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1. Notation

• Fix a triangle A1A2A3 in the plane, with angles parametrized by αj =
π

∠Aj−1AjAj+1
. To the vertex Aj associate the sector Sj which is the in-

tersection of the disc centered at Aj and tangent to Aj−1Aj+1 with the
triangle.

• Let Sj be the sector obtained by intersecting the disc centered at Aj and
tangent to Aj−1Aj+1 with the triangle.
� Let Rj be its radius (the length of the altitude based at Aj).
� In the sector let (rj , θj) be the polar coordinate system based at Aj .

• Let S′j be the subsector of radius R
′
j < Rj .

Lemma 1. Let O be the orthocentre of the triangle, and let |AjO| ≤ R′j ≤ Rj.
Then the three sectors jointly cover the triangle.

Proof. Let Bj be the foot of the altitude from Aj . Then the triangle AjOBj+1 is
right angled with hypotenuse AjO, and in particular contained in any disc centered
at Aj with radius at least |AjO|. �

Lemma 2. Let A1, A2 be points, let R′1, R
′
2 > 0 be real numbers such that R′1+R′2 >

L = |A1A2|, let O be a point at distance R′i from Ai, B the projection of O on

AiA3−i let di = |BAi|. Let Ω be the intersection of the two circular arcs centered

at Ai of radius R′i bounded by AiO and AiA3−i. For 0 ≤ h ≤ |OB| let I be the

longest line segment perpendicular to BO at height h above B and contained in Ω.

(1) The endpoints of I are

(2) The length of I is

(3) The area of Ω is

Proof. A point of height h above A1A2 and at distance R′i from Ai projects to the

point at distance
√

(R′i)
2 − h2 on A1A2. The length of I is therefore√

(R′1)2 − h2 +
√

(R′2)2 − h2 − L
1
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It also follows that H = |BO| solves√
(R′1)2 −H2 +

√
(R′2)2 −H2 = L .

Squaring gives

2
√

(R′1)2 −H2

√
(R′2)2 −H2 = L2 + 2H2 −

(
(R′1)2 + (R′2)2

)
.

Squaring again gives

4
(

(R′1)2 −H2
)(

(R′2)2 −H2
)

= L4+4H4+(R′1)4+(R′2)4+4L2H2−2L2
(

(R′1)2 + (R′2)2
)
−4H2

(
(R′1)2 + (R′2)2

)
+2 (R′1)2 (R′2)2

that is

4 (R′1)2 (R′2)2 = 4L2H2 + L4 +
(

(R′1)2 + (R′2)2
)2

− 2L2
(

(R′1)2 + (R′2)2
)

and

H2 =
(R′1)2 (R′2)2 − 1

4

[
L2 −

(
(R′1)2 + (R′2)2

)]2
L2

Now � √
a2 − x2 dx =

x

2

√
a2 − x2 +

a2

2
arcsin

(x
a

)
+ C

so the area is� H

0

[√
(R′1)2 − h2 +

√
(R′2)2 − h2 − L

]
dh =

H

2

[√
(R′1)2 −H2 +

√
(R′2)2 −H2

]
+

1
2

[
(R′1)2 arcsin

(
H

R′1

)
+ (R′2)2 arcsin

(
H

R′2

)]
− LH

= −LH
2

+
1
2

[
(R′1)2∠OA1A2 + (R′2)2∠OA2A1

]
=

1
2

[
(R′1)2

[π
2
− ∠A2

]
+ (R′2)2

[π
2
− ∠A1

]]
− LH

2ae
where ∠A1 are the angles in the original triangle (vertex A3 is a point such that
A3Ai is orthogonal to the line through A3−i, O). �

2. A-priori esimates

Let u be an eigenfunction of ∆ on a sector S of radius R, inverse angle α, and
consider the restriction of u to the subsector of radius R′. On the big sector we
have

u(r, θ) =
∞∑
k=0

akJ̃kα

(√
λr
)

cos (kαθ) ,

where we renormalize the Bessel function as J̃α(z) = Γ(α+1)Jα(z) so that J̃α(z) ∼(
z
2

)α
for 0 < z �

√
α+ 1. Indeed, we have

J̃α(z) =
(z

2

)α ∞∑
m=0

(−1)m

m!
Γ(α+ 1)

Γ(α+m+ 1)

(z
2

)2m

and if α > −1, 0 ≤ z ≤ 2
√
α+ 1 then this is an alternating zeries: the ratio of suc-

cessive terms is
(
z
2

)2 1
(m+1)(α+m+1) ≤

α+1
α+m+1

1
m+1 ≤ 1 so the series is alternating.

