"COLLOCATION" FOR EIGENFUNCTIONS ON CONVEX POLYGONS

LIOR SILBERMAN

Original version 2013/07/13, 12:23

Updated 12:40 with the L^{∞} bound at the end.

Update 17:50 with a-prioi estimates

Update 2013/07/14, 00:45 with geometrical lemma and explicit bounds on Bessel functions.

Update 2013/07/15, 03:45 with more geometry in the sectors and derivative bounds.

1. NOTATION

- Fix a triangle $A_1A_2A_3$ in the plane, with angles parametrized by $\alpha_j =$ $\frac{\pi}{\angle A_{j-1}A_jA_{j+1}}$. To the vertex A_j associate the sector S_j which is the intersection of the disc centered at A_j and tangent to $A_{j-1}A_{j+1}$ with the triangle.
- Let S_j be the sector obtained by intersecting the disc centered at A_j and tangent to $A_{j-1}A_{j+1}$ with the triangle.

 - Let R_j be its radius (the length of the altitude based at A_j). In the sector let (r_j, θ_j) be the polar coordinate system based at A_j .
- Let S'_j be the subsector of radius $R'_j < R_j$.

Lemma 1. Let O be the orthocentre of the triangle, and let $|A_jO| \leq R'_j \leq R_j$. Then the three sectors jointly cover the triangle.

Proof. Let B_j be the foot of the altitude from A_j . Then the triangle A_jOB_{j+1} is right angled with hypotenuse A_jO , and in particular contained in any disc centered at A_j with radius at least $|A_jO|$. \square

Lemma 2. Let A_1, A_2 be points, let $R'_1, R'_2 > 0$ be real numbers such that $R'_1 + R'_2 > 0$ $L = |A_1A_2|$, let O be a point at distance R'_i from A_i , B the projection of O on $A_i A_{3-i}$ let $d_i = |BA_i|$. Let Ω be the intersection of the two circular arcs centered at A_i of radius R'_i bounded by A_iO and A_iA_{3-i} . For $0 \le h \le |OB|$ let I be the longest line segment perpendicular to BO at height h above B and contained in Ω .

- (1) The endpoints of I are
- (2) The length of I is
- (3) The area of Ω is

Proof. A point of height h above A_1A_2 and at distance R'_i from A_i projects to the point at distance $\sqrt{(R'_i)^2 - h^2}$ on $A_1 A_2$. The length of I is therefore

$$\sqrt{(R_1')^2 - h^2} + \sqrt{(R_2')^2 - h^2} - L$$

It also follows that H = |BO| solves

$$\sqrt{(R_1')^2 - H^2} + \sqrt{(R_2')^2 - H^2} = L.$$

Squaring gives

$$2\sqrt{\left(R_{1}'\right)^{2}-H^{2}}\sqrt{\left(R_{2}'\right)^{2}-H^{2}} = L^{2}+2H^{2}-\left(\left(R_{1}'\right)^{2}+\left(R_{2}'\right)^{2}\right).$$

Squaring again gives

$$4\left(\left(R_{1}'\right)^{2}-H^{2}\right)\left(\left(R_{2}'\right)^{2}-H^{2}\right)=L^{4}+4H^{4}+\left(R_{1}'\right)^{4}+\left(R_{2}'\right)^{4}+4L^{2}H^{2}-2L^{2}\left(\left(R_{1}'\right)^{2}+\left(R_{2}'\right)^{2}\right)-4H^{2}\left(\left(R_{1}'\right)^{2}+\left(R_{2}'\right)^{2}+\left(R_{2}'\right)^{2}+2L^{2}\left(\left(R_{1}'\right)^{2}+\left(R_{2}'\right)^{2}\right)^{2}\right)$$
that is

$$4(R_1')^2(R_2')^2 = 4L^2H^2 + L^4 + \left((R_1')^2 + (R_2')^2\right)^2 - 2L^2\left((R_1')^2 + (R_2')^2\right)$$

 and

$$H^{2} = \frac{\left(R_{1}^{\prime}\right)^{2} \left(R_{2}^{\prime}\right)^{2} - \frac{1}{4} \left[L^{2} - \left(\left(R_{1}^{\prime}\right)^{2} + \left(R_{2}^{\prime}\right)^{2}\right)\right]^{2}}{L^{2}}$$

Now

$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + C$$

so the area is

$$\int_{0}^{H} \left[\sqrt{(R_{1}')^{2} - h^{2}} + \sqrt{(R_{2}')^{2} - h^{2}} - L \right] dh = \frac{H}{2} \left[\sqrt{(R_{1}')^{2} - H^{2}} + \sqrt{(R_{2}')^{2} - H^{2}} \right] + \frac{1}{2} \left[(R_{1}')^{2} \arcsin\left(\frac{H}{R_{1}'}\right)^{2} + \frac{1}{2} \left[(R_{1}')^{2} - \frac{LH}{2} + \frac{1}{2} \left[(R_{1}')^{2} \angle OA_{1}A_{2} + (R_{2}')^{2} \angle OA_{2}A_{1} \right] \right]$$
$$= \frac{1}{2} \left[(R_{1}')^{2} \left[\frac{\pi}{2} - \angle A_{2} \right] + (R_{2}')^{2} \left[\frac{\pi}{2} - \angle A_{1} \right] \right] - \frac{LH}{2ae}$$

where $\angle A_1$ are the angles in the original triangle (vertex A_3 is a point such that A_3A_i is orthogonal to the line through A_{3-i}, O).

2. A-PRIORI ESIMATES

Let u be an eigenfunction of Δ on a sector S of radius R, inverse angle α , and consider the restriction of u to the subsector of radius R'. On the big sector we have

$$u(r,\theta) = \sum_{k=0}^{\infty} a_k \tilde{J}_{k\alpha} \left(\sqrt{\lambda} r \right) \cos \left(k \alpha \theta \right) \,,$$

where we renormalize the Bessel function as $\tilde{J}_{\alpha}(z) = \Gamma(\alpha+1)J_{\alpha}(z)$ so that $\tilde{J}_{\alpha}(z) \sim \left(\frac{z}{2}\right)^{\alpha}$ for $0 < z \ll \sqrt{\alpha+1}$. Indeed, we have

$$\tilde{J}_{\alpha}(z) = \left(\frac{z}{2}\right)^{\alpha} \sum_{m=0}^{\infty} \frac{(-1)^m}{m!} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+m+1)} \left(\frac{z}{2}\right)^{2m}$$

and if $\alpha > -1$, $0 \le z \le 2\sqrt{\alpha + 1}$ then this is an alternating zeries: the ratio of successive terms is $\left(\frac{z}{2}\right)^2 \frac{1}{(m+1)(\alpha+m+1)} \le \frac{\alpha+1}{\alpha+m+1} \frac{1}{m+1} \le 1$ so the series is alternating. In particular, in this range

$$\left(\frac{z}{2}\right)^{\alpha} \left[1 - \frac{\alpha+1}{\alpha+2}\right] \le \tilde{J}_{\alpha}(z) \le \left(\frac{z}{2}\right)^{\alpha}$$

 $\mathbf{2}$

that is

$$\frac{1}{\alpha+2}\left(\frac{z}{2}\right)^{\alpha} \leq \tilde{J}_{\alpha}(z) \leq \left(\frac{z}{2}\right)^{\alpha}$$

For a given r we have

$$\int_{0}^{\pi/\alpha_{j}} u(r,\theta) \cos(k\alpha\theta) \, d\theta = \frac{1}{\alpha_{j}} \int_{0}^{\pi} u(r,\frac{\theta}{\alpha}) \cos(k\theta) \, d\theta$$
$$= \frac{\pi}{2\alpha} \tilde{J}_{k\alpha} \left(\sqrt{\lambda}r\right) \cdot a_{k}^{j} \, .$$

It follows that

$$|a_k| \le \frac{2 \|u\|_{L^{\infty}(S)}}{\tilde{J}_{k\alpha}\left(\sqrt{\lambda}r\right)}$$

If $2\sqrt{k\alpha_j+1} \ge \sqrt{\lambda}R$ then setting r = R gives

$$|a_k| \le \frac{2(k\alpha+2) \|u\|_{\infty}}{(\sqrt{\lambda}R/2)^{k\alpha}}.$$

Thus on S'_j we have the a-priori bound

$$\begin{aligned} \left| \sum_{k=K}^{\infty} a_k \tilde{J}_{k\alpha} \left(\sqrt{\lambda} r \right) \cos \left(k \alpha \theta \right) \right| &\leq 2 \left\| u \right\|_{\infty} \sum_{k=K}^{\infty} \left(k \alpha + 2 \right) \left(\frac{R'}{R} \right)^{k\alpha} \\ &= \left\| u \right\|_{\infty} \left(\frac{R'}{R} \right)^{K\alpha} \left[\frac{K \alpha + 2}{1 - \left(\frac{R'}{R} \right)^{\alpha}} + \alpha \frac{1}{\left[1 - \left(\frac{R'}{R} \right)^{\alpha} \right]^2} \right] \end{aligned}$$

In particular, we can make the truncation error less than ϵ by taking K large enough. Note that this requires an a-priori bound on $||u||_{\infty}$ which I think is available. Gradient estimates. Let's start with the easy case. For derivative wrt θ we need to bound (the factor r comes from the metric in polar coordinates)

$$\begin{aligned} r \left| -\sum_{k=K}^{\infty} a_k \tilde{J}_{k\alpha} \left(\sqrt{\lambda} r \right) k\alpha \sin\left(k\alpha\theta\right) \right| &\leq 2R' \alpha \left\| u \right\|_{\infty} \sum_{k=K}^{\infty} k\left(k\alpha+2\right) \left(\frac{R'}{R}\right)^{k\alpha} \\ &= \left\| u \right\|_{\infty} \left(\frac{R'}{R}\right)^{K\alpha} R' \alpha \left[\frac{K(K\alpha+2)}{1 - \left(\frac{R'}{R}\right)^{\alpha}} + \frac{2K\alpha+2}{\left[1 - \left(\frac{R'}{R}\right)^{\alpha}\right]^2} + \frac{2\alpha}{\left[1 - \left(\frac{R'}{R}\right)^{\alpha}\right]^3} \right] \end{aligned}$$

For the derivative wrt r we need to bound

$$\left|\sum_{k=K}^{\infty} a_k \tilde{J}'_{k\alpha} \left(\sqrt{\lambda}r\right) \cos\left(k\alpha\theta\right)\right| \,.$$

Now the ratio of successive terms in the series for J' is

$$\leq \frac{\alpha+1}{\alpha+m+1} \frac{1}{m+1} \frac{2m+2+\alpha}{2m+\alpha} = \frac{1}{m+1} \frac{2m\alpha+\alpha^2+2m+3\alpha+2}{2m\alpha+\alpha^2+2m+(m+1)\alpha+2m^2} < 1$$

for $m \geq 2$. It follows that

$$J'_{\alpha}(z) \leq \frac{\alpha}{2} \left(\frac{z}{2}\right)^{\alpha-1} - \frac{\alpha+2}{2(\alpha+1)} \left(\frac{z}{2}\right)^{\alpha+1} + \frac{\alpha+4}{2(\alpha+1)(\alpha+2)} \left(\frac{z}{2}\right)^{\alpha+3}$$

