EE, etc.), yet
have not kept up with creating faculty who have credentials in these areas. If we
think if a more consolidated approach to a computing model, then we will also
need to revisit what constitutes teaching in these areas – does a multi-disciplinary
faculty make sense (computing, IT, SWE, EE and business)?

5. Who might participate: it will take a lot of “persuasion” to drive the computing
education domains into a more multi-disciplinary cooperative unit. First, it has
always been a “bone of contention” as to whether companies should drive the
curriculum, or that education and pedagogy should drive the curriculum.
Educators realize that there is great merit in Education for the sake of Education,
but also recognize, especially in the computing fields, that we are educating our
students to work. Both large and small colleges/universities as well as various
companies, large and small, accreditation personnel, and government personnel
should all be part of such an initiative. The process would be similar to what
Information Technology has done over the past two years with establishing a
model curriculum and accreditation guidelines.

71

ICER Workshop White Paper

Judith L. Solano, Chairperson
Department of Computer & Information Sciences

University of North Florida
Jacksonville, Florida

The biggest challenge we currently face in education is capturing the attention of
potential students and convincing them to choose a career path in the computing sciences.
With the demise of the dot-coms many who saw computing as a quick avenue to lucrative
careers lost interest. Other sobering economic trends that have had a chilling effect on
enrollments include downsizing and outsourcing, both of which have received a great
deal of attention in the media. Students, and maybe more importantly their parents who
will be paying their educational bills, are fearful that studying the computing sciences
will not result in gainful employment upon graduation. As a consequence, they have
been migrating toward other majors.

It is fairly commonly accepted that economic trends are cyclical. It would be reasonable
to expect, therefore, that at some point jobs would return and students would follow. In
fact, the data now seems to suggest that the job market has begun to improve, but the
students have not yet followed. Perhaps it is still too soon for parents and their children
to be confident in an improving market and if we wait patiently, we will eventually see
improving enrollments. Disturbingly, today’s teenagers seem to suggest otherwise.

We now seem to be faced with a much more insidious challenge. Today’s teenagers do
not seem to be interested in studying the computing sciences. They are already very
sophisticated and talented users of the technology that pervades almost every aspect of
their lives. They don’t see it as anything that is particularly new and interesting. They
know they don’t really have to know and understand it to use it, so it doesn’t really
present a challenge. And, since it has always been available to them, they haven’t given
the first thought to who is going to enhance it and who is going to develop the technology
of the future. As educators, we are faced with capturing the imagination of a generation
of students with whom we are out of touch.

A first step in any strategy to address our challenges would be for us to get to know
today’s students. All texts on effective presentation skills stress the importance of
knowing your audience. Some of our greatest military leaders have written and spoken
of the importance of knowing your enemy. We need to know our students and to do so
we probably need to enlist the aid of professionals trained and skilled in analyzing human
behavior. As we embark on this endeavor, we must be careful not to focus all of our
attention only on undergraduate baccalaureate candidates. Many are suggesting our
efforts need to begin in the high schools. Time Magazine’s recent issue on “Being 13”
gives one reason to believe the middle schools would be an even better starting point.

An important next step would be to launch an advertising campaign designed to change
the face of computing. We must get the attention of our audience, pique their curiosity

72

and imagination, and then reel them in; much like corporate America does when it
launches a new or redesigned product. A hit TV show like CSI wouldn’t hurt either, but
that may be too much to hope for.

We can’t forget the importance of parents in the lives of their children. They are now
being referred to as “helicopter parents,” because they remain hovering over their
children well into their college years and beyond. They are heavily invested in every
aspect of their children’s lives. If we hope to get the children interested in computing as
a field of study and a possible career, we must regain the confidence of the parents. They
have the perception that all of the computing jobs are in India or China. They need to
believe that there are and will continue to be employment opportunities for their children
in the U.S.

If we can get the attention of students and their parents, we then need to provide an
educational experience that will retain their interest. It is clear this will require curricular
change and change in the delivery methods we employ. But, exactly what this change
must be and what computing education should look like in the future is not so clear.
Recently, Bill Gates declared we need to be innovative, but he had no suggestions on
what we might do that would be innovative. This is probably because he, like so many of
us, does not truly know and understand today’s student – our audience. This is a critical
task for us, upon which everything else will depend.

The new curriculum is likely to need to be multi-sensory, very fast paced, and interactive.
Today’s students after all are the ones who popularized extreme sports and brought us the
X Games. They have little patience, a lot of energy, and are willing to take great risks.
The fact that they do not want to learn the notes and the scales, for example, and they do
not want to practice is telling. They just want to be able to pick up an instrument and
play. Their approach to computing and technology is no different. They want to get their
hands on the technology and start using it. They do not read instruction manuals. The
educational experience can no longer be passive. It will have to be very active, if we are
to have any hope of retaining our students.

Another likely characteristic of the curriculum is that it will need to incorporate a
multitude of disciplines. Today’s students take the technology for granted. They are not
necessarily interested in the technology for its own sake. They are interested in what they
can do with the technology or, said in another way, what the technology can do for them.
Currently we tend to teach the fundamentals of the computing sciences independent of
developments in health care, in education, in criminal justice, or in music and the arts,
etc. The challenge will be to provide an environment wherein students can focus on
those areas of their lives that they find most interesting and engaging, while integrating
the fundamentals of computing. We want them, almost without realizing it, to gain the
knowledge and skills that will enable them to enhance the technology they now take for
granted and even to imagine and develop the new technology of the future.

73

ICER White Paper
Pradip K Srimani

Computing has become ubiquitous in our society, and it now affects countless aspects of our daily lives.
Indeed, it is difficult to imagine any aspect of life in the modern world that is not affected in some
significant way by computing. Applications of computing, once restricted to a narrow range of disciplines
within science and engineering now include agriculture, athletics, arts, business, health care, recreation,
government, military, and the social sciences, in addition to all traditional science and engineering
disciplines. It is thus no surprise that the effective use of computing can be found in all academic
disciplines of any College or University.

To paraphrase Jim Foley from his CRA position paper, – whereas “science” discovers the laws of nature
and “engineering” uses those laws of nature to create physical artifacts, “computing” discovers and uses the
laws of how to compute and how to organize information to create computational and information artifacts
to solve problems in any application domain more efficiently. Computing is a unique discipline where the
academic and the professional and application aspects are very intricately intertwined.

1. Preparing undergraduates for computing careers: Current and future students who would seek
careers in computing continue to need a core knowledge of the fundamentals of hardware and
software system design, but such core knowledge is no longer enough. Deep knowledge of the
domain of application of computing is almost always a co-requisite for effective problem-solving
and discovery. Over the last several decades important contributions have been made to design
automation, operating systems, compiler construction, networking and modeling. However, those
who study computer science to pursue a career outside the academy (the overwhelming majority
of students) often find that what they learned in computer science is important to the effective
application of computers, but they must learn other domains (finance, architecture, insurance, civil
engineering, construction). Likewise, because we have made computers more accessible,
professionals in other disciplines are using computers in their research and exposing their students
to computer applications, often with less than effective results because they lack the foundation
that computer science offers. While core computer science remains an important discipline, we
believe we are missing significant opportunities to contribute more broadly to our society and
better prepare our students for leadership roles in that society.

We need to prepare students to meet the information technology needs of business, government,
healthcare, schools, and other kinds of organizations. There are numerous applications areas that
offer significant long term challenges requiring multidisciplinary teams composed of traditional
computer scientists and professionals in other disciplines to develop the infrastructure (equipment,
software, information) that will facilitate progress toward addressing the challenges. As these
intersections broaden, more training in the intersections is required in order to function more
effectively therein; problems unique to these intersections will emerge, requiring the
understanding and study of new underlying principles of computing in these domains. What is
needed therefore is the development of application specific degree programs; which are focused
more directly on the central aspects of these intersections, and away from the central areas of
traditional computer science.