In particular, in this range(z
2

)α [
1− α+ 1

α+ 2

]
≤ J̃α(z) ≤

(z
2

)α
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that is
1

α+ 2

(z
2

)α
≤ J̃α(z) ≤

(z
2

)α
For a given r we have

� π/αj

0

u(r, θ) cos (kαθ) dθ =
1
αj

� π

0

u(r,
θ

α
) cos (kθ) dθ

=
π

2α
J̃kα

(√
λr
)
· ajk .

It follows that

|ak| ≤
2 ‖u‖L∞(S)

J̃kα

(√
λr
) .

If 2
√
kαj + 1 ≥

√
λR then setting r = R gives

|ak| ≤
2(kα+ 2) ‖u‖∞

(
√
λR/2)kα

.

Thus on S′j we have the a-priori bound∣∣∣∣∣
∞∑
k=K

akJ̃kα

(√
λr
)

cos (kαθ)

∣∣∣∣∣ ≤ 2 ‖u‖∞
∞∑
k=K

(kα+ 2)
(
R′

R

)kα

= ‖u‖∞

(
R′

R

)Kα  Kα+ 2
1−

(
R′

R

)α + α
1[

1−
(
R′

R

)α]2
 .

In particular, we can make the truncation error less than ε by takingK large enough.
Note that this requires an a-priori bound on ‖u‖∞ which I think is available.
Gradient estimates. Let's start with the easy case. For derivative wrt θ we need to
bound (the factor r comes from the metric in polar coordinates)

r

∣∣∣∣∣−
∞∑
k=K

akJ̃kα

(√
λr
)
kα sin (kαθ)

∣∣∣∣∣ ≤ 2R′α ‖u‖∞
∞∑
k=K

k (kα+ 2)
(
R′

R

)kα

= ‖u‖∞

(
R′

R

)Kα
R′α

K(Kα+ 2)
1−

(
R′

R

)α +
2Kα+ 2[

1−
(
R′

R

)α]2 +
2α[

1−
(
R′

R

)α]3


For the derivative wrt r we need to bound∣∣∣∣∣
∞∑
k=K

akJ̃
′
kα

(√
λr
)

cos (kαθ)

∣∣∣∣∣ .
Now the ratio of successive terms in the series for J ′ is

≤ α+ 1
α+m+ 1

1
m+ 1

2m+ 2 + α

2m+ α
=

1
m+ 1

2mα+ α2 + 2m+ 3α+ 2
2mα+ α2 + 2m+ (m+ 1)α+ 2m2

< 1

for m ≥ 2. It follows that

J ′α(z) ≤ α

2

(z
2

)α−1

− α+ 2
2(α+ 1)

(z
2

)α+1

+
α+ 4

2(α+ 1)(α+ 2)

(z
2

)α+3
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and for z ≤ 2
√
α+ 1 this reads

|J ′α(z)| ≤ α

2

(z
2

)α−1
[
1 +

(α+ 4)(α+ 1)
α(α+ 2)

]
≤ α

2

(z
2

)α−1
[
1 + 1 +

3
α+ 2

+
4

α(α+ 2)

]
≤ 3α

(z
2

)α−1

since α ≥ 2 in an acute angle. Thus∣∣∣∣∣
∞∑
k=K

akJ̃
′
kα

(√
λr
)

cos (kαθ)

∣∣∣∣∣ ≤
∞∑
k=K

2(kα+ 2) ‖u‖∞
(
√
λR/2)kα

3α

(√
λR′

2

)kα−1

≤ 6√
λR′
‖u‖∞

(
R′

R

)Kα  Kα+ 2
1−

(
R′

R

)α + α
1[

1−
(
R′

R

)α]2


which should be �ne given some lower bound on
√
λ.

The case of small angles.

Problem 3. Is the ratio
(
R′

R

)α
uniformly bounded away from 1? [if R′ is close to

R then the angle at A is small, so α is large]

3. Numerical scheme

• Fix a guess λ for an eigenvalue.
• Fix parameters K,M .

• Let
{
ajk

}k=K−1,j=3

k=0,j=1
be unknowns (variables) except that a1

0 = 1 (pinned),

and let x be the vector of the unknowns (all ajk except a1
0).