3

and for $z \leq 2\sqrt{\alpha+1}$ this reads

$$\begin{aligned} |J'_{\alpha}(z)| &\leq \frac{\alpha}{2} \left(\frac{z}{2}\right)^{\alpha-1} \left[1 + \frac{(\alpha+4)(\alpha+1)}{\alpha(\alpha+2)}\right] \\ &\leq \frac{\alpha}{2} \left(\frac{z}{2}\right)^{\alpha-1} \left[1 + 1 + \frac{3}{\alpha+2} + \frac{4}{\alpha(\alpha+2)}\right] \\ &\leq 3\alpha \left(\frac{z}{2}\right)^{\alpha-1} \end{aligned}$$

since $\alpha \geq 2$ in an acute angle. Thus

$$\begin{aligned} \left| \sum_{k=K}^{\infty} a_k \tilde{J}'_{k\alpha} \left(\sqrt{\lambda} r \right) \cos\left(k\alpha\theta\right) \right| &\leq \sum_{k=K}^{\infty} \frac{2(k\alpha+2) \left\| u \right\|_{\infty}}{(\sqrt{\lambda}R/2)^{k\alpha}} 3\alpha \left(\frac{\sqrt{\lambda}R'}{2} \right)^{k\alpha-1} \\ &\leq \frac{6}{\sqrt{\lambda}R'} \left\| u \right\|_{\infty} \left(\frac{R'}{R} \right)^{K\alpha} \left[\frac{K\alpha+2}{1-\left(\frac{R'}{R}\right)^{\alpha}} + \alpha \frac{1}{\left[1-\left(\frac{R'}{R}\right)^{\alpha} \right]^2} \right] \end{aligned}$$

which should be fine given some lower bound on $\sqrt{\lambda}$. The case of small angles.

Problem 3. Is the ratio $\left(\frac{R'}{R}\right)^{\alpha}$ uniformly bounded away from 1? [if R' is close to R then the angle at A is small, so α is large

3. Numerical scheme

- Fix a guess λ for an eigenvalue.
- Fix parameters K, M.
 Let \$\{a_k^j\}_{k=0,j=1}^{k=K-1,j=3}\$ be unknowns (variables) except that \$a_0^1 = 1\$ (pinned)\$,

and let $\underline{\mathbf{x}}$ be the vector of the unknowns (all a_k^j except a_0^1).

- Choose m points z_i in the triangle such that each z_i lies in at least two sectors. For each i, j let $r_i^j = |z_i - A_j|$ and let θ_i^j be the angle the vector $\overline{A_j z_j}$ makes with the side $A_j A_{j-1}$.
- Let $T \in M_{3M,3K-1}(\mathbb{R})$ and $\underline{b} \in \mathbb{R}^M$ be the following matrix and vector: for each $0 \leq i \leq M - 1$, choose two vertices (say A_j, A_{j+1} such) that $z_i \in S_j \cap S_{j+1}$, and consider the equivalent statements:

$$\sum_{k=0}^{K} a_k^j J_{k\alpha_j} \left(\sqrt{\lambda} r_i^j \right) \cos\left(k\alpha_j \theta_i^j \right) = \sum_{k=0}^{K} a_k^{j+1} J_{k\alpha_{j+1}} \left(\sqrt{\lambda} r_i^{j+1} \right) \cos\left(k\alpha_{j+1} \theta_i^{j+1} \right) .$$

$$\sum_{k=0}^{K} a_k^j J_{k\alpha_j} \left(\sqrt{\lambda} r_i^j \right) \cos\left(k\alpha_j \theta_i^j \right) - \sum_{k=0}^{K} a_k^{j+1} J_{k\alpha_{j+1}} \left(\sqrt{\lambda} r_i^{j+1} \right) \cos\left(k\alpha_{j+1} \theta_i^{j+1} \right) = 0$$

Separating out the term a_0^1 if it appears and shifting it to the RHS gives the inner product of a vector with $\underline{\mathbf{x}}$, and we let that vector be the 3ith row of of T and let b_{3i} be the coefficient of a_0^1 if it appears (zero otherwise).

