
STABILITY THEORY FOR NEUMANN EIGENFUNCTIONS

1. A Sobolev inequality

Lemma 1.1. Let ABCD be a parallelogram, and let u be a C2 function on ABCD.
Let α be the angle subtended by A. Then

|u(A)− u(B) + u(C)− u(D)| 6 1

sin(α)

∫
ABCD

|∇2u|.

Proof. We may normalise A = 0, so that C = B + D. From two applications of the
fundamental theorem of calculus one has∫ 1

0

∫ 1

0

∂stu(sB + tD) = u(A)− u(B) + u(C)− u(D).

The left-hand side can be rewritten as

1

|ABCD|

∫
ABCD

(B · ∇)(D · ∇)u.

Since

|ABCD| = |B||D| sin(α)

the claim follows.

Lemma 1.2. Let ABC be a triangle with angles α, β, γ, and let u be a C2 function on
ABC that obeys the Neumann boundary condition n ·∇u = 0 on the boundary of ABC.
Then for any P ∈ ABC, one has

|u(P )− u(Q)| 6 4

3 min(sin(α), sin(β), sin(γ))

∫
ABC

|∇2u|.

Proof. Let X ∈ ABC. Let D,E ∈ AB, F,G ∈ BC,H, I ∈ AC be the points such
that ADXI,BFXE,CHXG are parallelograms; thus D,G are the intersections with
AB,BC respectively of the line through X parallel to AC, and so forth. Then from the
preceding lemma one has

|u(X) + u(A)− u(D)− u(I)| 6 1

sin(α)

∫
ADXI

|∇2u|

|u(X) + u(B)− u(F )− u(E)| 6 1

sin(β)

∫
BFXE

|∇2u|

|u(X) + u(C)− u(H)− u(G)| 6 1

sin(γ)

∫
CHXG

|∇2u|.

1
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Also, by reflecting the triangles DEX,FGX,XHI across the Neumann boundary and
using the previous lemma, we see that

|u(X) + u(X)− u(D)− u(E)| 6 2

sin(γ)

∫
DEX

|∇2u|

|u(X) + u(X)− u(F )− u(G)| 6 2

sin(α)

∫
FGX

|∇2u|

|u(X) + u(X)− u(H)− u(I)| 6 2

sin(β)

∫
XHI

|∇2u|.

Summing the latter three combinations of u and subtracting the former three using the
triangle inequality, we conclude that

|3u(X)− u(A)− u(B)− u(C)| 6 2

min(sin(α), sin(β), sin(γ))

∫
ABC

|∇2u|.

Setting X = P,Q and subtracting, we obtain the claim.

Corollary 1.3. Let ABC be a triangle with angles α, β, γ, and let u be a C2 function
on ABC which is smooth up to the boundary except possibly at the vertices A,B,C, and
which obeys the Neumann boundary condition n ·∇u = 0 on the boundary of ABC, and
has mean zero on ABC. Then

‖u‖L∞(ABC) 6
4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2‖∆u‖L2(ABC).

Proof. If u has mean zero, then ‖u‖L∞(ABC) is bounded by |u(P ) − u(Q)| for some
P,Q ∈ ABC. From the previous lemma we thus have

‖u‖L∞(ABC) 6
4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2‖∇2u‖L2(ABC).

It will thus suffice to show the Bochner-Weitzenbock identity∫
ABC

|∇2u|2 =

∫
ABC

|∆u|2.

But this can be accomplished by two integration by parts, using the smoothness and
Neumann boundary hypotheses on u (and a regularisation argument if necessary to cut
away from the vertices) more details needed here.