2. Transforming the educational experience: Traditional computer science educational experiences

are notoriously defined by the countless hours students spend out of class developing software,
writing, debugging and testing computer programs. Almost no time is spent studying, analyzing,
or critiquing their effectiveness. But these concerns are foremost to users of computing in the
application domains. In the future more training will be needed in the effectiveness of application
software and software systems, and in making effective use of increasingly sophisticated software
systems. We will need increasingly smart users, who know how to get the most out of existing
software systems, who will know and understand the limits of these systems, and who will know
what is needed to make these systems more effective and beneficial. Thus future computer

74

http://www.cra.org/reports/computing/

science courses will be less focused on training in the fundamentals required for producing future
systems and more focused on the effective utilization of existing systems; in order to produce
more efficient users.

3. Models for transforming computing education: It is expected that the diversity of backgrounds and

interests across the entire spectrum of computing education would be enormous, probably a
microcosm of the entire comprehensive university itself. Still, each student, irrespective of his/her
area of specialization must have a solid grounding in the fundamentals in computing –
technologies (hardware & software), impacts on society, networking, security impacts,
pervasiveness, legal, ethical, and privacy issues. After the core, students should choose specialized
tracks, and curricula for each track should be designed separately. Here is a list of possible (in no
way an exhaustive list) tracks: (1) computational arts – computer graphics, visualization, digital
animation, film, image processing, virtual reality, human-computer interaction, game
development, multimedia systems, computational aesthetics (2) Computational Science –
bioinformatics, computational geometry, mathematical modeling, quantum computing, systems
simulation, optimization, computational geography, computational astronomy (3) Computer
Science – computer architecture, software engineering, operating systems, languages, theory of
computation, security, networks, embedded systems, sensor systems (4) Information Systems –
database management, systems analysis, requirements analysis, infrastructure design and
management, e-commerce, operations research, enterprise architecture; (5) Computer Engineering
– digital systems, IC technology, VLSI technology, signal processing, system integration. As new
disciplines emerge through the integration of computing with application areas, those trained in
the computing disciplines have an opportunity and responsibility to lead. It is also to be noted that
the tracks are not mutually exclusive, there will be significant overlaps; both the students and the
faculty should be able to share and exchange capabilities and resources.

4. Inhibitors and strategies: Traditional college structures in the universities put significant

constraints on the seamless integration of courses to form the needed curricula for specific needs;
there is a lack of mechanisms for inter-college collaboration in both teaching and research and
creative activities. For example, faculty in science and engineering are in general evaluated in
terms of research publications and external funding whereas faculty in performing arts, fine arts
and business disciplines are evaluated in terms of other metrics. One possible strategy, which is
being tried on several campuses, is to establish a College/School of computing in the broadest
sense of the term. Curriculum, hiring, tenure, and retention decisions should be effectively made
with the diverse nature of the discipline in mind.

5. Who might participate: There are many stakeholders. Professional societies should develop new

curriculum models to accommodate diverse needs for diverse kinds of computing professionals
and educators and researchers with computing at their cores. Universities should provide
computing as part of General Education to all majors, come up with appropriate mechanisms to
encourage collaborative research and education; reward mechanisms should be appropriately and
flexibly tailored (faculty in science & engineering and faculty in fine arts or performing arts are
not evaluated by the same metrics; how to meaningfully evaluate faculty engaged in research and
education in digital production arts for example?) Government, especially federal funding
agencies should fund creative endeavors to investigate possible solutions, create new curricula, run
pilot programs, and raise awareness about the need for computing basics. K-12 programs should
be looked into to incorporate computing education at that level, provide proper training for high
school teachers, organize training workshops, and to encourage and search for computing talents
from the very beginning.

75

Active Learning
Craig Thompson

Professor and Acxiom Database Chair in Engineering
cwt@uark.edu, University of Arkansas, Fayetteville, AR 72701

Thesis: to some extent, undergraduate education is founded on widely assumed myths that are built into
the way we educate. What could change if we recognize problems with these assumptions?

Myth #1: Undergraduate advising should be focused mainly on what classes students should take.1
Reality: Advising and courses should provide students with an understanding of the scope of computing,
how it relates to nearby disciplines, and the wide range of applications, including cross-application
disciplines. Campus culture and foreign travel should be encouraged early on. Interning, cooping and
work experience related to the major should be strongly encouraged from sophomore year on. Some
companies will not hire without this.

Myth #2: Undergraduates should take classes and read text books. Reality: While books do encapsulate
a core of what is worth knowing and hint at the shape of a field, many undergraduates get all the way
through four years of school without ever reading a research article, knowing about online ACM and
IEEE, or attending a conference. So they do not know about the rest of the iceberg of rich resources they
could use to solve problems.

Myth #3: A senior-level Capstone projects course is enough to teach undergraduates about projects.
Teams, projects, reinforcing software engineering, and presentation skills should be the Capstone focus.
Reality: While good, this is not enough. Project courses should start at the sophomore or junior level.
There is a need to teach career skills, how to start a small business, how to bid a contract, how to apply
for a patent, how to think outside-the-box or comfort zone, etc.

Myth #4: Undergraduate students should not take graduate classes. Reality: Undergraduates with
prerequisite knowledge should be encouraged to take graduate classes and vice versa.

Myth #5: Computing undergraduates mainly need to know how to compute. Reality: Almost all I ever
do is write or present. I was not taught to teach. Our industrial advisory board faults all of engineering
for turning out students who know little about business. Our undergraduates never admit to having a
knowledge of contemporary issues.

Myth #6: Its OK to teach software engineering without teaching computational tools. In general, it is
better to teach undergraduates how to program and then they can learn any language or tool. Reality:
Nearly no faculty nor students in computer science or computer engineering know how to use MS Word
very effectively (e.g. Document Map, styles, revision mode). Some do not know what firewalls do or
how to backup their machines, even how to build web pages. Tools like CVS, Javadocs, project
management, IDEs, UML, XML, SOAP, … are not always part of courses. At least some of these should
be included into courses if not taught.

Myth #7: All student projects are toy world projects. Reality: Students projects can matter, can lead to
results that industry uses, can lead to inventions, small businesses, and industry standards. It is
empowering to believe this.

Myth #8: Research is for graduate students. Reality: In industry, people are asked to solve problems.
So undergraduates need to learn how to frame problems as well as solve them. Also, in industry
problems do not have well defined scope so learning how to divide and conquer is important. Mixing
undergraduates and graduates in problem solving is good for everyone.

Myth #9: We have succeeded when our students graduate. Reality: We have succeeded if our students
graduate and already have a job or graduate school lined up. I have asked too many students, “So,

1 As an undergraduate at Stanford, I graduated with a math B.S. and did not know what mathematicians do – that has
always bothered me.

76

graduating next week – what’s next?” “Oh, I guess I’ll get a job.” That is not the right answer. A metric
of success should be, how many walk with a job offer in hand. How many programs actively track this
metric or take some responsibility for launching careers?

Myth #10: A B.S. is a good place to stop – its time to get a job. Reality: The M.S. degree should be the
termination for computing professionals. We should strongly encourage our undergraduates to think in
terms of careers, not jobs, and M.S. rather than B.S.

Myth #11: Accreditation is the answer. Reality: Accreditation tends to make our courses more uniform
and introduces continuous improvement, never bad. But it does not really encourage radical approaches
to education reform. We should not be afraid to experiment with new approaches.