• Choose m points zi in the triangle such that each zi lies in at least two
sectors. For each i, j let rji = |zi −Aj | and let θji be the angle the vector

Ajzj makes with the side AjAj−1.
• Let T ∈ M3M,3K−1(R) and b ∈ RM be the following matrix and vector:
for each 0 ≤ i ≤ M − 1, choose two vertices (say Aj , Aj+1 such) that
zi ∈ Sj ∩ Sj+1, and consider the equivalent statements:

K∑
k=0

ajkJkαj

(√
λrji

)
cos
(
kαjθ

j
i

)
=

K∑
k=0

aj+1
k Jkαj+1

(√
λrj+1
i

)
cos
(
kαj+1θ

j+1
i

)
.

K∑
k=0

ajkJkαj

(√
λrji

)
cos
(
kαjθ

j
i

)
−

K∑
k=0

aj+1
k Jkαj+1

(√
λrj+1
i

)
cos
(
kαj+1θ

j+1
i

)
= 0

Separating out the term a1
0 if it appears and shifting it to the RHS gives

the inner product of a vector with x, and we let that vector be the 3ith row
of of T and let b3i be the coe�cient of a1

0 if it appears (zero otherwise).
� Similarly, write down the equations stating that the gradients of the

two functions agree at zi. Since the constant terms do not contribute
we set b3i+1 = b3i+2 = 0.

• Find x (depending on λ) minimizing R = ‖Ax− b‖2.
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• Plot the distance R(λ) as a function of λ. If it dips sharply we found a
suspected eigenfunction.

4. Terry's Post-solution step: How to combine the three expansions
into a single function

Choose a smooth partition of unity 1 =
∑3
j=1 ψj of the triangle such that ψj is

supported in the sector Sj and such that the normal derivative of each ψj at the
boundary of the triangle is identically zero. Note that we can choose ψj in advance.

Now let uj(z) =
∑K
k=0 a

k
jJkαj

(√
λrji

)
cos
(
kαiθ

j
i

)
be the functions with ajk as

computed numerically, Set

u(z) =
3∑
j=1

ψj(z)uj(z) .

Lemma 4. u(z) is smooth in the triangle and satis�es the Neumann boundary

condition.

Proof. Clearly smooth. For z on the boundary,∂nu(z) =
∑3
j=1 [ψj(z)∂nuj(z) + uj(z)∂nψj(z)] =

0 since ∂nψj(z) = 0 by its choice and ∂nuj(z) = 0 on ∂ (A1A2A3) ∩ supp(ψj) by
the functional form of uj . �

Lemma 5. ‖(∆− λ)u‖ is small.

Proof. Set

E(z) = (∆− λ)u(z) =
3∑
j=1

[(ψj (∆− λ)uj) + uj∆ψj + 2∇uj∇ψj ]

=
3∑
j=1

[uj∆ψj + 2∇uj∇ψj ] .

Now at any point z ∈ A1A2A3, if z belongs to a unique sector then ψj ≡ 1 near
z and the expression vanishes. Otherwise, let zi be the nearest point among the
originally prescribed points. Then can bound E(z)−E(zi) by derivative estimates
on ψj (which is �xed) and on uj (numerically, given the coe�cients). Clearly E(zi)
is closely related to (Ax− b)3i,3i+1,3i+2: in the sum up to this error we can replace

all uj ,∇uj with u1,∇u1 (wlog z ∈ S1) and then all derivatives of
∑3
j=1 ψj ≡ 1

vanish.
Finally, assuming the zi are well-distributed,

�
|E(z)|2 dz should be close to

‖Ax− b‖22 = R, so we have an estimate on ‖(∆− λ)u‖L2(A1A2A3)
. �

Corollary 6. There is an eigenvalue of the triangle close to λ.

5. B�S�V (idea, I haven't actually tried to translate it to the
current setting)

Given the �guess� vector x, do a further (reasonable) computation which, if
successful (always in practice, doesn't have to in theory), shows that for some

reasonably large K0 ≤ K the coe�cients
{
ajk

}
k≤K0

are ε-accurate.
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Corollary 7. L∞ bounds on the distance between the numerical solution and the

true eigenfunction.

Proof. Make a Bessel expansion as before, and truncate at K0. The error due to
truncation at K0 can be bounded a-priori, while for the ajk where k ≤ K0 we have
an explicit bound on their distance from the expansion of the true solution. �


