Snapshots of Life: Behold the Beauty of the Eye

Colorized cross section of a mouse eye

Credit: Bryan William Jones and Robert E. Marc, University of Utah

The eye is a complex marvel of nature. In fact, there are some 70 to 80 kinds of cells in the mammalian retina. This image beautifully illuminates the eye’s complexity, on a cellular level—showing how these cells are arranged and wired together to facilitate sight.

“Reading” the image from left to right, we first find the muscle cells, in peach, that move the eye in its socket. The green layer, next, is the sclera—the white part of the eye. The spongy-looking layers that follow provide blood to the retina. The thin layer of yellow is the retinal pigment epithelium. The photoreceptors, in shades of pink, detect photons and transmit the information to the next layer down: the bipolar and horizontal cells (purple). From the bipolar cells, information flows to the amacrine and ganglion cells (blue, green, and turquoise) and then out of the retina via the optic nerve (the white plume that seems to billow out across the upper-right side of the eye), which transmits data to the brain for processing.

Continue reading

Team Approach Helps Teen Depression

Team of Support

Stock photo

As many as one in five U.S. teenagers experience an episode of major depression by the time they turn 18. Sadly, depression among teens often goes unrecognized, increasing the risk of suicide, substance abuse, and many other problems. Even among those who are diagnosed, few receive proper treatment. But now there’s a ray of hope from a new NIH-funded study that’s found success using a team approach that pairs depressed teens and their parents with a counselor [1].

Faced with a shortage of psychiatrists who specialize in child mental health, a multidisciplinary team from the Seattle Children’s Research Institute, University of Washington School of Medicine, and Group Health in Seattle decided to use a strategy called “collaborative care” to treat depressed teenagers. There are more than 70 clinical trials showing that team-based care approaches work well for adults with depression, but there were only two such previous studies in teens—and results were mixed.

Continue reading

Cool Videos: Heart Attack

Blood Clots Video screenshot

Up next in our scientific film fest is an original music video, straight from the Big Apple. Created by researchers at The Rockefeller University, this song-and-dance routine provides an entertaining—and informative—look at how blood clots form, their role in causing heart attacks, and what approaches are being tried to break up these clots.

Before (or after!) you hit “play,” it might help to take a few moments to review the scientists’ description of their efforts: the key to saving the lives of heart attack victims lies in the molecules that control how blood vessels become clogged. This molecular biomedicine music video explains how ischemic injury can be prevented shortly after heart attack symptoms begin: clot blocking. The science is the collaborative work of Dr. Barry Coller of Rockefeller, Dr. Craig Thomas and his colleagues at the National Center for Advancing Translational Sciences (NCATS), and Dr. Marta Filizola and her Mount Sinai colleagues.

Links:

Laboratory of Blood and Vascular Biology, The Rockefeller University

Filizola Laboratory, Icahn School of Medicine at Mount Sinai

Center for Clinical and Translational Science, The Rockefeller University

Clinical and Translational Science Awards (NCATS/NIH)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences

Using Genomics to Follow the Path of Ebola

Ebola virus

Caption: Colorized scanning electron micrograph of filamentous Ebola virus particles (blue) budding from a chronically infected VERO E6 cell (yellow-green).
Credit: National Institute of Allergy and Infectious Diseases, NIH

Long before the current outbreak of Ebola Virus Disease (EVD) began in West Africa, NIH-funded scientists had begun collaborating with labs in Sierra Leone and Nigeria to analyze the genomes and develop diagnostic tests for the virus that caused Lassa fever, a deadly hemorrhagic disease related to EVD. But when the outbreak struck in February 2014, an international team led by NIH Director’s New Innovator Awardee Pardis Sabeti quickly switched gears to focus on Ebola.

In a study just out in the journal Science [1], this fast-acting team reported that it has sequenced the complete genetic blueprints, or genomes, of 99 Ebola virus samples obtained from 78 patients in Sierra Leone. This new genomic data has revealed clues about the origin and evolution of the Ebola virus, as well as provided insights that may aid in the development of better diagnostics and inform efforts to devise effective therapies and vaccines.

Continue reading

Promoting Health, Science, and Public Trust through Laboratory Safety

Biosafety in the labAs you may know from recent news reports, there have been lapses in safety practices at federal laboratories involving potentially lethal microbes such as avian flu (H5N1) and anthrax, including an incident involving discovery of 60-year old smallpox vials in an FDA laboratory building located on the National Institutes of Health (NIH) campus in Bethesda, MD. Such lapses, which undermine public confidence in biomedical research and could put people’s health at risk, remind us of the need for constant attention to biosafety standards.

Scientists can never become complacent in routine safety practices—one mistake could have serious repercussions. Consequently, we at NIH are taking remedial action and precautionary steps to improve our lab safety protocols and procedures, minimize the risk of recurrence, and increase timely reporting of potential problems.

Continue reading