2. Schwarz-Christoffel

Let 0 < α, β, γ < π be angles adding up to π, then we can define a Schwarz-Christoffel
map Φα,β : H→ ABC from the half-plane H := {z : =(z) > 0} to a triangle ABC with
angles α, β, γ by the formula

Φα,β(z) :=

∫ z

0

dζ

ζ1−α/π(1− ζ)1−β/π ,
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where the integral is over any contour from 0 to z in H, and one chooses the branch cut
to make both factors in the denominator positive real on the interval [0, 1]. Thus the
vertices of the triangle are given by

A := Φα,β(0) = 0

B := Φα,β(1) =

∫ 1

0

dt

t1−α/π(1− t)1−β/π =
Γ(α/π)Γ(β/π)

Γ((α + β)/π)

C := Φα,β(∞) = −eiα
∫ −∞

0

dt

|t|1−α/π(1− t)1−β/π

= eiα
∫ ∞

1

ds

(s− 1)1−α/πs1−β/π

= eiα
∫ 1

0

dv

(v − 1)1−α/πv1−γ/π

= eiα
Γ(α/π)Γ(γ/π)

Γ((α + γ)/π)

where we have used the beta function identity∫ 1

0

dt

t1−x(1− t)1−y =
Γ(x)Γ(y)

Γ(x+ y)

and the changes of variable s = 1 − t, v = 1/s. In particular, the area of the triangle
ABC can be expressed as

|ABC| = 1

2
|B||C| sin(α) =

Γ(α/π)2Γ(β/π)Γ(γ/π)

2Γ((α + β)/π)Γ((α + γ)/π)
sin(α)

which can be simplified using the formula Γ(z)Γ(1− z) = π
sin(πz)

as the more symmetric

expression

|ABC| = 1

2π2
Γ(α/π)2Γ(β/π)2Γ(γ/π)2 sin(α) sin(β) sin(γ). (2.1)

We write

|Φ′α,β(z)| = eω(z)

where ω = ωα,β is the harmonic function

ω(z) := (
α

π
− 1) log |z|+ (

β

π
− 1) log |1− z|. (2.2)

If u : ABC → R is a smooth function, and ũ : H → R is its pullback to the half-plane
H defined by

ũ := u ◦ Φα,β

then we have ∫
ABC

u =

∫
H

e2ωũ.
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In a similar vein we have the conformal invariance of the two-dimensional Dirichlet
energy ∫

ABC

|∇u|2 =

∫
H

|∇ũ|2

and the conformal transformation of the Laplacian:

∆ũ(z) = e2ω∆̃u.

In particular, the Rayleigh quotient∫
ABC

|∇u|2/
∫
ABC

|u|2

with mean zero condition
∫
ABC

u = 0 becomes, when pulled back to H, the Rayleigh
quotient ∫

H

|∇ũ|2/
∫
H

e2ω|ũ|2

with mean zero condition
∫
H
e2ωũ = 0.

Let u2, u3, . . . be an L2-normalised eigenbasis for the Neumann Laplacian −∆ on ABC
with eigenvalues λ2 6 λ3 6 . . ., thus

−∆uk = λkuk

on ABC with Neumann boundary data

n · ∇uk = 0

and orthonormality ∫
ABC

ujuk = δjk

and mean zero condition ∫
ABC

uj = 0.

One can show that when ABC is acute-angled, these eigenfunctions are smooth except
possibly at the vertices A,B,C, and are uniformly C2. add details here

Pulling all this back to H, we obtain transformed eigenfunctions ũ2, ũ3, . . . on H to the
conformal eigenfunction equation

−∆ũk = λke
2ωũk (2.3)

on H with Neumann boundary data

n · ∇ũk = 0 (2.4)

and orthonormality ∫
H

e2ωũjũk = δjk (2.5)

and mean zero condition ∫
H

e2ωũj = 0. (2.6)
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Now suppose that we vary the angle parameters α, β, γ smoothly with respect to some
time parameter t, thus also varying the triangles ABC, eigenfunctions uk and trans-
formed eigenfunctions ũk, eigenvalues λk, and conformal factor ω. We will use dots to
indicate time differentiation, thus for instance α̇ = d

dt
α. Let us formally suppose that

all of the above data vary smoothly (or at least C1) in time we will eventually need
to justify this, of course. Since α + β + γ = π, we have

α̇ + β̇ + γ̇ = 0.

The variation ω̇ of the conformal factor is explicitly computable from (2.2) as being a
logarithmic weight:

ω̇ =
α̇

π
log |z|+ β̇

π
log |1− z|.

