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1. NOTATION

e Fix a triangle A;A2As in the plane, with angles parametrized by «; =
m. To the vertex A; associate the sector S; which is the in-
tersection of the disc centered at A; and tangent to A;_1A;,, with the
triangle.

e Let S; be the sector obtained by intersecting the disc centered at A; and
tangent to A;_1A;; with the triangle.

— Let R; be its radius (the length of the altitude based at A;).
— In the sector let (r;,6;) be the polar coordinate system based at A;.

o Let S;» be the subsector of radius R;- < R;.

Lemma 1. Let O be the orthocentre of the triangle, and let |A;0| < R;- < R;.
Then the three sectors jointly cover the triangle.

Proof. Let B; be the foot of the altitude from A;. Then the triangle A;OB;; is
right angled with hypotenuse A;0, and in particular contained in any disc centered
at A; with radius at least |4;0|. O

Lemma 2. Let Ay, Ay be points, let R, Ry > 0 be real numbers such that R+ R >
L = |A1 45|, let O be a point at distance R} from A;, B the projection of O on
A;As_; let d; = |BA;|. Let Q be the intersection of the two circular arcs centered
at A; of radius R} bounded by A;O and A;As_;. For 0 < h < |OB| let I be the
longest line segment perpendicular to BO at height h above B and contained in €.

(1) The endpoints of I are
(2) The length of I is
(3) The area of 2 is
Proof. A point of height h above A; Ay and at distance R} from A; projects to the

point at distance (Rg)2 — h? on A1 Ay. The length of I is therefore

VR =2+ () 2 - 1
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It also follows that H = |BO] solves

VB — 2+ (R -2 = L.

Squaring gives
2/ (R — H2\/(Ry)? — B2 = 12 27 — (R + (RS)?)
Squaring again gives

(R - 2) ((Ry)” = H?) = L*+4H '+ (Ry)" +(Ry)* +4L2 H? 212 ((R)° + (RY)* ) —4H? ((RY)® + (RS

that is
A(RY? (Ry)? = 4L21 + L'+ (R + (Ry)?) — 222 (B)* + (R5)°)

and )
L ) (12 (R + (1)°)]
Now )
/\/aQ—dex:g a2—x2+%arcsin(§>+0

so the area is

/OH W(R;)Z — 2 (RY)? - h2 - L] dh = g [\/(R’l)2 —H2 4 (Ry)? - HQ] + % {(R’l)Q arcsin (g

]

_ _% + % [(R)? 204145 + (Ry)? 204, A1]
= P[5 - za) + 2 [ - 2a)]] - 22

where ZA; are the angles in the original triangle (vertex As is a point such that
A3z A; is orthogonal to the line through As_;, O). O

2. A-PRIORI ESIMATES

Let u be an eigenfunction of A on a sector S of radius R, inverse angle «, and
consider the restriction of u to the subsector of radius R’. On the big sector we
have

u(r, ) = iakjka (\[\r) cos (kad) ,
k=0

where we renormalize the Bessel function as ja(z) = D(a+1)Jy(2) so that A (2) ~
(%)a for 0 < z < v/o+ 1. Indeed, we have

= A\ = ()™ T(a+1) (z>2m
Jalz) = (2) 2 T(a+m+1) \2
m=0
and if @ > —1, 0 < z < 24/a + 1 then this is an alternating zeries: the ratio of suc-

2
. : z 1 a+1 1
cessive terms is (%) DTt D S et T

In particular, in this range

G) -5 < da < (3

< 1 so the series is alternating.
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3 (3) =m0 (5)

that is

For a given r we have
/o 1 I 0
u(r,8) cos (kad)dfd = — u(r, —) cos (k#) df
0 0 @

= %j]@a (\/XT) -CL‘ .

=~

It follows that

ax| < 2 [|ull Lo s)

Jk:a (\/XT)
If 2\ /ka; + 1 > VAR then setting r = R gives

2(ka +2) J|ullo
(VAR/2)ke

Thus on S} we have the a-priori bound

2l 3 ) ()

lag| <

Z apJio (ﬁr) cos (kaf)| <
k=K k=K
R\E | Ka+2 1
=l () 2 ta
A L N

In particular, we can make the truncation error less than e by taking K large enough.
Note that this requires an a-priori bound on ||u|| , which I think is available.
Gradient estimates. Let’s start with the easy case. For derivative wrt 6 we need to
bound (the factor r comes from the metric in polar coordinates)

> oo / ka
=3 andio (VAr) kasin(kat)| < 2R'a [l Y k(ka +2) (Z)

k=K k=K

r

Il (R’)KQR,Q K(Ka+2) 2Ka +2
~\'R

For the derivative wrt r we need to bound

i anJpy, (ﬁr) cos (kab)
k=K

Now the ratio of successive terms in the series for J' is

a+1 1 2m+2+a 1 2ma + a? + 2m + 3a + 2 <1
“a+m+lm+1l 2m+a  m+12ma+a?+2m+ (m+ a + 2m?

for m > 2. It follows that

20253 i 3 et ()

=T o)) i



“COLLOCATION” FOR EIGENFUNCTIONS ON CONVEX POLYGONS 4

and for z < 2+/a + 1 this reads

el < SE)T [1 4 MW*”]

ala+2)

INA
w
Q
/N
TN
SN—
7
AN

since a > 2 in an acute angle. Thus

= = o(ka+2) lull., (VAR
k:ZKakJ,m (\F)\r)cos(kaﬁ) < k:ZK (VAR/2)k 3a< 5 >

6 Il <R’)K“ Ka +2 a 1
/ o0 E _ (R « 1\ 2
VAR =& - ®)7]

which should be fine given some lower bound on v/\.
The case of small angles.