- Similarly, write down the equations stating that the gradients of the two functions agree at z_i . Since the constant terms do not contribute we set $b_{3i+1} = b_{3i+2} = 0$.
- Find <u>x</u> (depending on λ) minimizing $R = ||A\underline{x} \underline{b}||^2$.

• Plot the distance $R(\lambda)$ as a function of λ . If it dips sharply we found a suspected eigenfunction.

4. Terry's Post-solution step: How to combine the three expansions into a single function

Choose a smooth partition of unity $1 = \sum_{j=1}^{3} \psi_j$ of the triangle such that ψ_j is supported in the sector S_j and such that the normal derivative of each ψ_j at the boundary of the triangle is identically zero. Note that we can choose ψ_j in advance.

Now let $u_j(z) = \sum_{k=0}^{K} a_j^k J_{k\alpha_j} \left(\sqrt{\lambda} r_i^j \right) \cos \left(k \alpha_i \theta_i^j \right)$ be the functions with a_k^j as computed numerically, Set

$$u(z) = \sum_{j=1}^{3} \psi_j(z) u_j(z)$$

Lemma 4. u(z) is smooth in the triangle and satisfies the Neumann boundary condition.

Proof. Clearly smooth. For z on the boundary, $\partial_n u(z) = \sum_{j=1}^3 [\psi_j(z)\partial_n u_j(z) + u_j(z)\partial_n \psi_j(z)] = 0$ since $\partial_n \psi_j(z) = 0$ by its choice and $\partial_n u_j(z) = 0$ on $\partial (A_1A_2A_3) \cap \operatorname{supp}(\psi_j)$ by the functional form of u_j .

Lemma 5. $\|(\Delta - \lambda)u\|$ is small.

Proof. Set

$$E(z) = (\Delta - \lambda) u(z) = \sum_{j=1}^{3} \left[(\psi_j (\Delta - \lambda) u_j) + u_j \Delta \psi_j + 2\nabla u_j \nabla \psi_j \right]$$
$$= \sum_{j=1}^{3} \left[u_j \Delta \psi_j + 2\nabla u_j \nabla \psi_j \right].$$

Now at any point $z \in A_1A_2A_3$, if z belongs to a unique sector then $\psi_j \equiv 1$ near z and the expression vanishes. Otherwise, let z_i be the nearest point among the originally prescribed points. Then can bound $E(z) - E(z_i)$ by derivative estimates on ψ_j (which is fixed) and on u_j (numerically, given the coefficients). Clearly $E(z_i)$ is closely related to $(A\underline{x} - \underline{b})_{3i,3i+1,3i+2}$: in the sum up to this error we can replace all $u_j, \nabla u_j$ with $u_1, \nabla u_1$ (wlog $z \in S_1$) and then all derivatives of $\sum_{j=1}^{3} \psi_j \equiv 1$ vanish.

Finally, assuming the z_i are well-distributed, $\int |E(z)|^2 dz$ should be close to $||A\underline{\mathbf{x}} - \underline{\mathbf{b}}||_2^2 = R$, so we have an estimate on $||(\Delta - \lambda)u||_{L^2(A_1A_2A_3)}$.

Corollary 6. There is an eigenvalue of the triangle close to λ .

5. B-S-V (IDEA, I HAVEN'T ACTUALLY TRIED TO TRANSLATE IT TO THE CURRENT SETTING)

Given the "guess" vector $\underline{\mathbf{x}}$, do a further (reasonable) computation which, if successful (always in practice, doesn't have to in theory), shows that for some reasonably large $K_0 \leq K$ the coefficients $\left\{a_k^j\right\}_{k \leq K_0}$ are ϵ -accurate.

Corollary 7. L^{∞} bounds on the distance between the numerical solution and the true eigenfunction.

Proof. Make a Bessel expansion as before, and truncate at K_0 . The error due to truncation at K_0 can be bounded a-priori, while for the a_k^j where $k \leq K_0$ we have an explicit bound on their distance from the expansion of the true solution. \Box