Myth #12: Isolation is good - professors should not collaborate with each other or with those in other
departments or colleges. Reality: When students collaborate with professors (plural) in joint projects,
everybody wins.

Myth #13: Faculty teach, students learn. Reality: Look for ways to use your students so they learn and
you can learn from them. Faculty can use special projects classes to explore areas they want to know
more about. Even term papers on topics they want to know about can accomplish their life long learning
goal. Students get experience through this role reversal; faculty stay current or increase their breadth.

Myth #14: A faculty member should spend 40% teaching, 40% research, and 20% service. Reality: A
triple threat is when these align. That means teaching must align with research. See Figure 1.

Myth #15: NSF funding is the name of the game. Reality: While NSF funding is prestigious, solving
real industry problems can ground a research program and lead to results that will be used.

x x x

Active learning is learning that engages the learner. Problem solving in mixed teams of faculty,
graduates, and undergraduates, engaged in solving problems for industry is a good form of active
learning. The requirement for this form of active learning could be 12 – 18 hours instead of the usual four
in Capstone. More would be radical. Maybe a whole curriculum structured this way could work?

Figure 1: Knowledge Cycle

…
NSF, DARPA, …University

Research
Funded projects
Class projects

Special projects

Teaching

Wal-Mart

Acxiom

problems

solutions

new hires, interns, coops, supported students

Students
learn the
basics

Students
learn the

latest ideas
and how to

solve
problems

77

Appendix D: Invited Speaker Presentations

78

��������	
���

���
��������	
���

���

����������
��
����������
��

��������
�������
��������
�������

����������������

�����������	
��������������������	
���������

October 27, 2005 ICER

���
�������	�����
�������	��

nn 	
���������
��
���

������������
�	
���������
��
���

������������
�

������
�������	�������
�������	�

nn ���������
��������������
�����������������������������������

�����������������������	������������������������	�

nn �
����������
�
����������

nn �
���������
�
���������

79

October 27, 2005 ICER

��������
������������������
����������

�����������
�����
�������������������������������
�����
��������������������
������������
�����������
������
�������������������
�����������
������
�������
��������������
nn �������������
����
��� !"����������
��������������������
����
��� !"����������
�������

��#!!!������
�������
��#!!$��
������%&'"
��#!!!������
�������
��#!!$��
������%&'"

nn ����
��(!"��
�����
�������������������������
��(!"��
�����
���������������������
���)�����
��������%*+!����)�����
��������%*+!�

nn ��
����
���������+!"���������%**+�������
����
���������+!"���������%**+�����
#!!$,�����*-"��������������)����%*+#�#!!$,�����*-"��������������)����%*+#�

��
��	./��������
���0������
��.������
��������������1	2/��
��	./��������
���0������
��.������
��������������1	2/

October 27, 2005 ICER

���
����������
�������

3�
��#!!#3�
��#!!#��#!%##!%#
��
������������
������
������������
������
��

%!�
��#!�%!�
��#!�ŁŁ
����
����
����
����

'�
��#!�'�
��#!�ŁŁ �
�������
�������
�����
�������
�������
����

4���
�)��������������
���������
�����������4���
�)��������������
���������
�����������

�
������������������
�����������������55 ���������
�����������������������
��������������

6�������������������
��6�������������������
��

��������������������������������

����
��7��
��
�����
��7��
��
�88��6���������6�������

7������
��2��
������������7������
��2��
������������

80

October 27, 2005 ICER

A High School Problem?A High School Problem?

A recent survey by the Organization for A recent survey by the Organization for
Economic Cooperation and Development Economic Cooperation and Development
ranked 15ranked 15--yearyear--olds from the United olds from the United
States as 24th in math out of 29 States as 24th in math out of 29
industrialized countries. As if that were not industrialized countries. As if that were not
bad enough, their science skills were even bad enough, their science skills were even
worse.worse.

Bureau of Labor StatisticsBureau of Labor Statistics

October 27, 2005 ICER

CaliforniaCalifornia

nn Half of all minorities drop out of high Half of all minorities drop out of high
schoolschool

nn 20% of all students do not pass the high 20% of all students do not pass the high
school graduation examschool graduation exam

81

October 27, 2005 ICER

NationallyNationally

nn percent of 18percent of 18-- through 24through 24--yearyear--olds who olds who
were high school completers in 2000were high school completers in 2000

91.8
83.7

64.1

94.6
86.5

0
10
20
30
40

50
60
70
80

90
100

White Black Hispanic Asian/Pacific
Islander

Total

October 27, 2005 ICER

 !"
#��������� !"
#���������

99:������;������������
�����
�����:������;������������
�����
�����
������������
���������������������������
���������������<< �
����
���
�����)�������)����������
��,��
������������)�������)����������
��,��
�������
�
�����
�
�
����
�������,������
���
�����
�
�
����
�������,������
��
��������������
��1&�&���
�
��&��������������
��1&�&���
�
��&==

:������
��������>������
������

�:������
��������>������
������

�

�������7?��
����
�����

������
����������7?��
����
�����

������
���

����������������2��
�2��
�,��7?�3
������
��
���,��7?�3
������
��
���

4������),�����&�# ,�#!!'4������),�����&�# ,�#!!'

82

October 27, 2005 ICER

@ �
������
���
���

������
�����;�������;���������
���
������������
��������������
��
���

��
@ ����������
���������������������������������
�
���
���
��
���

�����
�����
���
@ ����
�����
�������
��������������
���
�����������
@ ����������
�����������4���A
�)�	����
@ ��������
����
����%+!�4���
��3���
������4A	�
��������#!!$�����#!!+
@ ����������
����

����
����
��?�������������
@ B*!����������
����������'�������

October 27, 2005 ICER

Gates at UWGates at UW --MadisonMadison

C������
�����������������������
���
���
����
�����
���
�����
�
�
�����������&

83

October 27, 2005 ICER

$���
���
���	�
���$���
���
���	�
���%%

nn ““Personally, I hope my kids never get into IT; I Personally, I hope my kids never get into IT; I
hope they become the driving force within any hope they become the driving force within any
company that IT works for.company that IT works for.””

nn ““I would NOT recommend that my children look I would NOT recommend that my children look
for an IT career. I would recommend that my for an IT career. I would recommend that my
children look for skills and an occupation that children look for skills and an occupation that
can last them a lifetime (40+ years) and not be can last them a lifetime (40+ years) and not be
stolen away from them by a cheaper stolen away from them by a cheaper
worker/industry changes. An occupation where worker/industry changes. An occupation where
they become more valued and recognized as they become more valued and recognized as
the older and more experienced they get.the older and more experienced they get.””

October 27, 2005 ICER

"���
"���
���		������		���%%

nn ““The thought of IT as a career is long over. The thought of IT as a career is long over.
Why? Because a career is supposed to Why? Because a career is supposed to
be longbe long--term, not a job where you are term, not a job where you are
worried about being laid off and knowing worried about being laid off and knowing
you most likely wonyou most likely won’’t get another position.t get another position.””

nn ““IT is treated like IT is treated like ‘‘maintenancemaintenance’’ work by work by
most companies. Do YOU want to spend most companies. Do YOU want to spend
your life struggling to keep a job as a your life struggling to keep a job as a
compucompu--janitor?janitor?””

84

October 27, 2005 ICER

&��
���
����
&��
���
����
���	���	%%

nn ““ItIt’’s thankless at work, its thankless at work, it’’s thankless at s thankless at
home. No one gets it but your fellow IT home. No one gets it but your fellow IT
people and you donpeople and you don’’t see them because t see them because
youyou’’re at the desk all day long. Run for re at the desk all day long. Run for
the damn hills. I am VERY good at this the damn hills. I am VERY good at this
job. But if I known then what I know now, I job. But if I known then what I know now, I
would have been a jock, or an artist, or a would have been a jock, or an artist, or a
hermit. ANYTHING but an IT guy.hermit. ANYTHING but an IT guy.””