Problem 3. Is the ratio (%) uniformly bounded away from 1? [if R’ is close to

R then the angle at A is small, so « is large]

3. NUMERICAL SCHEME

e Fix a guess A for an eigenvalue.
e Fix parameters K, M.
k=K —1,j=3
o Let {afc} be unknowns (variables) except that a} = 1 (pinned),
k=0,j=1 ‘
and let x be the vector of the unknowns (all aj, except aj).

e Choose m points z; in the triangle such that each z; lies in at least two
sectors. For each i, let ] = |z; — A;| and let 6] be the angle the vector
Ajz; makes with the side A;A;_;.

e Let T € Mzp3-1(R) and b € RM be the following matrix and vector:
for each 0 < ¢ < M — 1, choose two vertices (say A;, A;y1 such) that
z; € 55N Sj41, and consider the equivalent statements:

K K
3, (V) con (k) = 3ot s (VAo ).
- k=0

k=0

A
K K
Z a} Ja, (\FM{) cos (kajé){) - Z aﬁleajH (ﬁrf“) cos (kaj+195+1) =0
k=0 k=0
Separating out the term a} if it appears and shifting it to the RHS gives
the inner product of a vector with x, and we let that vector be the 3ith row
of of T and let bs; be the coefficient of aj if it appears (zero otherwise).

— Similarly, write down the equations stating that the gradients of the
two functions agree at z;. Since the constant terms do not contribute
we set b3i+1 = b3i+2 =0.

e Find x (depending on \) minimizing R = ||Ax — b|”.
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e Plot the distance R(\) as a function of A. If it dips sharply we found a
suspected eigenfunction.

4. TERRY’S POST-SOLUTION STEP: HOW TO COMBINE THE THREE EXPANSIONS
INTO A SINGLE FUNCTION

Choose a smooth partition of unity 1 = Z?:l 1; of the triangle such that ¢, is
supported in the sector S; and such that the normal derivative of each v; at the
boundary of the triangle is identically zero. Note that we can choose v; in advance.

Now let uj(z) = Yor_, a5 Jra, (ﬁrf) cos (kaﬂf) be the functions with a’ as
computed numerically, Set

3

u(z) =Y (2)us(z) -

j=1

Lemma 4. u(z) is smooth in the triangle and satisfies the Neumann boundary
condition.

Proof. Clearly smooth. For z on the boundary,d,u(z) = Z?:l [1(2)Onuj(2) + uj(2) Ot (2)] =
0 since 9,1;(z) = 0 by its choice and dyu;(z) = 0 on 0 (A;A2A43) Nsupp(¥;) by
the functional form of u;. |

Lemma 5. ||[(A — Mul| is small.

Proof. Set

3
B(z)=(A=XNu(z) = D> [t (A =N uy)+u;A¢; +2Vu; Vi)
j=1
3
= Z [Ujij -+ 2VUJ'V7/)J'} .
j=1

Now at any point z € A1 AsAs, if 2 belongs to a unique sector then 1; = 1 near
z and the expression vanishes. Otherwise, let z; be the nearest point among the
originally prescribed points. Then can bound E(z) — E(z;) by derivative estimates
on t; (which is fixed) and on u; (numerically, given the coefficients). Clearly E(z;)
is closely related to (Ax — b)3173i+173i+2: in the sum up to this error we can replace
all u;, Vu; with uq, Vu; (wlog z € S1) and then all derivatives of 23:1 Y, =1
vanish.

Finally, assuming the z; are well-distributed, [ |E(2))* dz should be close to

|Ax — b||§ = R, so we have an estimate on [|(A = Mull 124, 4,45)- O

Corollary 6. There is an eigenvalue of the triangle close to \.

5. B-S—V (IDEA, I HAVEN’T ACTUALLY TRIED TO TRANSLATE IT TO THE
CURRENT SETTING)

Given the “guess” vector x, do a further (reasonable) computation which, if
successful (always in practice, doesn’t have to in theory), shows that for some

reasonably large Ko < K the coefficients {aj } are e-accurate.
k<Ko
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Corollary 7. L bounds on the distance between the numerical solution and the
true eigenfunction.

Proof. Make a Bessel expansion as before, and truncate at Ky. The error due to
truncation at K, can be bounded a-priori, while for the aj, where k < K, we have
an explicit bound on their distance from the expansion of the true solution. ([l