Next, by (formally) differentiating (2.3) we obtain an equation for the variation ˙̃uk of
the kth eigenfunction:

−∆ ˙̃uk = λ̇ke
2ωũk + 2λkω̇e

2ωũk + λke
2ω ˙̃uk. (2.7)

To solve this equation for ˙̃uk, we observe from differentiating (2.4), (2.5), (2.6) that∫
H

e2ω ˙̃uk = 0 (2.8)

and ∫
H

e2ωũk ˙̃uk = 0

and

n · ∇ ˙̃uk = 0.

By eigenfunction expansion, we thus have

˙̃uk =
∑
l 6=k

(

∫
H

e2ωũl ˙̃uk)ũl (2.9)

in a suitable sense (L2 with weight eω). Now we evaluate the expression in parentheses.
Integrating (2.7) against ũl and using (2.5) reveals that

−
∫
H

∆ ˙̃ukũl = 2λk

∫
H

ω̇e2ωũkũl + λk

∫
H

e2ω ˙̃ukũl. (2.10)

By Green’s theorem and the Neumann conditions on ˙̃uk and ũl, the left-hand side is

−
∫
H

˙̃uk∆ũl

which by (2.3) is equal to

λl

∫
H

e2ω ˙̃ukũl.

Inserting this into (2.10) we see that∫
H

e2ω ˙̃ukũl =
2λk

λl − λk

∫
H

ω̇e2ωũkũl
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and thus by (2.9)

˙̃uk =
∑
l 6=k

(
2λk

λl − λk

∫
H

ω̇e2ωũkũl)ũl. (2.11)

We can take Laplacians and conclude that

−∆ ˙̃uk = e2ω
∑
l 6=k

(
2λkλl
λl − λk

∫
H

ω̇e2ωũkũl)ũl.

Set k = 2, then 2λkλl
λl−λk

is bounded in magnitude by 2λ2λ3
λ3−λ2 . From the orthonormality (2.5)

and the Bessel inequality, we conclude that

(

∫
H

e−2ω|∆ ˙̃u2|2)1/2 6
2λ2λ3

λ3 − λ2

(

∫
H

|ω̇|2e2ωũ2
2)1/2. (2.12)

If we change coordinates by writing

˙̃u = u̇ ◦ Φ

we conclude that

(

∫
ABC

|∆u̇2|2)1/2 6
2λ2λ3

λ3 − λ2

(

∫
H

|ω̇|2e2ωũ2
2)1/2.

Also, u̇2 has mean zero on ABC by (2.8). We conclude from Corollary 1.3 that

‖u̇2‖L∞ 6
4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2 2λ2λ3

λ3 − λ2

(

∫
H

|ω̇|2e2ωũ2
2)1/2.

Pulling back to H, and estimating ũ2 in L∞ norm, we conclude that

‖ ˙̃u2‖L∞(H) 6 X‖ũ2‖L∞(H)

where X is the explicit (but somewhat messy) quantity

X :=
4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2 2λ2λ3

λ3 − λ2

(

∫
H

|ω̇|2e2ω)1/2.

This gives stability of the second eigenfunction in L∞ norm, as long as there is an
eigenvalue gap λ3 − λ2 > 0.

One can compute one factor in the quantity X as follows. Observe that∫
H

e2ω = |ABC| = 1

2π2
Γ(α/π)2Γ(β/π)2Γ(γ/π)2 sin(α) sin(β) sin(γ).

If we view α, β, γ (and hence ω) as varying linearly in time, and differentiate the above
equation under the integral sign twice in time, we conclude that

4

∫
H

|ω̇|2e2ω =
d2

dt2

∫
H

e2ω

= (α̇2 ∂
2

∂α2
+ 2α̇β̇

∂2

∂α∂β
+ 2α̇γ̇

∂2

∂α∂γ

+ β̇2 ∂
2

∂β2
+ 2β̇γ̇

∂2

∂βγ
+ γ̇2 ∂

2

∂γ2
)

(
1

2π2
Γ(α/π)2Γ(β/π)2Γ(γ/π)2 sin(α) sin(β) sin(γ)).
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This, in principle, expresses the factor (
∫
H
|ω̇|2e2ω)1/2 in X as an explicit combination of

trigonometric functions, gamma functions, and the first two derivatives of the gamma
function. However, this formula is somewhat messy, to say the least.

3. An explicit example

Suppose we take the isosceles right-angled triangle

α = π/2; β = γ = π/4

and move along the space of right-angled triangles by taking

α̇ = 0; β̇ = 1; γ̇ = −1.

In this example we have

4

3 min(sin(α), sin(β), sin(γ))
=

4
√

2

3
≈ 1.8856

and

|ABC|1/2 =
1

2π
Γ(1/2)Γ(1/4)2 ≈ 3.70815

To put it another way, the sidelength AB = AC is given by

|AB| = |AC| = 1√
2π

Γ(1/2)Γ(1/4)2 ≈ 5.24412.

We have

λ2 =
π2

|AB|2

and

λ3 =
2π2

|AB|2

and so
2λ2λ3

λ3 − λ2

=
4π2

|AB|2
= 7.52814.

MAPLE tells me that
d2

dt2
|ABC| ≈ 40.836

and so ∫
H

|ω̇|2e2ω ≈ 10.209

and so

X ≈ 22.34.
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4. Justifying the differentiability

In the above analysis, we assumed without proof that the eigenfunction u and eigenvalue
λ behaved in a C1 fashion with respect to smooth deformation of the triangle. We now
justify this assertion.

It is convenient to first work with an affine model rather than a conformal one, using
a fixed reference triangle Ω0 instead of the half-plane H as the reference domain, and
affine maps instead of Schwarz-Christoffel maps as the transformation maps. This is in
order to keep the transformation maps smooth at the vertices; it comes at the cost of
making the Neumann condition inhomogeneous. After we establish smoothness for this
model, we will then change coordinates to the conformal model.

Namely, suppose one has a smooth family of triangles ABC = ABC(t) with vertices
A(t), B(t), C(t) depending smoothly on a time parameter t (as is the case in the pre-
ceding discussion). We isolate the time zero triangle Ω0 := ABC(0) as the reference
domain, and view all the other triangles as affine images Ω(t) = F (t)(Ω0) of the refer-
ence triangle for some affine transformations F (t) : R2 → R

2 depending smoothly on t.
Actually, we may normalise A(t) = 0 (say), so that the F (t) are linear instead of affine.

Pulling the Rayleigh quotient from Ω(t) back to Ω0, we see that the second eigenvalue
λ2(t) comes from minimising the functional∫

Ω0

|F−1(t)∇u|2/
∫

Ω0

|u|2

among functions u ∈ L2(Ω0) of mean zero. Let us write u2(t) for a minimiser of this
functional with unit norm, thus ∫

Ω0

|u2(t)|2 = 1

and ∫
Ω0

|F−1(t)∇u2(t)|2 = λ2(t);

as long as the second eigenvalue is simple, this uniquely determines u2(t) up to sign.
The function u2 is of course the second Neumann eigenfunction of Ω(t), pulled back to
Ω0.

We now compare u2(t) with u2(0) for t small, assuming an eigenvalue gap λ2(0) < λ3(0).
Let us write

u2(t) = cos θ(t)u2(0) + sin θ(t)v(t)

for some angle θ(t) and some v(t) orthogonal to both u2(0) and 1, and of unit L2

norm. By reflection we may also assume that |θ(t)| 6 π/2. Because u2(t) achieves the
minimum of the Rayleigh quotient, we see that∫

Ω0

|F−1∇u2(t)|2 6
∫

Ω0

|F−1∇u2(0)|2.
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The left-hand side can be expanded as

cos2 θ(t)

∫
Ω0

|F−1(t)∇u2(0)|2+2 cos θ(t) sin θ(t)

∫
Ω0

(F−1(t))∗F−1(t)∇u2(0)·∇v(t)+sin2 θ(t)

∫
Ω0

|F−1(t)∇v(0)|2

and thus, either θ(t) = 0 or

2 cos θ(t)

∫
Ω0

(F−1(t))∗F−1(t)∇u2(0)·∇v(t)+sin θ(t)

∫
Ω0

|F−1(t)∇v(0)|2 6 sin θ(t)

∫
Ω0

|F−1(t)∇u2(0)|2.