October 27, 2005 ICER

Need for CS degrees?Need for CS degrees?

9���
����������������
����
���D�������������
��;�����
��
����)�����,��E������������
�����
����&���
����������
���������
���
�������
���������������
�������

����������
������������
���
������
��&�/��
�������,��
��
���
����
��������
������������
�������������
�0�����
�
��
�
����������������
�������,������
��
�
���
����
�����
�������
�������,����
�������,�?���
��
�
������
������
�������&�/����������������
�����
�
,����
����
���
���
���
������������D���������
������������&��D����
����
�
��
�������
����������������������
��������&=

	
�������
���,��0�F0?70.�# ,�#!!'

85

October 27, 2005 ICER

HH--1B Visas1B Visas

Last week the U.S. Senate Judiciary Committee Last week the U.S. Senate Judiciary Committee
approved legislation that would expand the cap on Happroved legislation that would expand the cap on H--1B 1B
skilledskilled--worker visas from 65,000 to 95,000 in fiscal year worker visas from 65,000 to 95,000 in fiscal year
2006. 2006.

IEEEIEEE--USA is against this proposal. IEEEUSA is against this proposal. IEEE--USA has said USA has said
the Hthe H--1B program takes jobs away from U.S. workers. 1B program takes jobs away from U.S. workers.
U.S. IT and U.S. IT and electrotechnologyelectrotechnology professionals saw a 1.5% professionals saw a 1.5%
decrease in their salaries in 2003, the first decrease decrease in their salaries in 2003, the first decrease
since IEEEsince IEEE--USA began surveying members in 1972, the USA began surveying members in 1972, the
group said in December. IEEEgroup said in December. IEEE--USA blamed HUSA blamed H--1B visas, 1B visas,
outsourcing and other factors for the salary decrease. outsourcing and other factors for the salary decrease.

October 27, 2005 ICER

Money used to be the good newsMoney used to be the good news ……

““ For the fourth year in a row, IT workers across For the fourth year in a row, IT workers across
the board received only modest raises the board received only modest raises –– their their
pay increased by an average of just 3% in 2005, pay increased by an average of just 3% in 2005,
matching last yearmatching last year’’s average salary increases average salary increase……. .
IT raises still lagged slightly behind the average IT raises still lagged slightly behind the average
of about 3.2% for all U.S. workers as reported by of about 3.2% for all U.S. workers as reported by
the Bureau of Labor Statistics. While the majority the Bureau of Labor Statistics. While the majority
of respondents (69%) said their 2004 base of respondents (69%) said their 2004 base
salary increased from one year ago, 31% salary increased from one year ago, 31%
experienced either no change in salary or had experienced either no change in salary or had
their pay cut.their pay cut.””

ComputerWorldComputerWorld ’’ss 1919thth Annual Salary Survey, October 24, 2005Annual Salary Survey, October 24, 2005

86

October 27, 2005 ICER

��������	�
��''�
����(��������	�
��''�
����(

990��������
������
�����
�D��)�
���
���0��������
������
�����
�D��)�
���
���

��������������
��
������������
���������������������
��
������������
�������

������������
���
������,��
��D���

)���
��������������
���
������,��
��D���

)���
��

�
����
����
�
�
����
����
����
�
�
������� ������

���,���������������

���,���������

�������������,������������������,�����������������������,������������������,����������

��
��������
���������� �
�����D����>>������
���
����
�����D����>>������
���
���

�
�D��������
���
������
�����
�D��������
���
������
����

��
��������&��
��������&==

7����C����G7����C����G ?���
�
���.������
�3�������������?���
�
���.������
�3�������������

October 27, 2005 ICER

$��
���
�����
����	
������($��
���
�����
����	
������(

Diana Diana OblingerOblinger
nn Vice President for EDUCAUSEVice President for EDUCAUSE
nn Adjunct Professor of Adult and Community Adjunct Professor of Adult and Community

College Education at North Carolina State College Education at North Carolina State
University University

nn Vice President for Information Resources and Vice President for Information Resources and
the Chief Information Officer for the 16the Chief Information Officer for the 16--campus campus
University of North Carolina University of North Carolina

nn Executive Director of Higher Education for Executive Director of Higher Education for
MicrosoftMicrosoft

nn IBM Director of the Institute for Academic IBM Director of the Institute for Academic
TechnologyTechnology

87

October 27, 2005 ICER

Educating the Net GenerationEducating the Net Generation

 �
��
&	�
��
 �)
#����
�����
������

*�����������	
���

��
����������

��������	�
���
+������	
������������
��

���

��
����������

*���	
��������	�
��
�
+������	
����,

��

����
���
����

��
����	

���
�������-�
.��������'�

.�������	
���
&������
��
�����
���
���

+������
��
��������

���'�������,
��������������,
���

�������)
/��
��������
*��
��������	�

October 27, 2005 ICER

Educating the Net GenerationEducating the Net Generation

���
0���
1�����
���
.�������)
������	
���

����
��
��	�	�����
���
+������	

���������
����	���
��
"���
23�� �������

������������

�������
���'����
���
���

��
����������

#������
��'��������
���
���

��
����������

+������	
������

��
����������
��������
���
+��������

���

��
&������

.������	
���

������������ +������	
������)

 �����������
���
 �'��������
��
��������	�

���
#������

88

October 27, 2005 ICER

The Net GenerationThe Net Generation

Peer reviewPeer reviewPeer to peerPeer to peer
DeliberationDeliberationSpeedSpeed
IndividualIndividualSocialSocial
ReflectionReflectionActionAction
TextTextPictures, sound, videoPictures, sound, video
One thing at a timeOne thing at a timeMultitaskingMultitasking

Our GenerationOur GenerationThe MillennialsThe Millennials

October 27, 2005 ICER

89

October 27, 2005 ICER

Constructivist TheoryConstructivist Theory

Key findings:Key findings:
““Students come to the classroom Students come to the classroom

with preconceptions about how with preconceptions about how
the world works. If their initial the world works. If their initial
understanding is not engaged, understanding is not engaged,
they may fail to grasp the new they may fail to grasp the new
concepts and information that concepts and information that
are taught, or they may learn are taught, or they may learn
them for purposes of a test but them for purposes of a test but
revert to their preconceptions revert to their preconceptions
outside the classroom.outside the classroom.””

October 27, 2005 ICER

Constructivist TheoryConstructivist Theory

Implies that learning is best when it is:Implies that learning is best when it is:

nn Contextual:Contextual: taking into account the studenttaking into account the student’’s s
understandingunderstanding

nn Active:Active: engaging students in learning activities engaging students in learning activities
that use analysis, debate, and criticism (as that use analysis, debate, and criticism (as
opposed to simply memorization) to receive and opposed to simply memorization) to receive and
test informationtest information

nn Social:Social: Using discussion, direct interaction with Using discussion, direct interaction with
experts and peers, and teamexperts and peers, and team--based projectsbased projects

90

October 27, 2005 ICER

How did we learn?How did we learn?

October 27, 2005 ICER

How do we teach?How do we teach?

nn The same way we were taught?The same way we were taught?

nn The way we prefer to learn?The way we prefer to learn?

H������2�������

/����
���2�������

������
�����2�������

91

October 27, 2005 ICER

How do children learn today?How do children learn today?

October 27, 2005 ICER

How do our students learn?How do our students learn?

92

October 27, 2005 ICER

The Impact of Television on The Impact of Television on
our Current Studentsour Current Students

October 27, 2005 ICER

Remember our videos?Remember our videos?

93

October 27, 2005 ICER

What are they watching?What are they watching?

October 27, 2005 ICER

Back to the BasicsBack to the Basics
The Structure of a NeuronThe Structure of a Neuron

94

October 27, 2005 ICER

The Brain

Regions
of the
Brain

October 27, 2005 ICER

Regions of the BrainRegions of the Brain

95

October 27, 2005 ICER

And time for a commercialAnd time for a commercial

October 27, 2005 ICER

So we shouldSo we should ……

üü Visuals, videosVisuals, videos

üü Changing stimulusChanging stimulus

üü Group workGroup work

üü Collaborative workCollaborative work

üü Experiential workExperiential work

üü Role playingRole playing

üü Competition and gamesCompetition and games

üü Evaluation, critiquingEvaluation, critiquing

������
����
������
�������������I������
����
������
�������������I

üü BrainstormingBrainstorming
üü BlogsBlogs
üü Case studiesCase studies
üü Online discussionOnline discussion
üü Adaptive coursesAdaptive courses

96

October 27, 2005 ICER

““ MicroburstMicroburst ”” Teaching and LearningTeaching and Learning

Combine various teaching styles and Combine various teaching styles and
methods to interest and motivate students methods to interest and motivate students
with different and sometimes disparate with different and sometimes disparate
learning styles for the ultimate purpose of learning styles for the ultimate purpose of
enhancing and strengthening the learning enhancing and strengthening the learning
processprocess

October 27, 2005 ICER

But who should change?But who should change?

	
�
������
�����
���0������
�,�:��
����(,�#!!'

97

October 27, 2005 ICER

Net Gen AttitudesNet Gen Attitudes

nn "My laptop follows me wherever I go. The "My laptop follows me wherever I go. The
world should be wireless.world should be wireless.““

nn ““If I canIf I can’’t Google it, it probably isnt Google it, it probably isn’’t worth t worth
knowing.knowing.””

nn ““Instead of focusing on required Instead of focusing on required
attendance, teachers should focus on attendance, teachers should focus on
providing students with the tools to make providing students with the tools to make
them successful and should let them be them successful and should let them be
responsible for their own learning.responsible for their own learning.””

October 27, 2005 ICER

More Net Gen AttitudesMore Net Gen Attitudes

nn ““I would like to have the libraries be completely I would like to have the libraries be completely
WebWeb--based, with books that have based, with books that have highlightablehighlightable
text.text.””

nn "I carry the Internet in my pocket, and boy, do I "I carry the Internet in my pocket, and boy, do I
need it.need it.““

nn ““Let me know what it is thatLet me know what it is that’’s required of me, s required of me,
and then let me get there. Facilitate my way and then let me get there. Facilitate my way
there, provide me with the resources, be there, provide me with the resources, be
availableavailable——on the phone or online. It would be on the phone or online. It would be
great if we could IM our professors. great if we could IM our professors. ““

98

October 27, 2005 ICER

And one moreAnd one more ……

nn ““In teaching, there seems to be a lot of emphasis on In teaching, there seems to be a lot of emphasis on
learning facts, with the teacher communicating facts to learning facts, with the teacher communicating facts to
the students. But the students. But WikipediaWikipedia has pretty much all the facts has pretty much all the facts
a student needs. Or a Google search can provide the a student needs. Or a Google search can provide the
facts. One way or another, the Internet has the facts. facts. One way or another, the Internet has the facts.
What IWhat I’’d love to see more of in the classroom is d love to see more of in the classroom is
experience. If my professor has been a physicist for experience. If my professor has been a physicist for
twenty years, has been solving calculus problems, Itwenty years, has been solving calculus problems, I’’d d
like the professor to share with me some of these like the professor to share with me some of these
thingsthings——share with me the approaches taken, the share with me the approaches taken, the
thought processes involved. That would definitely help thought processes involved. That would definitely help
students be able to work with the materials to solve the students be able to work with the materials to solve the
assigned problems.assigned problems.””

October 27, 2005 ICER

But lots of issuesBut lots of issues

nn Students come into CS to do gamingStudents come into CS to do gaming

nn Students are working lots of hoursStudents are working lots of hours

nn Students come to campus with lots of Students come to campus with lots of
baggagebaggage

nn Have to teach the basics and all the new Have to teach the basics and all the new
stuffstuff

nn Where do online courses come into the Where do online courses come into the
mix?mix?

99

October 27, 2005 ICER

What do we do?What do we do?

nn Make science and math interesting at a young Make science and math interesting at a young
ageage

nn Need industry to step forwardNeed industry to step forward

nn Educate faculty on how to reach out to these Educate faculty on how to reach out to these
students students –– regional workshops regional workshops –– best practicesbest practices

nn Change our image to make it more appealing Change our image to make it more appealing ––
connecting to other disciplines and realconnecting to other disciplines and real--world world
applicationsapplications

nn Fund innovations at the local levelFund innovations at the local level

October 27, 2005 ICER

100

Computing:
A 21st Century Liberal Arts Education

Dan Reed
Dan_Reed@unc.edu

Chancellor’s Eminent Professor
Vice Chancellor for IT

University of North Carolina at Chapel Hill

Director, Renaissance Computing Institute (RENCI)
Duke University

North Carolina State University
University of North Carolina at Chapel Hill

Chair, Board of Directors
Computing Research Association (CRA)

Information Technology: The Lever
• The 21st century is about knowledge economies

– managing information for competitive advantage

• Universities are in the knowledge business!
– creation, preservation, transmission, and application

• IT is about knowledge management and creation
– education, research, service and business processes

• Globalization is a challenge and opportunity
– we made it possible; we should capitalize on it

“Give me a place to stand and a lever
long enough, and I will move the world.”

Archimedes, 287-212 BC

101

I am often asked, “What made
you become scientist?” But I
can't stand far enough away
from myself to give a really
satisfactory answer, for I
cannot distinctly remember a
time when I did not think that a
scientist was the most exciting
possible thing to be.

Sir Peter Medawar

Why Are We Here?

The Story Does Matter

Sashimi

Dead Tuna

102

Exemplar 21st Century Challenges
• Population growth

– severe weather sensitivity
• statewide impact

– geobiology and environment
– economics and finance
– sociology and policy

• Economics and health care
– longitudinal public health data

• environmental interactions
– genetic susceptibility

• heart disease, cancer, Alzheimer's
– privacy and insurance
– public policy and coordination

Severe Storm Modeling
• $10T U.S. economy

– 40% is adversely affected by weather and climate
• $1M in loss to evacuate each mile of coastline

– we now over warn by 3X!
– average over warning is 200 miles ($200M/event)

• Multiple models
– atmosphere, ocean, geography
– biology, fishing, environment
– economic and social

• Goal
– timely and accurate forecasts

• using dynamic adaptation
• Attributes

– integrated monitoring and analysis
– data capture and adaptive analysis

• LEAD Grid
– Linked Environments for Atmospheric Discovery

• Oklahoma, Indiana, UCAR, Colorado State, Howard, Alabama
• Millersville, NCSA, North Carolina

Leuttich and Blanton
Storm Surge
UNC ADCIRC Model

103

Mouse Genetics

Human Genetics

Society

Genotype-Phenotype Correlation

DETECTION
INTERVENTION

TREATMENT

Human
Genetics

DETECTION
VALIDATION

CHARACTERIZATION

Mouse
Genetics

The Six Computing Eras
• Big Iron (post WW II)

– vacuum tubes and campy science fiction movies
• Mainframe (‘60s/’70s)

– spinning tapes and bad science fiction movies
• Workstations (‘70s/’80s)

– spinning disks and Star Trek™
• PCs (‘80s/’90s)

– spinning CDs and Jurassic Park™
• Internet (‘90s)

– spinning DVDs and Internet pet food companies
• Implicit computing (21st century)

– IPods™ and The Matrix™
– embedded intelligence in everyday objects

• number of processors/person → infinity

104

Surrounded by Invisibility
“Eventually, living in a
world of continuous
computing will be like
wearing eyeglasses: the
rims are always visible, but
the wearer forgets she has
them on—even though
they’re the only things
making the world clear.”