Note that as F depends smoothly on t, one has∫
Ω0

|F−1(t)∇u2(0)|2 = λ2(0) +O(|t|)

and similarly∫
Ω0

|F−1(t)∇v(0)|2 > (1−O(|t|))
∫

Ω0

|∇v(0)|2 > (1−O(|t|))λ3(0)

thanks to the spectral theorem and the normalisation of v; here the implied constants
are allowed to depend on everything except t. Thus, for sufficiently small t, we conclude
that

| sin θ(t)|
∫

Ω0

|F−1(t)∇v(0)|2 � |
∫

Ω0

(F−1(t))∗F−1(t)∇u2(0) · ∇v(t)|.

The eigenfunction u2(0) obeys the eigenfunction equation −∆u2(0) = λ2(0)u2(0) with
Neumann boundary condition n · ∇u2(0) = 0, and is bounded in H2. In particular, by
integration by parts ∫

Ω0

∇u2(0) · ∇v(t) =

∫
Ω0

λ2(0)u2(0)v(t) = 0

and so ∫
Ω0

(F−1(t))∗F−1(t)∇u2(0) · ∇v(t) = O(|t|
∫

Ω0

|∇u2(0)||∇v(t)|)

which by Cauchy-Schwarz gives∫
Ω0

(F−1(t))∗F−1(t)∇u2(0) · ∇v(t) = O(|t|(
∫

Ω0

|F−1(t)∇v(0)|2)1/2).

We thus have

sin θ(t)(

∫
Ω0

|F−1(t)∇v(0)|2)1/2 = O(|t|)

and thus θ(t) = O(|t|) and

‖ sin θ(t)v‖H1(Ω0) = O(|t|).
In particular, we have the Lipschitz bound

‖u2(t)− u2(0)‖H1(Ω0) = O(|t|) (4.1)

for t small enough. Comparing Rayleigh quotients then gives

|λ2(t)− λ2(0)| = O(|t|)
again for t small enough.

Now we move back to the conformal picture. Taking into account the difference between
the affine coordinate transformations and the Schwarz-Christoffel transformations, the
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H1 bound (4.1) implies that the eigenfunctions ũ2(t), ũ2(0) obey an L2 estimate of the
form

(

∫
H

|ũ2(t, z)− ũ2(0, z)|2e2ω(0))1/2 = O(|t|).

This can be established by using uniform C0 bounds on u2(t) near vertices to handle the
regions within O(|t|K) of the vertices A,B,C for some large constant K, and using (4.1)
and a smooth deformation in t to control the remainder. If we write ũ2(t) = ũ2(0)+tṽ(t),
we thus have

‖ṽ(t)eω(0)‖L2(H) = O(1)

with ṽ(t) obeying Neumann boundary conditions. The same argument also gives the
variant bounds

‖ṽ(t)(eω(t) − eω(0))‖L2(H) = o(1).

Also, from the eigenfunction equation

−∆ũ2(t) = −λ2(t)e2ω(t)ũ2(t)

and writing λ2(t) = λ2(0) + tγ(t), ω(t) = ω(0) + tσ(t), we see that

−∆ṽ(t) = −e2ω0((λ2(0)+tγ(t))
e2tσ(t) − 1

t
(ũ2(0)+tṽ(t))+γ(t)ũ2(0)+λ2(0)ṽ(t)+tγ(t)ṽ(t)).

Since γ(t) = O(1), the previous bounds on ṽ give

‖e−ω0∆ṽ‖L2(H) = O(1)

and in particular (on integrating this against ṽ(t)eω(0))

‖∇ṽ‖L2(H) = O(1).

From this and Hardy’s inequality one obtains (after some calculation) that

(−∆− λ2e
2ω0)ṽ(t) = −e2ω0(2λ2(0)σ(0)ũ2(0) + γ(t)ũ2(0) + e(t))

where ‖e(t)‖L2(H) = o(1). Integrating this against ũ2(0), we obtain that

0 = −2λ2(0)σ(0)

∫
H

e2ω0σ(0)ũ2(0)2 + γ(t) + o(1)

which among other things shows that γ(t) is continuous at t = 0, and we now have

(−∆− λ2e
2ω0)ṽ(t) = −e2ω0(2λ2(0)σ(0)ũ2(0) + γ(0)ũ2(0) + e′(t))

where ‖e(t)‖L2(H) = o(1). Solving this inhomogeneous eigenfunction equation, we see
that the component of ṽ(t) orthogonal to ũ2(0) in L2(H, e2ω0) is continuous at t = 0 in
the L2(H, e2ω0) norm. As for the component parallel to ũ2(0), we use the normalisation∫

H

|ũ2(t)|2e2ω(t) =

∫
H

|ũ2(0)|2e2ω0 = 1

which we rewrite using ũ2(t) = ũ2(0) + tṽ(t) as

2

∫
H

ũ2(0)ṽ(0)e2ω0 =

∫
H

|ũ2(0)|2 e
2ω0 − e2ω(t)

t
+2

∫
H

ũ2(0)ṽ(0)(e2ω0−e2ω(t))+t

∫
H

|ṽ(0)|2e2ω(t).

The terms in the right-hand side can be evaluated to be −2
∫
H
|ũ2(0)|2ω0 + o(1) (for the

first integral on the right-hand side we have to treat the region very close to the vertices
using C0 bounds on ũ2). Thus we see that this component also depends continuously
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on t. This gives differentiability of ũ2 and λ2 in t (and even gives the correct explicit
formula for the derivative).

5. Combining the second and third eigenfunction

The equation (2.11) describes the evolution of eigenfunctions such as ũ2 and ũ3. Un-
fortunately these equations contain a term that has a λ2 − λ3 in the denominator, and
thus look useless in the case that λ2 and λ3 come close to each other. However, we can
eliminate this term by considering the evolution of ũ2 and ũ3 jointly, by working with
the circle {cos(θ)ũ2 + sin(θ)ũ3 : θ ∈ R/2πZ}.

Let’s see how. From (2.11) we have

˙̃u2 = aũ3 + f2

˙̃u3 = −aũ2 + f3

where

a :=
2λ2

λ3 − λ2

(

∫
H

ω̇e2ωũ2ũ3)

f2 :=
∑
l>3

(
2λ2

λl − λ2

∫
H

ω̇e2ωũ2ũl)ũl

f3 :=
∑
l>3

(
2λ3

λl − λ3

∫
H

ω̇e2ωũ3ũl)ũl − 2(

∫
H

ω̇e2ωũ2ũ3)ũ2.

If we let θ : R→ R/2πZ be a smooth function, we thus see that

d

dt
(cos(θ)ũ2 + sin(θ)ũ3) = (a− θ̇)(− sin(θ)ũ2 + cos(θ)ũ3) + cos(θ)f2 + sin(θ)f3.

Suppose we select θ so that
θ̇ = a (5.1)

then we conclude that
d

dt
(cos(θ)ũ2 + sin(θ)ũ3) = cos(θ)f2 + sin(θ)f3.

Let us compute the sup norm

‖ d
dt

(cos(θ)ũ2 + sin(θ)ũ3)‖L∞(H).

From Corollary 1.3 (transforming between H and ABC) we may bound this by

4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2(

∫
H

e−2ω(| cos(θ)∆f2 + sin(θ)∆f3|2)1/2.

Note that

∆f2 :=
∑
l>3

(
2λlλ2

λl − λ2

∫
H

ω̇e2ωũ2ũl)ũl

∆f3 :=
∑
l>3

(
2λlλ3

λl − λ3

∫
H

ω̇e2ωũ3ũl)ũl − 2λ2(

∫
H

ω̇e2ωũ2ũ3)ũ2.
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Note that the quantities 2λlλ2
λl−λ2

, 2λlλ3
λl−λ3

, 2λ2 are all bounded by 2λ3λ4
λ4−λ3 . Arguing as in the

proof of (2.12), we conclude that

(

∫
H

e−2ω|∆f2|2)1/2 6
2λ3λ4

λ4 − λ3

(

∫
H

|ω̇|2e2ωũ2
2)1/2

and

(

∫
H

e−2ω|∆f3|2)1/2 6
2λ3λ4

λ4 − λ3

(

∫
H

|ω̇|2e2ωũ2
3)1/2.

Estimating ũ3, ũ2 in L∞ norm, and also estimating | cos(θ)| + | sin(θ)| crudely1 by
√

2,
we conclude that

sup
θ
‖ d
dt

(cos(θ)ũ2 + sin(θ)ũ3)‖L∞(H) 6 X ′ sup
θ
‖ cos(θ)ũ2 + sin(θ)ũ3‖L∞(H)

where

X ′ :=
√

2
4

3 min(sin(α), sin(β), sin(γ))
|ABC|1/2 2λ3λ4

λ4 − λ3

(

∫
H

|ω̇|2e2ω)1/2.

Combining this with Gronwall’s inequality, we conclude:

Theorem 5.1 (Stability of ũ2, ũ3). Let [t1, t2] be a time interval. Then for any θ2 ∈
R/2πZ, there exists θ1 ∈ R/2πZ such that

‖(cos(θ2)ũ2(t2)+sin(θ2)ũ3(t2))−(cos(θ1)ũ2(t1)+sin(θ1)ũ3(t1))‖L∞(H) 6 exp(

∫ t2

t1

X ′(t) dt) sup
θ
‖ cos(θ)ũ2(t1)+sin(θ)ũ3(t1)‖L∞(H).

In particular, if ABC is equal to the equilateral triangle at time t1 (for which λ2 = λ3),
then setting θ2 = 0, we see that

‖ũ2(t2)− ũ2(t1)‖L∞(H) 6 exp(

∫ t2

t1

X ′(t) dt)‖ũ′2(t1)‖L∞(H)

for some L2-normalised second eigenfunctions ũ2(t1), ũ′2(t1).

6. Perturbing from the equilateral triangle

Let ABC be an equilateral triangle. Suppose we have a function u which is close in L∞

norm to an L2-normalised second eigenfunction u2 in the sense that

‖u− u2‖L∞(ABC) 6 δ‖u′2‖L∞(ABC) (6.1)

for some (possibly different) second eigenfunction u′2. What does this say about where
the extrema of u are located?

Note that the question behaves well under rescaling of the triangle ABC, so in order to
maximise the symmetry we will take ABC to lie in the plane

Π := {(x, y, z) ∈ R3 : x+ y + z = 0}
with vertices A := (0, 0, 0), B := (1,−1, 0), C := (1, 0,−1). This is an equilateral
triangle of sidelength

√
2 and area

√
3/2. To compute the Laplacian of a function

1One may be able to recover this loss of
√
2 with a more complicated analysis if necessary.
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f : ABC → R, one can extend this function first to Π in some arbitrary fashion, and
then to R3 by declaring the function to be constant in the normal direction (1, 1, 1), in
which case the three-dimensional Euclidean Laplacian ∆R3 coincides on the interior of
ABC with the Laplacian on ABC (as can be seen by working in a suitable orthonormal
basis of R3 that includes a unit normal to Π).

Let us first work out what the Neumann eigenfunctions of ABC are. By reflection,
a function on ABC with Neumann data can be extended to a function on Π that is
periodic with periods (2,−1,−1), (−1, 2,−1), (−1,−1, 2), and is invariant with respect
to rotations by 120 degrees around the origin (i.e. (x, y, z) 7→ (y, z, x) and (x, y, z) 7→
(z, x, y)), and also the reflections (x, y, z) 7→ (−y,−x,−z), (x, y, z) 7→ (−x,−z,−y),
(x, y, z) 7→ (−z,−y,−x). After extending invariantly along (1, 1, 1), a function on
Π with periods (2,−1,−1), (−1, 2,−1), (−1,−1, 2) becomes a function on R

3 with
periods (3, 0, 0), (0, 3, 0), (0, 0, 3) and invariant along (1, 1, 1). From Fourier analysis,
the functions on Π with the periods (2,−1,−1), (−1, 2,−1), (−1,−1, 2) can thus be
decomposed into plane waves (x, y, z) 7→ e2πi(ax+by+cz)/3 with a, b, c integers with a+ b+
c = 0. Putting back in the rotation and reflection symmetry, we see that an orthogonal
basis of L2(ABC) is then given by the complex functions

e2πi(ax+by+cz)/3+e2πi(bx+ay+cz)/3+e2πi(cx+ay+bz)/3+e2πi(−bx−ay−cz)/3+e2πi(−ax−cy−bz)/3+e2πi(−cx−by−az)/3

for integers a, b, c summing to zero. This is an eigenfunctoin of the Laplacian ∆ with
eigenvalue 4π2

9
(a2 + b2 + c2). Thus one has a repeated second eigenvalue λ2 = λ3 = 8π2

9
spanned by the complex eigenfunction

e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3

and its complex conjugate Note that this function has a mean square of
√

3 and so has
an L2(ABC) norm of

√
3(
√

3/2)1/2; to normalise in L2 norm, we would thus have

21/43−3/4(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)

and the real L2-normalised eigenfunctions take the form

uθ := 23/43−3/4<eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)

for an arbitrary phase θ. In particular we see that

‖uθ‖L∞(ABC) 6 23/43−3/4 × 3

and so (6.1) can be written as the statement that

‖u− uθ‖L∞(ABC) 6 23/431/4δ

for some θ.

Suppose that u attains an extremum at some point P in ABC but not at the vertices,
then

|u(P )| > |u(A)|
and thus by the triangle inequality

|uθ(P )| > |uθ(A)| − 27/431/4δ.

Writing P = (x, y, z), we conclude that

|<eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)| > |<3eiθ| − 6δ.
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Replacing A by B or C, we similarly obtain

|<eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)| > |<3e4πi/3eiθ| − 6δ

and
|<eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)| > |<3e2πi/3eiθ| − 6δ.

Suppose that <eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3) is non-negative. We then have

<(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3 + 6δe−iθ)eiθ > max(<3eiθ, 3e4πi/3eiθ, 3e2πi/3eiθ)

and thus e2πi(x−y)/3+e2πi(y−z)/3+e2πi(z−x)/3+6δe−iθ lies outside the triangle with vertices
3, 3e4πi/3, 3e2πi/3, and so (by elementary trigonometry) e2πi(x−y)/3+e2πi(y−z)/3+e2πi(z−x)/3

cannot lie in the triangle with vertices (3−12δ), (3−12δ)e4πi/3, (3−12δ)e2πi/3. Similarly
when <eiθ(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3) is non-positive. To put it another way,
we must have

<(e2πik/3(e2πi(x−y)/3 + e2πi(y−z)/3 + e2πi(z−x)/3)) 6 −3

2
+ 6δ (6.2)

for some k = 0, 1, 2. For δ small, this forces (x, y, z) to be close to one of the three
corners A,B,C. For instance, in the k = 0 case, if we rewrite (x, y, z) = (x, −x−t

2
, −x+t

2
)

for some 0 6 x 6 1 and −x 6 t 6 x, we see that

<(e2πi(x/2+t/6) + e−2πit/3 + e2πi(−x/2+t/6)) 6 −3

2
+ 6δ (6.3)

or equivalently

2 cos(πt/3) cos(πx) + cos(2πt/3) 6 −3

2
+ 6δ.

Observe that 2 cos(πt/3) is positive, so

2 cos(πt/3) cos(πx) + cos(2πt/3) > cos(2πt/3)− 2 cos(πt/3).

Elementary calculus shows that cos(2πt/3)−2 cos(πt/3) decreases from −1 to −3/2 as t
goes from 0 to 1, and is even. Thus for δ small, we see that (6.3) can only occur when |t|
is close to 1, which forces x close to 1 also, so that (x, y, z) is close to B or C. Similarly
for other values of k. With numerical evaluation of the function in the left-hand side of
(6.2) one can presumably get quite a precise bound on how close (x, y, z) is to A,B,C
in terms of δ.