Wade Roush, MIT
Technology Review

Understanding the Future
• Some rules of thumb

– in the near term, we overestimate change
– in the long term, we underestimate changes

• Outside their field of expertise
– experts are often better at predictions

• the contra-Delphi effect

• Inventing the future is far more successful
– recognize exponentials

• quantitative change brings qualitative change

• Technological and social change
– move at different rates and have differing consequences

• Consider digital music
– born of storage technology advances
– bred social and business change

105

Digital Reality: The Exponentials

• Megabyte
– a small novel

• Gigabyte
– a pickup truck filled with paper or a DVD

• Terabyte: one thousand gigabytes – ~$1000 today
– the text in one million books
– entire U.S. Library of Congress is ~ten terabytes of text

• Petabyte: one thousand terabytes
– 1-2 petabytes equals all academic research library holdings

• coming soon to a pocket near you!
– soon routinely generated annually by many scientific instruments

• Exabyte: one thousand petabytes
– 5 exabytes of words spoken in the history of humanity

• See www.sims.berkeley.edu/research/projects/how-much-info-2003/

Source: Hal Varian, UC-Berkeley

0 25 50 100 125 150

Automobile

75
Years

20

50

100 TelephoneElectricity
Radio

Television

VCR

PC

Cellular

In
te

rn
et

%
 P

en
et

ra
tio

n

The Pace of Innovation is Quickening

• Social compacts and acceptable use
– historically, generally over a generation
– generational internalization is no longer possible

• Concomitant economic dislocation
– learning for a lifetime

Source: Council on Competitiveness

106

NCSA Mosaic: Almost Twelve Years

•December 8, 1993, C Section (Front Page)
–John Markoff, “A Free and Simple Computer
Link - NCSA's Mosaic Program”

Information and Social Processes
• Google

– it’s a search engine, it’s a verb, …
• Blogs

– published self-expression
• Instant Messenger

– social networks
• Wireless messaging

– semi-synchronous
• Internet commerce

– the dot.com boom/bust
– EBay, Amazon

• Spam, phishing, …
– anti-social behavior

107

Economic Dislocation: What and Why?
• The world shrank

– ship, railroad, airplane
– telecommunications

• Information “friction” declined
– international interactions at local cost

• a long distance call once was a big deal
– 24x7 asset use by multinationals

• Web of interdependencies increased
– NAFTA, Kyoto accord, oil reserves
– commercial products (“Made in USA”)

• Rate of change accelerated
– globalization and competitive pressures
– few “life long” jobs remain
– rapid, come as you are response

• Implications
– U.S. economy and universities?

“Leann Harrington, a former
textile worker and now a
waitress in Kannapolis,
N.C., said that ‘the middle
class is pretty much gone
here.’”

November 2, 2004
Elizabeth Becker, “Textile Quotas

to End, Punishing Carolina Towns”

The World Is Flat
• U.S. competition is not among

– Boston, Atlanta, Chicago, Los Angeles, …

• The competition is global
– Bangalore, Mumbai, Shanghai, Seoul, …

• Costs of information flow
– are approaching zero

• Global economic winners will
– have a better trained workforce
– have the ability to participate globally
– be horizontally, not vertically integrated

• nobody is best at everything

108

Science and Engineering Degrees

• Population ratios
– 24 year olds
– NS&E degrees

• Natural Science & Engineering

• Changing behavior
– U.S. implications

• globalization and innovation
– 21st century economy

Source: NSF S&E Indicators, 2004

Evolving University Roles
• American university “eras”

– pre and post-colonial
• private and original state universities

– land grant
• many state universities

– post World War II
• GI bill and educational “democratization”

– today, the fourth wave
• economic drivers and continual re-education

• A new compact with the citizens
– lifelong education and economic competitiveness
– knowledge economy leverage
– value chain enhancement

• Intelligent application of IT is a powerful force

109

Roles of Great Universities
• Frame and lead the debate on critical issues

– shape state, national and international positions
• Train tomorrow’s leaders

– public and private
• Enrich the human experience

– scholarly, cultural, social and recreational activities
• Nurture and broaden participation

– the common wellspring of humanity
• Produce and transfer new knowledge

– the raw material of the knowledge economy
• Sustain lifelong education

– knowledge for a lifetime and refreshed skills for a profession
• Catalyze economic development

– job creation and corporate competitiveness

What of Computer Science?
• What are we called?

– computer science
– computer engineering
– computing
– information technology
– information science
– informatics

• What are we?
– science
– engineering
– technology
– vocational
– theoretical
– experimental
– chimera

• What is our core?
– theory, software
– architecture, hardware
– graphics, AI, HCI, NA
– computational science

• What is our vision?
– engagement
– inclusion
– excitement

• What is our future?
– grand challenges
– collaborations
– redefinition

110

The Classical Syllabus
• Classical education

– trivium
• grammar, logic and rhetoric

– quadrivium
• arithmetic, geometry, music and astronomy

– and fluency in Latin and Greek
• Natural philosophy then appeared

– Robert Boyle
– Francis Bacon
– Isaac Newton

The Standard CS Syllabus

111

The Infinite Onion
• We always add …

– new courses
– new technologies
– new paradigms
– new layers

• Do we ever delete?
– core plane design
– code overlays
– FORTRAN (in some cases)

• What are the CS “Latin and Greek?”
– time to rethink and move forward

• CS/IT: the Renaissance skill of the 21st century
– problem solving is the “liberal arts” skill
– universal applicability and domain connections

Enrollment Trends (CRA Data)

Undergraduate CS EnrollmentsNewly Declared CS Majors

112

Degrees Awarded (NSF Data)

Probable Majors By First Year Students
(HERI/UCLA Data)

113

Global Challenges
• Rising Above The Gathering

Storm: Energizing and Employing
America for a Brighter Economic
Future
– “What are the top ten actions, in priority

order, that federal policy makers could
take to enhance the science and
technology enterprise so the United
States can successfully compete,
prosper and be secure in the global
community of the 21st Century? What
implementation strategy, with several
concrete steps, could be used to
implement each of those actions?”

books.nap.edu/catalog/11463.html

PITAC Report Contents
• Computational Science: Ensuring

America’s Competitiveness
1. A Wake-up Call: The Challenges to U.S.

Preeminence and Competitiveness
2. Medieval or Modern? Research and Education

Structures for the 21st Century
3. Multi-decade Roadmap for Computational

Science
4. Sustained Infrastructure for Discovery and

Competitiveness
5. Research and Development Challenges

• Two key appendices
– Examples of Computational Science at Work
– Computational Science Warnings – A Message

Rarely Heeded
• Available at www.nitrd.gov

114

Extraordinary Dreams
Between them, the five engines were now
vaporizing fifteen tons of liquid a second
... From four miles away, the scene was
mystifying, surreal. The rocket moved, it
seemed to levitate, inching upward on a
tower of incandescent fire – but there was
no sound …
And then ... the shock wave flashed across
and thudded into the chests of the
spectators and shook the ground beneath
their feet ... To a million souls who
watched dumbstruck as the great machine
ascended, there could not have been the
slightest doubt that this thing was leaving
the planet. Ascent to the Moon

4:17:40 p.m. EDT, July 20, 1969

ARPANET

BBN IMP Team Vint CerfLen Kleinrock

Bob KahnLarry Roberts December 1969June 1970
December 1970

September 1971March 1972
August 1972June 1974
July 1975July 1976July 1977

Note the timescale!

115

DARPA Grand Challenge Race

Memex: Still Prescient
“Consider a future device for
individual use, which is a sort of
mechanized private file and
library. It needs a name, and to
coin one at random, “memex” will
do. A memex is a device in which
an individual stores all his books,
records, and communications, and
which is mechanized so that it
may be consulted with exceeding
speed and flexibility. It is an
enlarged intimate supplement to
his memory.”

Vannevar Bush
“As We May Think,” 1945

116

The Importance of Dreams
• Defining characteristics of humanity?

– opposable thumbs? Perhaps
– tool builders? Perhaps
– self-awareness? Closer, but not quite

• The ability to dream what could be
– The Library at Alexandria

• capturing all human knowledge
– Principia Mathematica (Whitehead and Russell)

• led to Gödel and the limits of logical systems
– Apollo program, even given Cold War politics

• Kennedy’s advisors grasped the essence of the vision
– The Central Dogma of biology

• human genetic sequencing and engineering
– The Standard Model of physics

• dark matter, dark energy and the Theory of Everything

Some Informatics Grand Challenges
1. Ubiquitous invisibility

– successful technologies become “invisible”
– composable, interoperable systems

2. Intelligence amplification (Memex)
– the right information at the right time
– seamless modality transduction, situated and mobile

3. Predictive in silico biological models
– the “other” artificial life
– multidisciplinary modeling and integration

4. The Universe in a Box
– origins and alternatives
– the theory of everything (TOE)

5. The Cultural Encyclopedia
– cultural history, context and the digital village

6. Semi-automated extra-solar exploration
– the Fermi Paradox and universal constructors

7. Grand AI, our long-term fascination
– deep questions about thinking

117

Ask The Big Questions

Our immediate neighborhood we know intimately. But
with increasing distance our knowledge fades. ...The
search will continue. The urge is older than history. It
is not satisfied, and it will not be denied.

Edwin Hubble

WMAP

118

���������	
����
	��������	�
	��
���������	
�������
�	��������
	�
�	
�������	����
��	
�������
�	��	���������	 ��	!"#"	�
�	$�%�
�&'

(���)� *���
���

+��	!,&	!""-

.���
�
�

n /����	���&	����	��������	�0���	������
�	�
�)���
�
�	
1���	����	� 	 ����	1���	��������	�
����&	���
	
�����
��	1��)�	������2�	����&	�
�	����	1��	
)���
�
�3	

n ��
��	���	#45"6�	���	 ��)�	� 	���
�����	��%���)��%	���	
����
	�	�� ���
�	��������	77)����
�	��	1���	����)�	
0�)����	�0���	1���	���%	���	����%�
�&	��1	���%	��	
�0���	��)��
�	���0)���&	�
�	��1	�1���	���%	���	� 	
1������	���%	�
������
�	1���	���%	���	�����
�3	

119

n ���0)��7��)��
�	���))�	�
	�
�	��08���	���	�� ���
�	 ���	�����	�
	
�����	��08����3	

n .���
�
�)����	1��
	���	�����
�	�
������
��	���	�������)&	
��	
8���	������2��	��3	�
 �������
	
����	��	0�	�����
���	�
	���))	
���
��	��	����	1����
�	�����%	��
	�������	��3

n �����
��	
���	���������	��������	��	����	�
 �������
	 ���	
1����
�	�����%	��)�
�7����	�����%3

n $�������
�	�
�1)����	��	����)	9 ��	� ����	�����%&	�����
�&	
���
��
�&	�
�	���0)��	��)��
�3	����)�	����	�
 ����)	0�)�� �	
�0���	��1	���	1��)�	1����&	1����	�
��� ����	1���)���
�
�3

.���
�
�	7 ��

�����	:�
��
��

n �����
��	����	��	���	�)�������	1���	�����
������
�	�0���	��1	���
1��)�	1����3		$��)�	�
	����;

n <���)��	�����
�	�������
��	1����	���	�	����	 ��
�����
	� 	 �����)	
�
�1)����&	�0�	 ����	�
�	�����	�
	��
��=�&	�
�	���	����
�2����
	� 	
�
�1)����	��	�
�0)�	��������)	�
�	���)������
3

n >	��������
�����' ��������	��	�
��������
	��
	��)�	�����
��)���
	
0�����3

120

���)������
�

n :���)�%	����	�=�)���	�
�	0��)�	���
	�����
��6 �����	
�
������
��
�3

n :���)�%	����	�����	��08���	������	�
	�����	1���	�=���)��3

n ���	������
�	� 	�������
����� ���))�	����)�	0�	�
��������	
����������	���	�������)��3

/���	����	 ��	(���	� ������	.���
�
�	��	
�������	?
�1�
�

n /�����)

n /���	�������%	��)���

n ���	�������	%��	����	������� �))%	����	
�
	���	����

n /���	�
������	�
&	�
�	�
�1)����	� &	���	
��08���	%��	1���	��)���

121

$���
	����	���	����

n ����)���
�
�	�=�����
����

n .���	��	����@	��)��	���0)���@	(�����2�@	
�����@	�
�������@	�����
��	������@

n ?
�1	��1	��	�������2�@

n >��	A������
�	�0���	1���	%��	�������@	

n
����1@

n B���	������	��	�
 �������
	 ���	�	������%	� 	�������@

n .���	A����	��	����%	������@

n C���	������)	0��� 	����%	������
�&	��	�
�)�
���	�
�@

n ����	���	%���	����%	��0���@		B�1	���	���%	���)��@		�����	1�����	
0���@		�����@

n B�1	���	%��	�����
�����	1���	%��)���
��	0���@		�������	�	1�����
	
����&	�	����	�����&	�
	�
������1@

�������	��	���	�����
�

n B�1	�
��������	���	%��	�
	����@

n B�1	����	����	��	%��	1�
�	��	���
�)���
�
�	����@

n ����	��������	 ��	%���	����
���
@

n >��	���	���������
���	�����	 ��	�������@

n ����	��
	%��	��
���)&	�
�	1���	��	�������	%���	��
���)@

n ��
	%��	���
��	�����	��
�����
�	 ��	�������@

n ����	� ����	%���	���������
	��)���
�
�	����@

n <�	%��	����	�	�)�
@		<���	%���	�)�
	��
�����	%���	����	
�=�����
��	�
�)���
�
�	��%)�@

122

.���
�
�	��%)��

n *����)	7 �������

n >������%	7 �����
�

n ?�
��������	7 ������
�

?
�1	B�1	/��	���
�

n ?
�1�
�	��1	%��	���
�	��	�������
�&	�������))%	 ��	�
��
����3

n ?
�1	0�������
�	0���
�	%���	�����
�
�3	

n >�	���	�����
�
�	��	��) 	����
��
�&	����	���	����	����	��	
�
�)%2�	%���	���))�3

n ?
�1	1���	%��	���	���
�@

n ����������	���)�%��

n ���	��������	����

n ���	0�����	��)�����

n ���	������
�	�
��)���	�
	����

n ��
 ���
��)���)	�������
�	� ���	�	����������	�������

n ��
 ���
��)���	� ���	�	 ��)���3

123

���
��
�	��%)��

n ?
�1	����	��%)��	���	��� ���
���	��	���	�0�)�����&	0��	
��	
�
���
���3

n >	�����	0��1��
	��%)��	�
�	�0�)�����	�������	�%
���%&	1����	��	
����	���
	���	���	� 	�����3

n ��%)��	���%	������	�����	�
�	��������
�

n ��%)��	���	�����)�2��

n ��%)��	���%	������	���)� �	���

n ��%)��	���	������0)�

n ����	��%)��	��%	0�����	����	%��	0��	��	
��	 ��	���)���
�
�	
�
����
��
�

:����	� 	���
��
�

���������	
��
��

n ���%	���	���������	0%	���	���
��
�	��%)�

n ���%	���	��
�)�	��
���3

n ���%	���	���	��������

n ���%	���	����)�	1��	����	������	����
�	 ��	������3

����������	
��
��

n �����	����)�	���	���������	0%	��������%	� 	���)�

n ���%	���	�%��������	�
�	����
�2��	����)�3

124

(����%

n (����%	��	����	 ��	����
���
&	�������&	�
�	��������)	� 	
�
 �������
3

n ?
�1)����	��	�� ���
�	 ���	�����%3	��	�� ���	��	�
 �������
	
����	���	0��
	������� �))%	�����
��	�
	�������	�
�)����	
�����0����3

n �����	���	A����	�	 �1	��������	�������
�	�����%3	

(����%

n (
���
���

n .���
	���	������
	� 	�����%

n .���
	��1	%��	����	��������	%���	������2����
	���))�

125

�����	����	(����%

n ����	��	���	1����
�	�����%3

n �����
�	�����%	��)������	�
	�����	�
�	
������	�
 �������
	 ��	���0�0)%	#!	�����3

n �
 �������
	
����	�������
	��	��)�	�
	���)�
�	
����	�����%3

n �)���	�� ������	���	�����	����	�����%3

.�
�	����	(����%

n���)�
�	����	�����%	��)����)���3

n���	�����%	��	����
�2��	�
	���	 �))�1�
�	��

��

n ��������	�����%

n ����
���	�����%

�����	�
�)�
�	����	�����%	���	����)%	�
��������3	�����	���)�
��	��	
���	�����	����	�����%	�
�	���)�
�7����	�����%3

126

D��
��
���

��������	������

n >���0����������)	�
	
�����3

n
�����	� 	%���	�����
�)	�=�����
���3

n ���)�����	��������

�������	������

n +���
�2�
�	��)��3

n ��������
�	��0���

<� �
����
	� 	���������%

n ���	�0�)��%	��	������3	�������
��%	�� �
����
�

n �
)��
��
�	������	?
�1)����	0%	���
�	<%
����	
�
��))���
��3

n ��������	���
��
�

n ���������
�	�
 �������

n �%
�����2�
�	�������
�&	1����	��	
��	�����
�	0%)�����)	
��
�)����
�&	������
�	��	 ���	�)���
��	�)����%	�����
�3

n >
��������
�	0%)�����)	��
�)����
�3

127

n ���������%	��	�	�����	1�	�
�������)%	���������	1���	�
��))���
��3

n ���������%	��	���%	��	�0�����3

n ��	��	���	�0�)��%	��	�%
�����2�	���	�=����
�	�
�1)����	�
	����	�
1�%	��	��	������	�������
�	
�13

n ��������
�	�)���	� 	���������%	���)��	��������%

���������%	7 ��

��������	���
��
�	>0�)�����
�����EE1113)���3��E���8����E������E@���F!-5G�� �
�

n :)��
�%�	���	�0�)��%	��	�������	��
%	�����
���	��	�
	���
7
�
���	A������
	��	���0)��3

n :)�=�0�)��%�	���	�0�)��%	��	��
�����	�
��
��
���
�)	�����&	�
�	��	
���1	�	��������
	 ���	�� ���
�	������������3

n +����
�)��%�	���	�0�)��%	��	�������	�
�A��&	�
����)&	��	
���)	
�����
���3

n �)�0������
�	���	�0�)��%	��	���	����	�
�	�)�0�����	�����)	��	�
	
����3

n *����)�2����
�	���	�0�)��%	��	�����
�	�
�	��
���)���	������	�
�	
�����	 ���	�� ���
�	������������3	

128

n ���
� �������
�	���	�0�)��%	��	���
��	�
�	���
�	��	����	�
��	
�
�����&	��	���	
�1	���
�
��&	���)������
�&	�
�	���)������
�	� 	
�������
�	�)����%	�
	�)���3

n �
������
�	���	�0�)��%	��	���	��)����
�����	��	����	��

�����
�	
0����	�
	������)	�
 �������
3

n �%
�������	���	�0�)��%	��	���0�
�	�����	�
��	�	������
�	1��)�3

��������	���������

(
���
���

n >��������	��������7 ���������	%���	��������	�
�	
��)���	����	��	���
��	%��	���	 ���)���	1���

n ��
�����
���	� 	�����	����������7 ��)���	��	
�������
�	%��	�
�13	

n >��������	9)���
	���
���)��	�
�	���	����	
�����
���))%

129

���0)��	��)��
�

n B�1	����	���	%��	��	���0)��	��)��
�@

n ���
	%��	 ���	�	
�1	���0)��&	���	%��	�
��)���	�
	��	�
�	��	
%��	��)��	��	A����)%@

n <�	%��)���
	���	 ����)��	 ����	�
�	���
	���)%@

n <�	%��	���
�	����
�	��
�����	���	�������
�	�
	��)��
�	
���0)���@

��
�����	���	�������

n ����	��	���	�����
�	��	���)�@

n ����	���	��%	1����	����	8���	���@

n <�	�	�
������
�	����@

130

���	��08���	(�����

n ����	��	%��	�)����%	�
�1@

n >��	�����	��)����	��08����@

n ����	��
��	� 	���������	�
�	�
 �������
	1�))	��)�	
��@

n >�	%��	����%&	��	%��	�����	 ��	�
������
��
�@

n ����)�	%��	��	����	A����)%	��	�)�1	��1
@

n � 	%��	��
6�	�
������
�&	��	%��	���	1�%@

����D

n <�	%��	�������2�@

n <�	%��	���	1������	��	��)�����)@

n <�	%��	����	�
�	���)����	������E���������@

n <�	%��	
���	����	��	���
�	��	����	�
�	�����
)����@

n <�	%��	
���	��	�������	��	1���	�����	�)���
���' �
	�����	��	
�������	���	�
 �������
@

n <�	%��	
���	��	��
��)�	�	��08���7������	�=����@

���	��08���	(�����	7 ��

131

$��)�	�
	
����1

n ����	���	%��	��	�����@

n ����	���)�	%��	����	0�����@

n <��	%���	�)�
	���
����	1���	��1	%��	���)�2�	%���	����
����	�
�	
1���
�����@

n <��	%��	������	���	�����	��
�����
�@

n <��	%��	 �))�1	�������@

n <��	%��	�������@

n <��	%��	��)�0����	%���	�������@

132

	nsfstuff.pdf
	Introduction
	
	Stimuli for Strategic Planning
	
	Vision

	big-bundle.pdf
	fishwick.pdf
	

	SandeepGupta.pdf
	1. “Computer Science Educators – We have a Problem!”
	2. Holistic or Systems Oriented Educational Approach
	3. Need for Convergence
	4. SPURing CS Curriculum
	5. Need for Evolution – Bridging CS and Other Sciences & Engineering
	6. Conclusions

	MichaelHuhns.pdf
	ICER Workshop White Paper

	white-paper-peterson-ICER.pdf
	Abstract
	Introduction: Challenges Facing Computing Educators
	Opportunities for Improvement
	NSF/Government Role
	References

	SandeepGupta.pdf
	1. “Computer Science Educators – We have a Problem!”
	2. Holistic or Systems Oriented Educational Approach
	3. Need for Convergence
	4. SPURing CS Curriculum
	5. Need for Evolution – Bridging CS and Other Sciences & Engineering
	6. Conclusions

	Text2:

