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Preface 

This report describes shared node Local Grid Refinement (LGR) for MODFLOW-2005, 
the U.S. Geological Survey’s three-dimensional finite-difference ground-water model. LGR is 
designed to allow users to create MODFLOW simulations using a refined grid that is embedded 
within a coarser grid.   

This report also describes the Boundary Flow and Head (BFH) Package for MODFLOW­
2005. The BFH Package allows the refined grid to be run separately from the rest of the model, 
and the rest of the model to be run separately from the refined grid. 

The performance of the programs has been tested in a variety of applications. Future 
applications, however, might reveal errors that were not detected in the test simulations. Users 
are requested to notify the U.S. Geological Survey of any errors found in this document or the 
computer program using the e-mail address available at the web address below. Updates might 
occasionally be made to both this document and to LGR and the BFH Package. Users can check 
for updates on the Internet at URL http://water.usgs.gov/software/ground_water.html/. 
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LOCAL GRID REFINEMENT (LGR) AND 
THE BOUNDARY FLOW AND HEAD 
(BFH) PACKAGE 
By Steffen W. Mehl and Mary C. Hill 

Abstract 

This report documents the addition of shared node Local Grid Refinement (LGR) to 
MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-
difference ground-water flow model. LGR provides the capability to simulate ground-water flow 
using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent 
model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models 
such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be 
used in two-and three-dimensional, steady-state and transient simulations and for simulations of 
confined and unconfined ground-water systems. 

Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, 
often undetected, inconsistencies in heads and fluxes across the interface between two model 
grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in 
which the solution accuracy is controlled by convergence criteria defined by the user.  In realistic 
problems, this can result in substantially more accurate solutions and require an increase in 
computer processing time.  The rigorous coupling enables sensitivity analysis, parameter 
estimation, and uncertainty analysis that reflects conditions in both model grids. 

This report describes the method used by LGR, evaluates LGR accuracy and performance 
for two- and three-dimensional test cases, provides input instructions, and lists selected input and 
output files for an example problem.  It also presents the Boundary Flow and Head (BFH) 
Package, which allows the child and parent models to be simulated independently using the 
boundary conditions obtained through the iterative process of LGR. 

Introduction 

Simulations of ground-water flow and transport often need highly refined grids in local 
areas of interest to improve simulation accuracy.  For example, refined grids may be needed in 
(1) regions where hydraulic gradients change substantially over short distances, as would be 
common near pumping or injecting wells, rivers, drains, and focused recharge; (2) regions of 
site-scale contamination within a regional aquifer where simulations of plume movement are of 
interest; and (3) regions requiring detailed representation of heterogeneity, as may be required to 
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Introduction 

simulate faults, lithologic displacements caused by faulting, fractures, thin lenses, pinch outs of 
geologic units, and so on. 

Refinement of the finite-difference grid used by MODFLOW can be achieved using 
globally refined grids, variably spaced grids, or locally refined grids.  

Using a globally refined grid – a grid refined over the entire domain – can be 
computationally intensive. In some cases the execution times are so long that they result in a 
computationally intractable problem; in others unnecessarily long execution times interfere with 
model development and utility.  In addition, it may be inconvenient and unnecessarily labor 
intensive to develop the data sets required to refine an entire grid when only a local area is of 
interest. 

Using a variably spaced grid, a fine grid can be attained locally with more moderate 
increases in computational time, but often results in refinement in areas that do not need such 
detail. This arises because the finite-difference method  requires that the same grid spacing 
extend out to the boundaries and has two important implications:  (1) if refinement is needed in 
multiple areas of the domain, using a variable-spaced grid often results in a relatively fine grid 
over the entire domain, and (2) in addition to introducing surplus nodes and therefore more 
computations, this approach can produce finite-difference cells with a large aspect ratio, which 
can lead to numerical errors (de Marsily, 1986, p. 351). 

Using a locally refined grid can be less computationally intensive than the other two 
methods. This method, termed local grid refinement (LGR) in this report, links two or more 
different-sized finite-difference grids: a coarse grid covering a large area which incorporates 
regional boundary conditions, and a fine grid covering a smaller area of interest. These grids are 
often called parent and child grids, respectively, and this terminology is used in this report. Grid 
refinement can be vertical as well as horizontal. The link between the parent and child grids can 
be accomplished as a so-called one-way coupling, in which conditions simulated by the parent 
grid are imposed on the boundary of the child grid. Alternatively, the link can be accomplished 
in a way that also includes feedback from the child grid to the parent grid, thus allowing two-way 
communication between the grids. Solutions with feedback can be achieved either through 
iteration or simultaneous solution schemes. 

In the field of ground-water modeling, one-way coupling is commonly called telescopic 
mesh refinement (TMR) and is most commonly accomplished using some form of interpolation 
of either heads, or fluxes, or both, from the coarse grid onto the boundaries of the child grid (for 
example, Ward and others, 1987; Leake and Claar, 1999; Davison and Lerner, 2000; Hunt and 
others, 2001). This approach is fairly straightforward and works well for many problems. 
However, the one-way coupling does not allow for feedback from the child grid to the parent 
grid.  Thus, after running both models, the burden is placed on the modeler to check if heads 
along and fluxes across the interfacing boundary are consistent for both models (Leake and 
Claar, 1999, p. 5-7). If they do not match, there is no formal mechanism for adjusting the 
models to achieve better agreement.  In this way, TMR methods generally lack numerical rigor 
and are prone to significant, often undetected errors (Mehl and Hill, 2002 and examples 1 and 3 
of this report). 

A numerically rigorous method that ensures that heads and fluxes are consistent between 
the two grids is needed to obtain dependably accurate solutions.  LGR as documented in this 
report uses an iteratively coupled method.  Two-way iterative coupling is used to ensure that the 
models have consistent boundary conditions along their adjoining interface.  The method 
implemented here couples the models using shared nodes. That is, the grids are constructed such 
that nodes of the parent grid are coincident with selected boundary nodes of the child grid. 

Purpose and Scope 

The purpose of this report is to document LGR (local grid refinement) for MODFLOW­
2005 (Harbaugh, 2005).  
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Highlights and Compatibility

This report first provides highlights of LGR and discusses its compatibilities with other 
MODFLOW-2005 capabilities.  Next, the method of local grid refinement used by LGR is 
described in detail, and the accuracy and the convergence of the method are evaluated.  Then, the 
performance of iterative grid refinement using LGR is compared to alternative methods for 
simple two- and three-dimensional problems and consequences of the results for field 
applications are discussed.  Next, input instructions, and selected input and output files are 
provided in Appendices 1 and 2 for LGR and BFH, respectively. Finally, error propagation in 
LGR is illustrated in Appendix 3 and notes for MODTMR (Leake and Claar, 1999) users are 
provided in Appendix 4. 
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Highlights and Compatibility 

This section presents highlights important to those deciding on whether to use LGR.  
Advantages of LGR and user concerns for designing models that are compatible with LGR are 
listed here for user convenience; additional discussion of these points is presented in the report, 
as noted. 

Highlights for New Users and Quick Reference 

Highlights of LGR are organized into four topics: (1) accuracy, (2) execution time, (3) 
model setup, and (4) grid and time step design.  LGR can be run to perform on-way coupling by 
setting MXLGRITER=1; the comments here apply when LGR is run iteratively (MXLGRITER 
> 1). MXLGRITER is defined in Appendix 1. 

Accuracy 

1)	 Local refinement can provide much of the improved accuracy achievable by global 
refinement with much smaller execution times (see Table 4, Table 5, and Figure 26).   

2)	 Local refinement generally improves the accuracy of all parts of the simulated 
system. (see Parent Grid Error and Child Grid Error sections). 

3) The greatest refinement ratio does not necessarily produce the most accurate solution 
(see Effects of the Refinement Ratio section). 

4)	 Local grid refinement maintains the rate of convergence of globally refined grids for 
homogeneous and heterogeneous models.  This means locally refined grids reduce 
error in a way that is consistent with global refinement, and supports local refinement 
as a valid alternative to global refinement (see Convergence Properties section).  
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Execution Time 

1)	 LGR uses a solution method that iterates between the parent model and the child 
model.  A single iteration requires one parent-model solution (execution time Tparent) 
and one child-model solution (execution time Tchild), so execution time per iteration is 
approximately Tparent + Tchild. The number of iterations varies depending on the 
heterogeneity and the grid discretization.  Generally, between 10 to 20 iterations, are 
sufficient for most problems (see Convergence Properties section). 

Model Setup 

1) The parent and child models each require a MODFLOW Name file (Harbaugh and 
others, 2000, p. 7, 43) and associated set of input files.  The unit numbers defined in 
these files need to be unique – a unit number used in the parent-grid model input and 
output files cannot be used for the child-grid model. 

2)	 In the Basic Package input file (Harbaugh and others, 2000, p. 50) for the child 
model, set IBOUND = IBFLG (see Input Instructions in Appendix 1) for cells that 
border the parent model.  This is the perimeter of the child model.  Except for the 
perimeter of the child model, do not use the values defined by IBFLG and -IBFLG 
anywhere in the IBOUND arrays of the child or parent models.  

3)	 LGR currently (2005) needs to have sensitivities calculated and parameter estimation 
performed using universally applicable programs such as UCODE (Poeter and Hill, 
1998), UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), or 
OSTRICH (Matott, 2005). 

4)	 If the DE4 solver (Harbaugh, 1995) is used on the refined grid, the decomposition 
cannot be reused from a previous time step or internal iteration, even if the model is 
linear. Thus, use IFREQ = 3.   

Grid and Time-step Design 

1)	 For LGR currently (2005), only one block-shaped volume of local refinement can be 
simulated. This is not a restriction of the method, but of the implementation 
presented here.   

2)	 The shared-node coupling used by LGR requires child-grid spacing that is an odd 
integer factor of the parent grid.  For example, ratios of refinement of 1:1, 3:1, 5:1, 
7:1, and so on can be simulated; 2:1, 4:1, 6:1, and so on cannot be simulated. 

3)	 For vertical refinement, the top of the child grid needs to coincide with the top of the 
parent grid.  However, vertical grid refinement does not need to start at the top 
because a vertical refinement ratio of 1:1 can be used. This can be useful when thick 
upper layers are desired for simulating water-table conditions (see The Top and 
Bottom of the Child Grid section).  

4)	 For vertical refinement, the bottom of the child grid coincides with the finite-
difference nodes in any layer of the parent-model grid except in the top and bottom 
layers of the parent grid.  That is, the child model replaces one half of the thickness of 
the parent cell along its bottom.  For vertical refinement within the bottom parent 
layer, the child grid needs to coincide with the bottom of the parent grid.  For vertical 
refinement of parent models with a single model layer, the child model extends from 
the top to the bottom of the layer (see The Top and Bottom of the Child Grid section).  

5)	 For transient simulations, the time-step size needs to be the same for both models.  
This is not a limitation of the method, but of the implementation presented here. It is 
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most easily accomplished by defining identical stress period lengths and time step 
variables (PERLEN, NSTP, and TSMULT) in the Discretization input file (Harbaugh 
and others, 2000, p. 45). This may require defining more stress periods than would 
otherwise be required for the parent-grid model, child-grid model, or both. 

Compatibility with Other MODFLOW Packages and Processes 

LGR is integrated into MODFLOW-2005, and most MODFLOW-2000 Packages of the 
ground-water flow process have been converted to MODFLOW-2005 (Harbaugh, 2005).  LGR is 
designed to simulate the parent and child grids as two separate MODFLOW-2005 models and 
iterate between them until a balance of heads and fluxes along the interface between these 
models is achieved. Within each separate model, most MODFLOW-2005 packages can be used 
with no or little alteration. Because the models are separate, different packages can be used for 
each model. For example, the parent model may use the DE4 solver while the child model uses 
PCG. This flexibility of iterative local grid refinement is one of its major advantages.  

The shared-node method used to couple the parent and child models results in truncated 
cells between the two models along sides and along the bottom of the child model in many 
situations (see Lateral Interface between Parent and Child Grids and The Top and Bottom of the 
Child Grid sections).  For these interfaces, most of the interface cells are half cells. The interface 
cells have less cell volume and, in some coordinate directions, less area than cells in the 
remainder of the grid.  For sinks, sources, and other stresses or boundary conditions that cross 
the interface between the models, the user may need to modify input for the cells where the grids 
are coupled, as described in the following section of this documentation.  Table 1 lists the 
packages and processes of concern and identifies attributes that may need to be adjusted when 
using LGR. 
Table 1.  MODFLOW-2005 packages and processes that may need to be adjusted by the user. 
Package or Process1 

Supported Comments 
BCF, LPF, HUF Accuracy may be better if hydraulic properties are the same for adjoining cells at the interface 
RIV, DRN, GHB Modify conductances to account for the cell area at the interface 
EVT, RCH Modify rates to account for the cell area at the interface (see text) 
DIS The time steps need to be identical in the coupled models. 

The grid refinement ratio needs to be odd: 1:1, 3:1, 5:1, and so on. 
DE4, PCG, SIP, 
LMG, GMG 

When using the DE4 solver for the child grid, set IFREQ to 3.  All other solvers require no change. 
Different solvers can be used for the parent and child grids. 

Limited Support Description 
STR, MNW These packages can be used within each grid, but routing of water across the interface between model 

grids is not supported. 
Not Supported Available alternatives 
SEN Process Perturbation sensitivities can be calculated using UCODE, UCODE_2005, PEST, OSTRICH, and so on 
PES Process Parameter estimation can be accomplished using UCODE, UCODE_2005, PEST, OSTRICH, and so on 
1The three letter acronyms identify Ground-Water Flow Process Packages unless noted.  See the list of acronyms preceding the abstract of this 
report for definitions 

Input Files that May Need to be Changed For Cells at the Interfacing Boundary 

In the shared-node method of local grid refinement, data input may require modification 
for the cells that form the interface between the parent-child grids if the DRN, EVT, GHB, RCH, 
RIV, or WEL Packages are used at these cells.  Except for the WEL Package, the flux calculated 
by these packages depends on the full cell area, either directly (RCH and EVT) or through a user 
input conductance term (DRN, GHB, and RIV).  Cells at the interface of the parent model are 
truncated, but in the packages listed the cell areas are not modified. Thus, the user needs to adjust 
inputs so that the proper influence of the stress is represented in the model.  The original cell (not 
truncated) and four options are illustrated in Figure 1a-e using uniformly distributed recharge as 
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the stress.  The child grid uses specified-head boundary conditions at the interface, and at these 
cells, head-dependent and flux boundary conditions are not accounted for in the equations solved 
by MODFLOW, and therefore these contributions do not appear in the budgets for the child 
model. The user has four options for handling stresses at the interface cells: 

1)	 No change (Figure 1b).  This is not recommended because the effected of the 
stress in the parent grid is double counted because the area of the original cell is 
used. 

2)	 Account for the truncated parent cells at the interface, but neglect the lost volume 
of stress at the specified-head boundary of the child interface.  This may be a 
good assumption if the neglected stress is small relative to the remaining stress in 
the system.  This option is depicted in Figure 1c. 

3)	 Account for the truncated parent cells at the interface and account for the stress in 
the area of the child interface by modifying the stress in the adjacent parent cell. 
This option is depicted in Figure 1d. 

4)	 Account for the truncated parent cells at the interface and account for the stress in 
the area of the child interface by modifying the stress in the adjacent child cell. 
This option is depicted in Figure 1e. 

While options three and four may seem odd, limited testing suggests that they produce 
results that more closely match globally refined model results.  If the third or fourth option is 
used, the conductances, stresses, or stress rates can be adjusted in either the adjacent parent or 
child cells to account for the neglected flux at the interface specified-head cells.  The values 
should be adjusted such that the total volume (in the case of recharge) or total area (in the case of 
conductance-based stresses) is accounted for.  For example, the volume of recharge at the 
interface specified-head cells can be accounted for by adjusting the recharge rates in either the 
adjacent parent or child cells so that this volume of flux is still represented in the model, as 
shown in Figure 1d and Figure 1e, respectively. If the parent cells are adjusted for uniform, 
areally distributed stresses, such as uniform recharge, the rate in the parent interface cells can be 
adjusted using equation 1a (and eqn. 1b for interface cells at the corners) to account for the 
additional stress over the area of the child interface cells.  This is shown in Figure 1d.  For the 
same stress, if adjustments are made to the child cells, the rate would be increased according to 
equations 1c and 1d for interface and corner cells, respectively.  This is depicted in Figure 1e.   

RadjustedParent = R × 0.5 (1 + 1/NCPP)	 (1a) 

RadjustedParentC = R × [0.75 + 0.5 × 1/NCPP – 0.25 × 1/(NCPP)2] 	(1b) 

RadjustedChild = R × 1.5 	 (1c) 

RadjustedChildC = R × 2.25 	 (1d) 

where 

R = the original rate over the entire original parent cell area 

NCPP = the number of child cells that span the width of a single parent cell. 

RadjustedParent = the adjusted rate in the interface cell of the parent model 

RadjustedParentC = the adjusted rate in the interface corner cell of the parent model 

RadjustedChild = the adjusted rate in the interface cell of the child model 

RadjustedChildC = the adjusted rate in the interface corner cell of the child model 
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If higher spatial resolution of the stress data is available, the higher spatial resolution 
allowed by the child grid can be combined with this data to dictate how stresses are partitioned.  
These situations can be accommodated by adjusting values in the corresponding cells such that 
the total influence of the stress is accounted for. 

6 6 

6 6 6 

Q = 6 Q = 8 

a b 

3 

6 6 6 

4 

6 6 6 

3 

9 9 9 

Q = 5 Q = 6 Q = 6 

c d e 

EXPLANATION 
Area where specified-head designation means that in MODFLOW the recharge is

not included in the equations solved

Area where stress is accounted for 

Recharge rate specified in the RCH Package input file 

Q Value of net recharge to the entire area assuming unit width and length for the area 

Figure 1. Schematic of recharge for (a) the original uniform recharge distribution in the parent grid, (b) the recharge 
distribution on the interface with the original recharge rate used in the parent and child cells, which produces too large 
of a net recharge; (c) the recharge distribution with modifications to the parent model to account for the truncated cell 
size at the interface, but neglecting the lost recharge at the child interface; (d) accounting for the truncated parent cell 
and adding the excluded child recharge to the adjacent parent cell; and (e) accounting for the truncated parent cell 
and adding the excluded child recharge to the adjacent child cells. 

The parent grid uses specified-flux boundary conditions at the interface. If a constant-
head boundary is specified in the parent model at the parent-child interface, the specified fluxes 
cannot be defined.  In this case, the constant-head boundary could be approximated by a general-
head boundary with an appropriately large value of conductance. 

Running Parent and Child Models Independently Using the Boundary Flow and 

Head (BFH) Package


The parent and child models can be simulated independently by using the coupling flux

and head boundary conditions produced by LGR.  This can be accomplished using the new 
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Boundary Flow and Head (BFH) Package which reads the coupling boundary conditions saved 
by LGR.  Running the models independently can be useful when simulating solute transport, 
particle tracking, or other processes which do not affect the coupling boundary conditions 
produced by LGR.  

Situations that might affect the coupling boundary conditions, such as changes in 
pumpage, can also be simulated using an independent child or parent model, but results become 
invalid as the changes affect the coupling boundary conditions.  An analysis provided by the 
BFH Package can be used to determine if changes to either the parent or the child model requires 
re-running LGR to update the coupling boundary conditions.  For example, consider a situation 
in which after running LGR and finding coupling boundary conditions, the parent model is 
updated to include new pumping data for a well outside the refined area.  How much does this 
well change the interfacing boundary where the child model is coupled? BFH Package output 
can be used to answer this question. 

Instructions for the BFH package are presented in Appendix 2. 

Using LGR to Simulate Solute Transport and Particle Tracking 

Solute transport and particle tracking that are limited to the parent or child grid are 
simulated easily.  Programs such as MT3DMS (Zheng and Wang, 1999) and MODPATH 
(Pollock, 1994) that act as post processors can use the binary cell-to-cell flow files produced by 
each model for LGR simulations.  For transport simulations that use the flow solution internally, 
such as ADV2 (Anderman and Hill, 2001) and the GWT Process, independent child or parent 
simulations can be run. In this case, first a LGR simulation is used to produce the coupling 
boundary conditions.  Then transport is simulated using the models with boundary conditions 
provided by LGR and used by the BFH Package.  That is, the BFH Package provides the 
coupling boundary conditions for the independently run model.   

Solute transport and particle tracking that cross from one model to another are more 
difficult, but can be accomplished by using the results of one model as the boundary conditions 
for the other model. In general, particle tracking through cells that contain sinks/sources is 
problematic (see Pollock, 1994, p.2-14), which is the case for the interface cells.  Therefore, 
tracking particles across the interface is an approximation.  Particles that are transported across 
the boundary of a grid interface can be approximated manually by recording particle times and 
locations as they leave one grid and using those times and locations to begin transport of the 
particles in the adjacent grid.  LGR as presented in this report has no method of translating 
particles or simulated concentrations across the interface.  This can be accomplished by 
simulating the two models independently and doing the translation manually. 

Solute transport across interfacing grid boundaries is difficult to represent accurately 
because the abrupt change in grid size.  In addition, often the parent grid size is large enough that 
substantial numerical dispersion would be expected.  Ideally, the grids should be designed such 
that important features of any solute plume remain entirely within a single grid.  

Description of Local Grid Refinement (LGR) 

The function of the child model is to simulate phenomena that need a finer grid than the 
parent-model grid.  For example, relatively fine grids are often needed to represent accurately 
sharp changes in hydraulic gradient, abrupt changes in hydraulic properties that would otherwise 
lose resolution if represented by the coarser parent grid, or other processes such as solute 
transport for which a fine grid is often needed to obtain accurate solutions.  The role of the parent 
model is to provide the boundary conditions to the child model that are consistent with the more 
regional flow system. 
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LGR uses the iteratively coupled shared-node method of local grid refinement developed 
and tested by Mehl and Hill (2002 a,b; 2003; 2004) and Mehl (2003).  The basic flow of the 
LGR procedure is shown in Figure 2 and the basic program flow of LGR within MODFLOW­
2005 is shown in Figure 3.  The components of the iterative coupling are discussed in the 
following sections.   

iter> maxiter 
OR 

Head change 
< tolerance 

AND 
Flux change 
< tolerance 

? 

Calculate flux entering child grid 
Under relax boundary flux change 

Simulate parent model using specified-flux 
boundaries at child interface and inactive 
cells where covered by the child model 

Calculate heads 
Under relax head change 

Simulate child model using specified-head 
boundaries at parent interface 

Solve parent-grid model of the entire domain 

Start 
L

G
R

 I
te
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 L
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No

   Yes 

Stop 

Calculate specified-head boundaries at 
interface using cage-shell interpolation 

Calculate parent budget contribution from 
flux entering child grid 

Calculate child budget contribution from 
interface specified-head boundaries 

iter > 1 
? 

   Yes

   No 

Figure 2. Flow chart for the iteratively coupled LGR procedure. 
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AR 

STRESS LOOP 

ITERATION LOOP 

TIME STEP LOOP 

Control for multiple grids 

DF 

Grid Loop 

Grid Loop 

LGR Iteration Loop 

Grid Loop 

Grid Loop 

Grid Loop 

Grid Loop 

Cage/Shell Loop 
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AD 

Start 

FM 

AP 
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BD 
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DA 

Stop 

EXPLANATION 
Procedures: 

DF -- Define 
AR – Allocate and Read 
RP -- Read and Prepare 
RW -- Rewind 
ST -- Stress 
AD -- Advance a time step 
FM -- Formulate equations 
AP -- Solve equations 
OC -- Output Control 
BD -- Calculate volumetric budget 
OT -- Write output 
DA -- Deallocate 
LGR -- Local grid refinement 

Grid Loop:  once for each grid 
involved in LGR.  In this work the 
Grid Loop is composed of one 
parent grid followed by one child 
grid, so the number of grids equals 
2. 

Cage/Shell Loop: only for child 
grid. 

Figure 3. Flowchart of MODFLOW with Grid Refinement. 
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The Grid Structure of the LGR Shared-Node Method – Parent Grid, Child 
Grid, and the Interface 

The grid structure is defined by how the sides, top, and bottom of the child model are 
nested within the parent model.  The two models join along what are called interfaces.  The 
lateral boundaries of the child model are always interfaces with the parent model.  The top 
boundary of the child model is always the top of the simulated saturated ground-water system of 
the parent model. The bottom boundary of the child model may coincide with the bottom of the 
simulated system or may be an interface with the parent model. 

Lateral Interface between the Parent and Child Grids 

The lateral interface forms the sides of the child model grid.  A schematic through the 
center of one layer of a locally refined grid is shown in Figure 4a.  The interior cells of the parent 
model covered by the child model are made inactive by LGR by setting IBOUND to zero for 
these parent-model cells.  Thus, after an initial parent-grid solution, the parent model has a hole 
in it that is filled by the child model. The parent and child models do not overlap cell areas.  The 
model cells along the parent-child interface end at the node.  Some nodes are shared and this 
gives the shared-node method its name.  Most cells along both the parent and child side of the 
interface are half cells.  That is, they represent half the volume that they normally would based 
on their cell dimensions.  At the corners, the child grid has 1/4 cells and the parent grid has 3/4 
cells. If the refinement does not extend to the bottom of the parent model (see next section), the 
child corner cells in the bottom layer are 1/8 cells and the parent has 7/8 cells. 

To obtain ground-water flow equations that account for all aquifer material in each 
direction once, the conductances parallel to the parent-child interface are multiplied by 1/2, 1/4, 
or 3/4 and the storages for cells along the interface are multiplied by 1/2, 1/4, 3/4, 1/8, or 7/8.  
This arrangement produces grids that do not protrude into each other. 

Shared nodes are obtained by using a parent-grid spacing that is an odd integer factor of 
the corresponding child-grid spacing.  For example, in the grid presented in Figure 4, three child 
cells span the width of one parent cell, producing what is referred to as a 3:1 refinement ratio.   

For the program described in this report, the refinement along rows and columns needs to 
be the same in the two directions for all rows and columns.  This is not a requirement of the 
method, just a characteristic of this implementation. 

The Top and Bottom of the Child Grid and Vertical Refinement 

The top of the child model needs to coincide with the top of the simulated system of the 
parent model. The bottom of the child model can coincide with the bottom of the parent model 
or any nodes of any parent-model layer except nodes of the top or bottom layer.  Figure 5 shows 
which vertical refinement scenarios are possible and which are not possible. 

For single-layer parent models (Figure 5a), a vertically refined child model can be used.  
In this case, the interface nodes above and below the shared node are set to the value of head at 
the shared node.  This means no vertical gradients are simulated along the interface. 

The uppermost node(s) of the child model grid are between the top of the model and the 
uppermost nodes of the parent model grid.  In this case, the interface node(s) directly above the 
uppermost shared nodes are set to the value of head at the shared node.  This is consistent with a 
parent grid that does not have vertical flow between the top of the model and the uppermost 
node. Vertical flows from recharge or discharge will not, therefore, be correctly produced in the 
child grid at this location. 

Vertical refinement can vary layer by layer.  For example, extra refinement at the top is 
illustrated in Figure 5b where the top parent layer is refined vertically 5:1 and the second parent 
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layer is refined vertically 3:1.  Figure 5c shows that although the child refinement begins at the 
top layer, a 1:1 ratio can be used.  Having thicker upper layers may be helpful for problems with 
rewetting (see discussion in Unconfined Conditions section).  

If the child model extends to the bottom of the parent model, the interface node(s) that 
are directly below the bottommost shared node are set to the value of head at the shared node 
above. This is consistent with a parent model that does not have vertical flux between the 
bottom of the system and the bottommost node. 

Figure 5d shows that it is not possible for the child model to terminate at the shared node 
of the top layer of the parent model.  The child model must extend at least to the second layer of 
the parent model, as shown in Figure 5b.  Figure 5e illustrates that it is not possible for the grid 
of the child model to terminate at the shared node of the bottom layer of the parent model.  The 
child grid can extend past the bottommost shared node to the aquifer bottom, as shown in Figure 
5c. 

a b 

EXPLANATION 
Node of the parent model only 
Shared node used by both the parent model and the child model 

Node of the child model only.  The parent model is inactivated here after the 

initial parent simulation, so the parent model has a hole in it. 

Specified-head boundary node of the child model determined by interpolation 

from the parent solution at the shared nodes 

Internal child-grid fluxes 

Fluxes summed to provide parent-flux boundary condition


Figure 4. (a) Two-dimensional areal schematic through the center of the locally refined grid.  The interface area 
denoted by the dashed rectangle is shown in greater detail in (b), and illustrates flux balance across the parent-child 
interface.  Cells fully within the child grid are darkly shaded, cells fully within the parent grid are lightly shaded, and 
cells at the interface are white. 
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Top of model Top of model Top of model 

b c 
b b 

d 
b 

e 
b 

Top of model Top of model 

Figure 5. Cross-sectional schematic of vertical refinement interface of (a) a one-layer parent model refined to a 
three-layer child model, (b) a multi-layer parent model where the child refinement varies vertically and terminates at 
the shared node of the second parent layer, (c) a multi-layer parent model where the child refinement varies vertically 
and extends to the bottom of the parent model, (d ) a multi-layer parent model where the child refinement terminates 
at the first shared node of the parent, which is not possible, and (e) a multilayer parent model where the child 
refinement terminates at the bottommost shared node, which is not possible. 

The Iterative Coupling 

The iteratively coupled shared-node method of local grid refinement balances heads and 
fluxes across the interfacing boundary of the two grids.  This is accomplished by iteratively 
updating the head (child grid) and flux (parent grid) boundary conditions along the interface for 
each model.  Relaxing (averaging) with the head and flux values from the previous iteration is 
needed to keep the iterations stable.  This approach of coupling the two grids is similar to what is 
used by domain decomposition methods (DDM).  However, most DDM operate at the matrix 
level – they formulate the matrix equations first, and then break up the matrix equations into 
separate problems.  LGR operates at the ground-water system level – the ground-water system is 
divided into parent and child grids, and then the equations for each are formulated.  Similar 
approaches have been used by Funaro and others (1988) and Nacul (1991), which operate at the 
partial differential equation and reservoir level, respectively. 

As shown in Figure 2, the LGR procedure begins by simulating a parent model that 
encompasses the entire domain.  For subsequent iterations the parent-model cells completely 
covered by the child grid are eliminated.  For the cells along the interface (Figure 4), the 
conductances parallel to the interface and aquifer storages are adjusted.  The heads from the 
parent model are used to interpolate specified-head boundary conditions for the child grid.  The 
interpolated heads are relaxed using heads from the previous iteration (eqn. 2a).  This under 
relaxation is necessary for convergence (Funaro and others, 1988; Székely, 1998).  The value of 
the relaxation parameter is problem dependent and may have to be adjusted to achieve 
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convergence.  The child model is simulated and the fluxes through the parent-child interface are 
calculated and also under relaxed (eqn. 2b) before being used as the parent interior flux boundary 
condition. The parent model is simulated using these updated flux boundary conditions and 
produces updated heads for the interpolation onto the child grid boundaries. This process is 
repeated until both the head change and the flux change are smaller than user-defined criteria. 

headupdated = ω·headnew + (1-ω)·headold (2a) 

fluxupdated = ω·fluxnew + (1-ω)·fluxold (2b) 

where, 

ω is the relaxation factor with values 0 < ω < 1.0 

In the iterative method, the coupling occurs through the boundary conditions, which are 
accounted for in the right-hand side of the matrix equations.  Thus, the stencil for the coefficient 
matrix is always consistent with the standard stencil of the original model.  This is different from 
other two-way coupled local grid refinement methods where equations for the irregular 
connections across the interface of the parent and child grids are directly embedded into a single 
coefficient matrix, thus altering the conventional stencil (for example, Wasserman, 1987; Ewing 
and others, 1991; Edwards, 1999; Schaars and Kamps, 2001; Haefner and Boy, 2003).  For 
MODFLOW, the coefficient matrix is formulated symmetrically and all non-zero terms are 
located on the matrix diagonal and six off diagonals (McDonald and Harbaugh, 1988, p. 12-2 – 
12-4).  Therefore, when using the iterative coupling considered in this work, efficient solvers that 
are based on a conventional finite-difference stencil on a Cartesian grid, such as the solvers 
distributed with MODFLOW, can be applied without modification.  The resulting matrix 
equations are: 

[Ap]{hp} = {fp(hc)} (3a) 

[Ac]{hc} = {fc(hp)} (3b) 

where, 

[ ] denotes a matrix and { } denotes a vector, 

[Ap] is the coefficient matrix for the parent grid.  It contains conductances and storage 
properties and has the same structure and coefficients as a conventional finite-
difference discretization, except for adjusted conductances and storages along the 
interface with the child grid, 

[Ac] is the coefficient matrix for the child grid.  It contains conductances and storage 
properties and has the same structure and coefficients as a conventional finite-
difference discretization, except for adjusted conductances and storages along the 
interface with the parent grid, 

{hp} is the head in the parent grid, 

{hc} is the head in the child grid, 

{fp(hc)} is the right-hand side for the parent grid, and includes the flux boundary 
condition along the interface with the child grid.  This flux is determined by a mass 
balance (Figure 4b) and is a function of the heads in the child grid from the previous 
iteration (hc). It also contains the storage terms from the previous time step and all 
other boundary conditions and stresses within the parent model, and  
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{fc(hp)} is the right-hand side for the child grid, and includes specified-head boundary 
condition along the interface with the parent grid.  This boundary condition is 
determined from the previous head solution on the parent grid (hp) using interpolation.  
It also contains the storage terms from the previous time step and all other boundary 
conditions and stresses within the child model. 

A common approach to handle asymmetric matrices is to iteratively solve them by using 
symmetric solvers and splitting the coefficient matrix such that the asymmetric terms are 
evaluated on the right-hand side.  For example, the vertical flow calculation under dewatered 
conditions (McDonald and Harbaugh, 1988, p. 5-21 – 5-23) uses this type of splitting as does the 
LVDA capability of the HUF Package (Anderman and others, 2002).  In this regard, the iterative 
method outlined above can be viewed as a matrix splitting of a directly embedded approach, 
where the coupling terms that are not involved in the conventional stencil are placed on the right-
hand side. Head values from the previous iteration are used to evaluate these terms, and instead 
of being applied directly, they are under relaxed using the heads of the previous right-hand side 
term. 

The details of how the parent and child boundary conditions are calculated are discussed 
in the sections below.  First the child to parent coupling is described followed by the parent to 
child coupling. 

Child to Parent Coupling – Specified-Flux Parent Boundary Conditions 

The specified-flux boundary condition along the parent-grid interface is calculated using 
a mass balance on the child cells that border each parent cell.  In Figure 4b, the dark arrows 
denote the internal child-grid fluxes that are needed to calculate the net flow across the 
interfacing boundary.  The net flow across the boundary equals the sum of the lighter vertical 
arrows. This net flow is used to define a specified-flux (Neuman) boundary condition for the 
parent model on the subsequent iteration. 

Parent to Child Coupling – Specified-Head Child Boundary Conditions 

For interface nodes that are shared with the parent model (Figure 4, dark circles with 
white centers), the heads calculated by the parent model apply directly.  For the child nodes 
along the boundary that do not share the same location with a parent node (open circles with 
diamonds in the center), the head is interpolated. Linear or other low-order, geometrically based 
polynomial interpolation has been suggested (Quandalle and Besset, 1985; Ward and others, 
1987; Ewing and others, 1991; Leake and others, 1998; Székely, 1998; Davison and Lerner, 
2000). Figure 6 shows that in the presence of heterogeneity, linear interpolation produces heads 
that do not obey the physics of ground-water flow.  Other geometric interpolation methods share 
this difficulty.  For this reason, an alternative Darcy-weighted interpolation method is used in 
LGR that circumvents this problem.  The interpolation is described in the following paragraphs.  
First, the concepts are illustrated analytically using a one-dimensional interface boundary of a 
two-dimensional model.  The numerical implementation used by LGR is then described.  The 
numerical implementation produces the same results as the analytical formulation for a two-
dimensional parent model, and also apples when the parent mode is three dimensional. 
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Figure 6. Darcy-weighted interpolation in relation to linear interpolation between shared nodes for cells with different 
hydraulic conductivity, as denoted by the different shading of the two cells. 

Interpolation Concepts Illustrated Analytically Using a Two-Dimensional Model 

The fundamental constitutive relation that governs heads and fluxes in ground-water 
systems is Darcy’s law.  In one dimension:  

q = -K(dh/dx) (4) 

where, 

q is the flux (Flow rate per unit area or Darcy velocity), 

K is the hydraulic conductivity, and  

dh/dx is the hydraulic gradient. 

Darcy’s law implies that if the one-dimensional flux, the material properties, and the 
physical dimensions are all known between two points, the hydraulic gradient at each location 
between the two points can be uniquely determined.  Interpolating the heads along the boundary 
of the child grid using Darcy’s law produces heads that are consistent with the parent-grid flow 
field. This interpolation also is consistent with finite-difference discretization of the ground­
water flow equations.  The resulting interpolation scheme, referred to here as Darcy-weighted 
interpolation, is calculated as: 

⎞
⎟
⎟
⎟
⎟

⎛
⎜
⎜
⎜
⎜

pQp→p+1 L 
(5) 
c→h = h − ⋅
c p K w 

c thick ⋅ 
2⎝
 ⎠


where, 

hc is the head at the child node, 

hp is the head at the parent node, 

Qp→p+1 is the flow between adjacent parent cells, 
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Kc is the hydraulic conductivity of the child cell, which needs to equal the hydraulic 
conductivity of parent cell for the most accurate interpolation, 

thick is the thickness of the parent cell, 

w/2 is half the width of the parent cell, and 

Lp→c is the distance between parent node and child node. 

Using w/2 is consistent with using the half conductances for the interface cells, as 
described previously.  The Darcy-weighted interpolation is most accurate if the hydraulic 
conductivities of the child cells along the boundary are the same as those of the adjoining parent 
cells. 

Various forms of one-dimensional Darcy-based interpolation have been developed and 
used by others (Wasserman, 1987; Schaars and Kamps, 2001; Haefner and Boy, 2003).  For 
confined flow, they all produce the same interpolated heads, and these heads are consistent with 
the flow of the parent grid.  However, they are not readily extendable to the two-dimensional 
interfaces of three-dimensional models. 

Generally Applicable Numerical Interpolation Procedure 

The method described above can be used to form a basis for the extension to three 
dimensions. First consider a numerical alternative to the analytical approach (eqn. 5) for 
interpolating heads onto the boundary of the child model used in two dimensions.  The same 
interpolation could have been achieved by solving a one-dimensional numerical flow model for 
head at the child nodes between the shared nodes. In such a model, only the cells on the 
perimeter of the two-dimensional child model of Figure 4 (the interface with the parent grid) 
would be used; all the cells within the child model would be inactive.  The shared nodes would 
be specified head (using the values from the parent), and the heads calculated at the child nodes 
in between the shared nodes would have the same value as those obtained analytically.  

In the equivalent procedure in three dimensions, the shared nodes would be set as 
specified head and heads at the child cells on the interface would be solved numerically; all other 
cells would be inactive. The resulting equations for the child boundary conditions, which are a 
subset of those in equation 3b, are: 

[AcB]{hcB} = {fcB(hp)} (6) 

where, 

[AcB] is the coefficient matrix for the child grid cells along the boundary interface with 
the parent grid.  All other child cells are inactive and are eliminated from the 
equations, 

{hcB} is the head on the child grid boundary interface, and 

{fcB(hp)} is the right-hand side for the child grid cells along the boundary interface with 
the parent grid.  It contains specified-head boundary conditions at the shared nodes 
using values from the parent-grid simulation.   

Unfortunately, when this one-step procedure is used to calculate the specified-head 
boundary conditions of the child model, it produces flows between child-grid nodes that are 
inconsistent with the flow between nodes of the parent grid (Mehl and Hill, 2004).  To eliminate 
this problem, the following two-step interpolation procedure was developed. 
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Cage solution – The child nodes on the interface that are horizontally and vertically 
aligned with the shared nodes are calculated with specified heads at all the shared nodes.  All 
other child nodes on the interface boundary are ignored.  This is equivalent to one-dimensional 
solutions between the shared nodes and preserves the simulated flows between nodes of the 
parent grid.  Figure 7a shows the nodes involved in this step for a part of the interface.   

Shell solution – The shared nodes and the cage-solution nodes of step 1 are set as 
specified heads. Head at the remaining child nodes on the interface are calculated. This is 
equivalent to a series of two-dimensional numerical ground-water flow models.  Figure 7b shows 
the nodes involved in this step for a part of the interface. 

a b 
EXPLANATION 
Shared node (parent node that coincides with a boundary node of the child grid) 

Child node for which head is numerically solved in this step 

Child node that is inactive (ignored) in this step 

Child node where a specified head is imposed in this step 

Figure 7. Schematic of the nodes used in the (a) cage solution and (b) shell solution for the head interpolation along 
the interface between parent and child grids. 

The resulting equations for the cage solution, which are a subset of those in equation 6, 
are: 

[Acage]{hcage} = {fcage(hp)} (7a) 

and the equations for the shell solution are the same as those in equation 6, except for the right-
hand side: 

[AcB]{hcB} = {fcB(hcage)} (7b) 

where, 

[Acage] is the coefficient matrix for the child grid cells along the boundary that form the 
cage – that is, the child cells that are directly in line with the shared nodes, as shown in 
Figure 7a.  All other child cells are inactive and are eliminated from the equations, 
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{hcage} is the head on the child grid boundary interface for cells that form the cage, 

{fcage(hp)}is the right-hand side for the child grid cells along the boundary that form the 
cage.  It contains specified-head boundary condition at the shared nodes using values 
from the parent-grid simulation, and 

{fcB(hcage)}is the right-hand side for the child grid cells along the boundary interface with 
the parent grid.  It contains specified-head boundary conditions for the shared nodes 
from the parent solution and for the cells directly in line with the shared nodes (Figure 
7b), using head values from the cage solution. 

This two-step cage-shell interpolation procedure produces steady-state heads and flows that are 
consistent with the parent grid. 

Unconfined Conditions 

An advantage of solving for the child boundary heads numerically rather than analytically 
is that analytical solutions are much more difficult to achieve for irregular geometries or 
nonlinear flow phenomena, such as unconfined flow.  These complexities are readily accounted 
for in the suggested numerical cage-shell procedure.  Because the interpolation is handled 
numerically, the head interpolation is calculated iteratively using Picard iterations in the same 
way that MODFLOW calculates heads in an unconfined aquifer.  In this way, the head solution 
on the boundary of the child grid is consistent with the parent grid solution whether the aquifer is 
confined or unconfined. 

The rewetting capability often is used when simulating unconfined aquifers.  This can be 
problematic for the coupling of parent and child grids.  For example, if a parent cell along the 
interface between the two grids goes dry, then it no longer has a meaningful value and this 
causes problems for the cage-shell interpolation because the shared node has a value of head 
equal to HDRY. Therefore, for the version of LGR documented in this report, the child grid 
needs to be constructed such that it will not be adjacent to areas of the parent grid that are likely 
to go dry. 

Grid refinement does not need to start at the top because a vertical refinement ratio of 1:1 
can be used in any parent layer.  If the child refinement does not extend to the bottom parent 
layer, an odd refinement ratio greater than one needs to be used for the lowest parent layer that is 
refined (see Figure 5b).  Using thicker upper layers in the child model can be useful in alleviating 
some of the drying and rewetting problems associated with thin layers at the top of the model. 

Closure Criteria 

Closure criteria are needed to determine when to stop the LGR iterative procedure in 
addition to any closure criteria needed by the solver package.  Closure criteria of the LGR 
iterations control the accuracy of both the head and flux boundary conditions, and thus the 
quality of the overall LGR solution.  Given these boundary conditions, closure criteria for the 
solver package used by MODFLOW controls the accuracy of the parent and child solutions.   

Closure Criteria for LGR Iterations 

Separate closure criteria are needed for the parent and child grids.  For convergence of 
the parent grid, the maximum relative change of the coupling specified-flux boundary condition 
between successive iterations needs to be less than a user defined amount (see equation 8a).  For 
convergence of the child grid, the maximum change of the coupling specified-head boundary 
condition between successive iterations needs to be less than a user defined amount (see equation 
8b). 
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|fluxi+1 – fluxi |/max(|fluxi+1|,1.0) (8a) 

|headi+1 – headi | (8b) 

where, 

superscript ‘i’ indicates the LGR iteration, and 

|·| indicates the absolute value. 

After convergence of the LGR iterations, the budget error in the parent model should be 
examined.  This mass balance error includes the fluxes along the parent-child interface which are 
calculated from the subsequent child-grid solution (see Figure 2).  It is an indicator of the overall 
quality of the LGR solution because it shows how precisely the flow in the parent grid balances 
the flow in/out of the child grid through the interface boundary.  If the mass balance is deemed 
too large, lower the closure criteria of the LGR iterations until an acceptable mass balance is 
achieved. More LGR iterations may be needed to achieve the lower closure criteria.  Generally, 
the same guidelines that are often used for standard MODFLOW simulations can be applied 
here, so that a budget error less than 1 percent is adequate.  Because of errors introduced from 
the abrupt change in grid size, some mass balance error may remain which cannot be attenuated 
with further iterations.  Therefore, the LGR iterations also are stopped after the user-specified 
maximum number of LGR iterations is exceeded. 

Conversely, if the LGR iterations do not converge, but the budget error of the parent grid 
is small, then the quality of the LGR solution is probably acceptable.  In this case, the closure 
criteria generally can be increased such that convergence is achieved and the mass balance is still 
acceptable. 

The volumetric budget of the child grid printed by MODFLOW-2005 includes the 
boundary fluxes through the specified-head boundaries as part of the constant-head budget term.  
However, it does not report flows between adjacent constant-head cells and it includes fluxes 
from all constant-head boundaries, not just those on the interface with the parent grid.  To 
provide more information about the interface, the child model output includes a separate budget 
for the specified-head cells involved in the LGR coupling.  This is printed below the overall 
volumetric budget and corresponds to the parent-flux boundary reported in the parent volumetric 
budget.   

An example is shown in Appendix 1. 

Solver Iterations 

The available solvers for MODFLOW-2000 – SIP, (McDonald and Harbaugh, 1988), 
PCG2 (Hill, 1990), DE4 (Harbaugh, 1995), LMG (Mehl and Hill, 2001) and GMG (Wilson and 
Naff, 2004) – are compatible with LGR.  The parent and child models can use different solvers.  
Generally, the closure criteria used for the solvers should be less than or equal to what is used for 
the LGR closure.  For example, it does not make sense to try to solve the coupling boundary 
conditions to a precision of 10-5 when the overall head solution, as controlled by the solver 
closure criteria, is only accurate to 10-3. HCLOSE, which is in all solvers but LMG, can be 
compared to the head closure for the LGR iteration.  Only rough guidelines can be provided here, 
but generally it is better to be cautious and use strict closure criteria for the solver.  If this results 
in excessive computer processing times, make adjustments to the solver closure criteria. 

Transient Simulations 

For transient simulations, the iterative process described is repeated for each time step of 
each stress period, as shown in the flow chart of Figure 3.  Like the conductances, storage 
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coefficients of the parent and child grids are adjusted to account for the truncated cells on the 
interface (Figure 4).   

For transient flow, the cage-shell interpolation procedure does not maintain perfect 
consistency with the flow of the parent grid, even for simple one-dimensional transient flows.  
This is because transient flow phenomena are propagated differently through different grid sizes.  
This problem is not limited to locally refined grids.  For example, consider a coarse grid and a 
variably spaced grid which has the same grid spacing as a coarse grid near the boundary but is 9 
times smaller near the center.  Consider one-dimensional transient flow caused by 
instantaneously lowering the head at the right boundary by 9 m and calculate the percent 
difference in heads between solutions simulated using the coarse and the variably spaced grid.  
Normalize by 9 m to obtain the difference per meter of head change at the boundary.  The results 
are shown in Figure 8.  The hydraulic conductivity and specific storage are 0.25 m/day and 
2.0×10-5 m-1, respectively. Figure 8 shows three characteristics: 1) the greatest difference is at 
early time near the location where the transient phenomenon occurs, 2) the error dissipates with 
distance from the location of transient phenomenon, and 3) the error dissipates as the system 
approaches steady state.  This implies that the difference in propagation of transient flow caused 
by using different grid sizes will introduce an additional error in the coupling.  Generally, this 
error decreases as distance between the interfacing boundary and the location of the transient 
phenomenon increases and as the system approaches steady state.   

This error along the boundary has implications for volumetric budget calculations for 
large-scale regional models that are used as the parent grid.  In such models, small changes in 
head due to coupling errors at the interface can result in large changes in storage.  For example, 
consider a regional model with cell dimensions of 1000×1000 m, a specific yield of 0.2, and 
coupled to a local model using LGR with a head closure criterion set at 1.0×10-2 m. Heads along 
the boundary can have errors on the order of 1.0×10-3. This error, when viewed as a head 
change, can cause changes in storage on the order of 1.0×10-3×1000×1000×0.2 = 200 cubic 
meters, which may be a significant amount of the overall budget depending on the flow system.  
Changes in storage are calculated on a per time-step basis, as 

∆S/∆t (9) 

where, 

∆S = the change in storage = (hn+1 – hn) ×Sy×Ac 

∆t = the time-step size 

hn = head at time step n 

Sy = specific yield 

Ac = Planar area of the cell 

In accordance with equation 9, this error in storage is increased by smaller time steps and 
attenuated with larger time steps.  Furthermore, within a given stress period, changes in storage 
decrease as time progresses which reduces this error.  Therefore, storage changes at early time 
steps within a stress period can contain a significant amount of error but have reliable accuracy at 
later time steps.  Users should keep these issues in mind when examining changes in storage for 
large-scale regional models coupled to local-scale models using LGR. 
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Figure 8. Percent difference in head normalized by 9 m at various times of a one-dimensional transient flow 
simulated using a coarse grid and a variably spaced grid.  The coarse grid spacing equals the largest spacing of the 
variably spaced grid.  Tick marks on the top axis indicate the grid spacing of the variably spaced grid.  Transient flow 
is caused by instantly lowering the head at the right boundary by 9 m while head at the left boundary remains fixed. 

As currently (2005) implemented, LGR requires that the parent and child grids use 
equivalent time discretization.   

For transient problems, the child model cannot take advantage of the ability of the DE4 
solver to reuse matrix decompositions (Harbaugh, 1995, p. 3).  This is because the cage-shell 
interpolation technique on the child grid changes the connections of the active cells (the cells 
interior to the boundary cells are made inactive during the interpolation and then re-activated for 
the full solution). Therefore IFREQ should be set to 3 for the child model so that the coefficient 
matrix is reformulated for each solver iteration.  The parent model simulation can still take 
advantage of this part of the DE4 solver and IFREQ can be set to 1 or 2 when applicable. 

Evaluation of LGR Convergence and Numerical Accuracy 
Using a Two-Dimensional Test Case with Varying Levels of 
Heterogeneity 

A two dimensional test case is used to demonstrate the effects of parent-grid spacing and 
the ratios of refinement on the accuracy and convergence of the local grid refinement procedure.  
The test case features refinement around a pumping well using different ratios of refinement and 
different levels of heterogeneity. 

The test case system is shown in Figure 9.  It is 1,260 m long and 1,350 m wide, has 
constant-head boundaries of 10 m and 1.0 m on the left and right sides, respectively.  No-flow 
boundaries extend across the top and bottom.  A pumping well extracts 5.5 m3/s from the center 
of the domain. The heterogeneity structure was constructed using five transmissivity (T) zones 
randomly distributed throughout the domain with a spatial resolution equivalent to the coarsest 
parent grid (90×90 m), as shown in Figure 9.  This heterogeneity structure was selected to 
provide a numerical challenge for LGR.  Five levels of heterogeneity are considered.  They begin 
with a homogenous case (T=0.25 m2/s for all zones).  Then the contrasts of the transmissivities 
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represented by each zone are increased four times until the heterogeneity structure has a variance 
of Ln(T) of approximately 3.6 and a range of approximately three orders of magnitude.   
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Figure 9.  Heterogeneity structure with five transmissivity zones.  Constant-head boundaries are imposed along the 
block-centered cells of the left and right sides. 
 

Four different parent grid discretizations (ΔL) are used:  90×90 m, 30×30 m, 10×10 m, 
and 3.333333×3.333333 m.  For each parent grid (except the coarsest and the finest), there are 
three child models, each spanning the same area in the vicinity of the well, each with a different 
ratio of refinement:  3:1, 5:1, and 9:1. 

For all the simulations, the effectiveness of the local grid refinement procedure is 
evaluated by comparing 506 head locations throughout the grid to a “true” solution obtained 
using a uniform grid discretization of 1.111111×1.111111 m.  The comparison locations are 
shown in Figure 10.  Of the 506 head comparison locations, 146 correspond to the nodes of the 
coarsest parent grid, excluding the nodes along the interface with the child grid.  The remaining 
360 head comparison locations correspond to the nodes of the coarsest child grid, including the 
nodes along the interface with the parent grid, but excluding the node that corresponds to the 
pumping well.  The comparison at the well node was excluded because when included, its error 
dominated all other errors and thus a good representation of the overall accuracy of the different 
grids was not achieved.   

For the homogenous case, the fine grid “true” solution was compared to the analytical 
solution of Chan and others, (1976, equation 5).  It was found that this grid discretization was 
adequate because the two solutions agreed within 5 to 6 significant digits.  The analytical 
solution was not used for the comparisons because the infinite series is extremely slow to 
converge for observations that have the same y coordinate as the well and it cannot be used for 
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Figure 10.  Head contours and head comparison locations for the homogenous case with a pumping well at the 
center.  Constant-head boundaries at x=0 and 1,260 m and no-flux boundaries at y=0 and 1,350 m.  “○” and “□” 
denote parent and child head comparison locations, respectively.  “w” denotes the location of the pumping well. 
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Figure 11.  Flow vectors and head contours for the case with the highest variance of Ln(T).  Area within the dashed 
rectangle indicates region of local grid refinement. 

Evaluation of LGR Convergence and Numerical Accuracy Using a Two-Dimensional Test Case 
with Varying Levels of Heterogeneity 

the heterogeneous cases.  Figure 10 shows the head contours for the homogenous case; Figure 11 

shows the head contours and flow field for the most heterogeneous case.   
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Results are presented for the homogenous and most heterogeneous cases in Table 2 and 
Table 3, respectively.  The tables show how the error, calculated as the mean of the L1 norm 
(average of the absolute values) of the differences between heads in the coarser-gridded parent 
and child models and head in the fine grid model (“true” solution), is reduced using different 
levels and ratios of refinement.  The errors in these examples are small, but close examination of 
the errors in these problems provides some guidance about how to best apply the method.  This 
will be consequential for more difficult problems with larger errors, as presented later in this 
report as examples 1 and 3.  The following sections discuss errors in the parent and child grids, 
the effects of the refinement ratio, and the convergence properties. 

Parent Grid Error 

The error in the parent grid improves by having the interior region of local grid 
refinement, as shown in Table 2 and Table 3.  For example, in Table 2 the L1 norm of errors 
using a uniform grid spacing of 90 m throughout was 5.714×10-3, whereas that measure of error 
was 3.270×10-3 using a parent grid spacing of 90 m and a child grid spacing of 30 m (parent error 
for cell dimensions 90 and 90:30).  This 43 percent reduction in error occurs because the 
feedback from the child grid, which has a finer discretization near the well and thus better 
characterizes the dynamics of the flow in the interior, positively influences the solution of the 
parent grid.  Such improvements are not possible with a one-way coupled method of local grid 
refinement because there is no feedback from the child grid to influence the parent results.   

Child Grid Error 

Comparison of the uniform grid to the same size discretization of the child grid (for 
example, the child error of 2.782×10-2 and 9.594×10-3 for cell dimensions 90:30 and 30, 
respectively in Table 2) show that the uniform grid has less error, as expected, but the child grid 
error is approximately within a factor of 3 of the uniform grid error.  A similar analysis of Table 
3 also shows that the error is approximately within a factor of 3 (1.261 versus 0.6373).  This is a 
favorable result because it shows that reasonable accuracy can be obtained within a refined part 
of the domain without having to extend that same refinement throughout the entire domain.   

The accuracy of the boundary conditions that the parent grid provides the child grid 
directly influences the child performance.  This is demonstrated by comparison of errors within 
the child domain with the same discretizations, but different parent grids (for example, child 
error of 2.602×10-2 and 3.036×10-3 for cell dimension 90:10 and 30:10, respectively, in Table 2).  
This suggests that more accurate results can be obtained by using multiple generations of 
refinement (that is, a parent, child, grandchild, and so on) rather than a single, high-ratio 
refinement. These results are in agreement with those found by von Rosenberg (1982).  LGR 
presented in this report does not provide for multi-generation refinement. 

For this problem the child model domain errors (column 5 of Table 2 and Table 3) are 
larger than in the parent part of the domain (column 3).  This reflects the sharper changes in 
gradients that occur in the child part of the domain, which are more difficult to model even with 
the finer discretization.   
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Table 2. Comparison of errors in simulated hydraulic heads for various grid levels and ratios of refinement using a 
homogeneous transmissivity distribution. 

[Values in italics indicate results from a uniform-grid simulation; m, meter; -, values unavailable because nodes do not align; L1norm, average of 
absolute values] 

Cell Dimension (m) 1Parent Order of Parent 2Child Grid Order of Child 3Overall 
Grid Error Grid Error Grid Error Order of Overall 

Parent Child (m) Convergence (m) Convergence (m) Convergence 

90 - 5.714E-03 - - - - -

90 30 3.270E-03 - 2.782E-02 - 2.074E-02 -

90 10 3.290E-03 - 2.602E-02 - 1.946E-02 -

30 - 6.186E-04 2.024 9.594E-03 - 7.004E-03 -

30 10 3.770E-04 1.966 3.036E-03 2.016 2.269E-03 2.014 

30 6 3.766E-04 - 2.688E-03 - 2.021E-03 -

30 3.333 3.779E-04 1.970 2.628E-03 2.087 1.979E-03 2.081 

10 - 6.782E-05 2.012 1.289E-03 1.827 9.370E-04 1.831 

10 3.333 4.208E-05 1.996 3.183E-04 2.053 2.386E-04 2.050 

10 2 4.197E-05 1.997 2.928E-04 2.018 2.204E-04 2.017 

10 1.111 4.209E-05 1.998 2.957E-04 1.988 2.226E-04 1.989 

3.333 - 6.840E-06 2.088 1.185E-04 2.172 8.632E-05 2.171 

3.333 1.111 4.265E-06 2.084 2.981E-05 2.155 2.244E-05 2.152 

1.111 - 48.155E-07 - 41.183E-05 - 48.652E-06 -
1L1 norm of the errors associated with the comparison locations in the parent part of the domain.

2L1 norm of the errors associated with the comparison locations in the child part of the domain.

3L1 norm of the errors associated with all comparison locations in the domain.

4L1 norm of the errors compared to the analytical solution, excluding comparison locations with the same y coordinate as the well.


Table 3. Comparison of errors in simulated hydraulic heads for various grid levels and ratios of refinement with a 
heterogeneous transmissivity distribution of Variance of Ln(T) ≈ 3.6. 

[Values in italics indicate results from a uniform-grid simulation; m, meter; -, values unavailable because nodes do not align; L1norm, average of 
absolute values] 

Cell Dimension (m) 
1Parent Grid Order of Parent 

2Child Grid 
Error Order of Child 3Overall Error Order of Overall 

Parent Child Error (m) Grid Convergence (m) Grid Convergence (m) Convergence 

90 - 5.096E-01 - - - - -
90 30 5.079E-01 - 1.261E+00 - 1.044E+00 -
90 10 5.004E-01 - 1.179E+00 - 9.830E-01 -
30 - 2.402E-01 0.685 6.373E-01 - 5.227E-01 -
30 10 2.307E-01 0.718 5.618E-01 0.736 4.663E-01 0.733 
30 6 2.277E-01 - 5.455E-01 - 4.538E-01 -
30 3.333 2.251E-01 0.727 5.335E-01 0.722 4.445E-01 0.722 
10 - 1.107E-01 0.705 2.796E-01 0.750 2.309E-01 0.744 
10 3.333 1.039E-01 0.726 2.515E-01 0.732 2.089E-01 0.731 
10 2 1.019E-01 0.732 2.450E-01 0.729 2.037E-01 0.729 
10 1.111 1.002E-01 0.736 2.401E-01 0.727 1.998E-01 0.728 

3.333 - 4.118E-02 0.900 1.011E-01 0.926 8.382E-02 0.922 
3.333 1.111 3.697E-02 0.940 8.940E-02 0.941 7.428E-02 0.941 

1L1 norm of the errors associated with the comparison locations in the parent part of the domain. 
2L1 norm of the errors associated with the comparison locations in the child part of the domain. 
3L1 norm of the errors associated with all comparison locations in the domain. 
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Figure 12.  Distribution of error in the child grid along transects for the homogeneous model (a) along the interface 
with the parent grid at x = 360 meters and (b) next to the pumping well (x = 600 meters) for three different ratios of 
refinement. 

Effects of the Refinement Ratio 

Generally, the error within both the parent and child grid decreases as the ratio of 
refinement increases as suggested by comparing the errors of Table 2 and Table 3 for constant 
parent grid size and decreasing child grid size.  However, errors at the boundary between the two 
grids may increase as the ratio of refinement increases.  Figure 12 shows how the error of the 
child grid is distributed for the homogenous case along two transects; the first is along the 
boundary with the parent grid (Figure 12a) and the second is next to the pumping well (Figure 
12b). 

The results in Figure 12b indicate that higher ratios of refinement result in smaller error 
near the well, which is expected because the finer discretization associated with the higher 
refinement ratio is better able to characterize the influence of the well on the hydraulics.  
However, Figure 12a suggests that errors near the interface with the parent grid are larger for 
higher refinement ratios.  These results are consistent with results found by Ewing and others 
(1991). These results illustrate that, for different refinement ratios, there is a tradeoff in accuracy 
near the well compared to the boundary; thus, there is an optimal level of refinement depending 
on what is important to the modeler. For example, for the homogenous case in Table 2, if the 
modeler is interested in overall accuracy, as opposed to accuracy just near the well, the 10:2 
refinement, with an overall accuracy of 2.204×10-4 would be the best choice of the 10:x models 
presented. 
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Evaluation of LGR Convergence and Numerical Accuracy Using a Two-Dimensional Test Case 
with Varying Levels of Heterogeneity

Convergence Properties 

The results for the homogenous problem (Table 2, columns 6 and 8) indicate that this 
method maintains the quadratic convergence associated with the standard centered-difference 
approximation.  Additional simulations were conducted to investigate three intermediate levels 
of heterogeneity to produce the results shown in Figure 13.  The convergence for the 
heterogeneous cases follow the convergence associated with a uniform grid refinement, as shown 
in Figure 13.  These results demonstrate that as the hydraulic-conductivity field becomes more 
heterogeneous, the convergence decreases from quadratic.  These findings might appear to be in 
contradiction to those found by Forsyth and Sammon (1988) and Weiser and Wheeler (1988), 
who show that the convergence is quadratic, even for heterogeneous cases.  However, their 
results are based on the assumption that the hydraulic-conductivity field satisfies certain 
smoothness criteria; for example, the hydraulic conductivity monotonically increases in a given 
coordinate direction.  Such criteria are clearly violated by the more complex random field shown 
in Figure 9.  The consequences of these findings are significant for two reasons:  1) uniformly 
refining a grid will not reduce the error quadratically if the heterogeneity structure is not smooth, 
which is often the case in natural systems, and 2) the local grid refinement used in LGR does not 
diminish the model convergence properties. 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Variance of Ln(Transmissivity) 

Figure 13.  Convergence order in relation to variance or degree of heterogeneity, for uniformly and locally refined 
grids.  Numbers in parenthesis indicate the grid spacing in meters. 

The number of LGR iterations between the parent and child grids needed for convergence 
is important to the efficiency of the method.  For the cases presented, the convergence criteria 
were met when the maximum fractional head and flux changes between iterations were less than 
10-6. Results for a subset of the simulations are shown in Figure 14 and demonstrate that the 
number of iterations needed for convergence increases with increasing heterogeneity in 
transmissivity.   

Figure 14 also shows a variation in the number of iterations needed as the number of 
nodes increases.  For the cases where variance of Ln(T) is 0 (homogenous) and 0.01, the number 
of iterations decreases as the number of nodes increases.  However, as the variance increases, 
this trend is less pronounced (variance of 0.65).  Eventually the opposite is true, and the number 
of iterations increases as the number of nodes increases (variance of 2.0 and 3.6).  This is 
probably because the unrefined parent grid can adequately represent the hydraulics for the less 
heterogeneous cases: relatively few iterations are needed to converge because the feedback from 
the child is not providing much different information regarding the hydraulics.  However, for the 
more heterogeneous cases where the hydraulics are more complicated, more iterations are 
needed to establish an equilibrium between the two grids. 
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Figure 14.  Number of local grid refinement (LGR) iterations between the parent and child grid needed for 
convergence for several refinement ratios and variances of Ln(T). 

Practical Lessons Learned  

The preceding example demonstrates five important characteristics of local grid 
refinement when using LGR. 

1)	 Local refinement improves the parent-model accuracy.  This is accomplished by the 
feedback from the child grid – the child grid can represent more accurately the 
hydraulics in the interior and this hydraulic information is contained in the fluxes it 
provides to the parent interfacing boundary. 

2)	 Local refinement provides much of the improvement achievable by global 
refinement. The high resolution of the child grid is able to represent the features of 
interest in a similar fashion as a globally refined grid.  While error is incurred at the 
boundary with the parent grid, often this is far away from the features of interest. 

3) The greatest refinement ratio does not necessarily produce the most accurate solution.  
Depending on what is important to the modeling study, different refinement ratios 
should be used. The higher the ratio of refinement, the greater the error incurred at 
the boundary with the parent grid.  However, higher resolutions may be required for 
accurate representation of features in the interior. 

4)	 Local grid refinement does not decrease or increase the rate of convergence for 
homogeneous or heterogeneous models.  This implies that the reduction in truncation 
error due to decreasing the grid size is not altered by the LGR method implemented in 
this report.  The convergence rates are identical to those obtained by globally refining 
the grid. 

5)	 The number of iterations between the parent and child grids varies depending on the 
heterogeneity and the grid discretization.  Generally, between 10 to 20 iterations are 
sufficient for most problems.  For situations where the parent grid can accurately 
represent the hydraulics in the interior, the child-grid feedback is not providing much 
new information and convergence will be faster. 
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Examples 

LGR has been tested under a variety of conditions to evaluate its convergence properties 
and numerical accuracy.  The three examples presented in this section all involve synthetic test 
cases and some evaluation of the error.  Despite using a coupling that conserves mass between 
the two grids, an error is still introduced on the interface between the two grids because of the 
abrupt change in grid resolution.  Therefore, it is important to evaluate the accuracy of this 
method compared to other methods of grid refinement.  In this section, variably spaced grids and 
one-way coupled telescopic mesh refinement (TMR) are considered.  Furthermore, calibration of 
ground-water models with locally refined grids has not been well studied.  Therefore, sensitivity 
analysis and parameter estimation also are compared using different types of grid refinement 
using example 1.  Lastly, computational requirements – computer memory and processing time – 
are typically of concern when simulating ground-water models, so these quantities are compared.  
These comparisons can be used to help modelers decide how to use LGR most advantageously. 

Example 1:  Two-Dimensional Steady State Test Case with Heterogeneity 
and Pumping – Forward, Sensitivity, and Inverse Simulations 

The accuracy of the grid refinement technique presented in this work is compared with 
two other grid refinement techniques for simulating flow in the two-dimensional, heterogeneous, 
confined aquifer with a pumping well shown in Figure 15.  The two other methods are a variably 
spaced grid and a traditional one-way coupled TMR method of local grid refinement.  The 
heterogeneity pattern is based on a laboratory experiment described by Garcia (1995) and Mapa 
and others (1994). As shown in Figure 15, the system has constant-head boundaries on the left 
and right side of 10.0 m and 1.0 m, respectively, and no-flow boundaries along the top and 
bottom. A pumping well extracts 5.5 ×10-3 m3/s from the system.  Figure 16 shows the flow 
vectors and contours for this system when using the low contrast set of transmissivity values 
listed in Figure 15.  Grid refinement is applied to increase the accuracy of the model in the 
vicinity of the well.  Although this system is synthetic, and therefore limited in its applicability to 
real aquifer systems, the results are likely to provide insights regarding the typical performance 
that can be expected from applications of different methods of local grid refinement.  The 
advantage of this test case is that the hydraulic-conductivity distribution provides a numerically 
difficult challenge for testing. 
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Figure 15.  Heterogeneity structure and area of local refinement around the well indicated by dashed rectangle. 
Model results using the two sets of transmissivities are shown in Figure 16 and Figure 17, respectively. 

The accuracy of the techniques are evaluated by comparing the results from a uniform 
fine grid (“true” solution) to (a) a variably spaced grid, (b) a TMR method of local grid 
refinement that does not contain a feedback but one-way couples the grids using either heads or 
fluxes, and (c) the iteratively coupled procedure developed for this work using both the Darcy 
weighted interpolation and linear interpolation of heads along the child grid boundary.   
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Figure 17.  Flow vectors and head contours for the high-contrast set of transmissivities listed in Figure 15.  Area 
within the dashed rectangle indicates region of local refinement. 

Calculation of Heads and Flows 

The results of the comparisons are shown in Table 4.  All comparisons are made relative 
to the fine grid model, as in the previous comparisons, such that the mean head error shown in 
the second column is calculated as the L1 norm of the differences between the model 
approximation and fine grid (“true” solution) normalized by dividing by the fine grid (“true” 

Examples 

All grids were constructed such that the finite-difference cells are always fully within a 
single hydraulic-conductivity block.  The globally fine grid has 450 rows and 972 columns, with 
cell dimensions of 1.028 m and a 1.0 m in the horizontal and vertical directions, respectively.  
The parent grid has 50 rows and 108 columns, with cell dimensions of 9.25 m and 9.0 m in the 
horizontal and vertical directions, respectively.  The child grid has 100 rows and 154 columns 
with cell dimensions equal to the fine grid.  The variably spaced grid has 275 rows and 380 
columns; the coarsest grid spacing is never coarser than the parent grid, and the finest grid 
spacing is equivalent to the child grid.  The traditional method of one-way coupled local grid 
refinement is implemented using MODTMR (Leake and Claar, 1999), and the regional and local 
model grids have the same spacing as the parent and child grids described above.  MODTMR 
can be used to impose specified-head or specified-flux boundary conditions on the child model 
using linear interpolation from the parent model.  Both options were investigated.   
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solution).  In addition to heads, the same error comparisons were made for cell-to-cell fluxes in 
the x and y directions; the two components were averaged to provide a single measure of cell-to­
cell flux error, which is shown in the third column of Table 4 and Table 5.  The CPU times for 
the fine grid, the variably spaced grid, and the locally refined grids were obtained using a 
preconditioned conjugate gradient solver, PCG2 (Hill, 1990), while the coarse parent grids were 
solved with a direct solver, DE4 (Harbaugh, 1995).  All of the MODFLOW solvers that scale 
nonlinearly with grid size were evaluated, and it was found that this combination produced the 
fastest execution times for the computer platform indicated.  Multigrid solvers such as LMG 
(Mehl and Hill, 2001) and GMG (Wilson and Naff, 2004) do not scale in the same way, which 
could cause the relative execution time advantages to be different.  However, the flexibility of 
locally refined grids will always remain an advantage. 

The results in Table 4 suggest that local grid refinement can substantially reduce the 
execution time, but that accuracy is diminished compared to the true solution and the variable 
spaced grid.  For the different methods of refinement, the variably spaced grid is the most 
accurate, but has the longest runtime, as expected. In contrast, the traditional TMR methods 
have the shortest runtime, but the worst accuracy.  Also, more accurate results were obtained in 
this case by using heads, rather than fluxes, as the interpolated boundary condition.  The 
iteratively coupled local grid refinement method developed in this work appears to be a 
compromise between the results obtained with a variably spaced grid and TMR.  It is faster but 
less accurate than the variably spaced grid, and it is slower but more accurate than TMR using 
either a head or flux coupling. 

The results show that the Darcy-weighted interpolation is more accurate than linear 
interpolation. The largest differences occur for mean cell-to-cell flux errors fro the most 
heterogeneous test case.  The small differences for results that do not include flow errors at the 
interface suggest that in many problems Darcy-weighted interpolation may not be important. 

Effect of Heterogeneity Contrast 

The degree of heterogeneity can have a substantial effect on the flow system, and 
consequently, on the accuracy of the local grid refinement method.  These effects are 
investigated by using the same system as shown in Figure 15, except the magnitude of the 
hydraulic-conductivity field is changed such that the contrasts between materials is increased.  
The new values of transmissivity are shown as the high-contrast set of values in Figure 15, and 
the flow vectors and head contours for this system are shown in Figure 17. 

Comparison of Figure 16 and Figure 17 shows that the increase in heterogeneity contrasts 
causes the hydraulic gradients through the system to be much steeper in some locations and 
change direction very rapidly, particularly in the region of local refinement. 

The same methods of grid refinement were evaluated and the same solvers were used for 
this hydraulically more complicated system.  Results are summarized in Table 5.  As in the 
previous case, there is a trade-off between execution time and accuracy, the Darcy-weighted 
interpolation is more accurate than linear interpolation, and for TMR, coupling using heads 
rather than fluxes produces better results.  Comparison of these results to those listed in Table 4 
reveals that both the variably spaced grid and the iteratively coupled grid are diminished in 
accuracy, which is expected because of the complicated hydraulics in this system. 

A surprising result is that, as measured by the mean head error, the traditional one-way 
coupling used by the TMR methods performs better in this more complicated scenario but have a 
substantially larger error in fluxes.  In addition, the result of TMR coupled using heads produces 
a smaller mean head error than the iteratively coupled grid refinement.  Additional simulations 
revealed that, in this case, the strict coupling and the feedback from the child to the parent 
actually degenerates the accuracy of the results for heads.  This is because the child model is 
refined enough that it can accurately represent the hydraulics, so the feedback it sends the parent 
is representative of the complex hydraulic structure in this system.  However, the parent grid is 
too coarse to represent the complex hydraulic structure along the interface, and thus finds a new 

32 



Examples 

equilibrium such that heads and fluxes are balanced between the two grids.  This is especially 
evident along the top (y=274.5 m) boundary of the interface between the two grids where the 
contour lines have a substantial change in direction over a short distance (Figure 17).  This 
problem could be alleviated by extending the area of the child model to a region that is not so 
hydraulically complex or by using finer grid spacing in the parent model; in either case, the head 
error would decline if discretization of the parent grid was able to represent the flow field along 
the interface boundary.  In contrast, the traditional approaches in TMR did not have this problem 
because there is no feedback to influence the larger grid solution.  Despite having heads that are 
less accurate, the cell-to-cell fluxes for the iterative process are more accurate than those 
produced by TMR (column 3 of Table 5).  This indicates that although the feedback causes an 
error in the heads, the gradients throughout the system are more accurate. 
Table 4. Comparison of errors and computer processing time for several grid refinement methods applied to the low-
contrast version of example 1. 

[The system is depicted in Figure 15 with the low-contrast set of transmissivities that range nearly 2.5 orders of magnitude from 1.2x103 to 
4.25x100 square meters per second. Computation times using a Linux workstation, Pentium II – 333MHz, 64Mb Ram as reported by Mehl and 
Hill (2002b); %, percent; s, second; TMR, telescopic mesh refinement; LGR, local grid refinement] 

Gridding Mean head Mean cell-to- Interior 36 Interior 36 percent Computer 
Method error (%) cell flux error percent of child of child model processing 

(%) model mean mean cell-to-cell time (s) 
head error (%) flux error (%) 

Fine grid (truth) 0.000   0.000 0.000 0.000 716 
Variably spaced 0.015   0.078 0.023 0.034 57 
TMR-head1 0.317   4.901 0.393 2.140 3 
TMR-flux2 3.899 17.016 6.801 7.704 4 
Iterative-linear3 0.061   1.758 0.099 0.142 28 
Iterative-Darcy4 0.056   1.269 0.089 0.140 28 

1Local model uses specified-head boundary conditions derived using linear interpolation from the regional model.


2Local model uses specified-flux boundary conditions derived using linear interpolation from the regional model.


3Iterative method of LGR using a linear interpolation instead of Darcy-weighted interpolation.


4Iterative method of LGR using Darcy-weighted interpolation.


Table 5. Comparison of errors and computer processing time for several grid refinement methods applied to the high-
contrast version of example 1. 

[The system is depicted in Figure 15 with the high-contrast set of transmissivities that range nearly 10 orders of magnitude from 1.2x105 to 
4.0x10-5 square meters per second. Computation times using a Linux workstation, Pentium II – 333MHz, 64Mb Ram as reported by Mehl and 
Hill (2002b); %, percent; s, second; TMR, telescopic mesh refinement; LGR, local grid refinement] 

Gridding Mean head Mean cell-to- Interior 36 Interior 36 percent Computer 
Method error (%) cell flux error percent of child of child model processing 

(%) model mean mean cell-to-cell time (s) 
head error (%) flux error (%) 

Fine grid (truth) 0.000   0.000 0.000   0.000 1,929 
Variably spaced 0.043   0.190 0.031   0.116 520 
TMR-head1 0.103   8.433 0.045   1.129 4 
TMR-flux2 1.915 25.381 2.211 15.687 4 
Iterative-linear3 0.171   4.143 0.084   0.903 83 
Iterative-Darcy4 0.156   2.348 0.079   0.806 76 

1Local model uses specified-head boundary conditions derived using linear interpolation from the regional model.


2Local model uses specified-flux boundary conditions derived using linear interpolation from the regional model.


3Iterative method of LGR using a linear interpolation instead of Darcy-weighted interpolation.


4Iterative method of LGR using Darcy-weighted interpolation.


33 



4 

5 

5.5 

6 

6.5 

-4
.5

 
-3

.5-2
 

-0.5 

1 
1.5

 

2 

2.
5 2.5 

3 

3.5 

3.
5 

4 

4 

4 

4.5 

4.5 

5 

5 

5.5 

5 

4.
5 

5 

5 .5 
6 

6
5 

-4..55
-3 

-3 
-1 

-0
.5

 

0 

0.5 

1 

1.
5 

2 

2.
5 

2.
5 

3 

3 

3.
5 

3.
5 

4 

4 

4.5 

4.5 

5 

5 

5.5 

6.5 

Examples 

Boundary Head Errors 

In this section, the accuracy of iterative and one-way coupling is tested by comparing 
how well the head contours mimic those of the fine-grid solution along the boundary of the 
refined grid.  The boundary between the coarse grid and the refined grid is emphasized because it 
links the two grids.  Figure 18 shows the head contours for this region for all methods.  The 
contouring for the fine-grid solution was restricted to the same grid nodes as in the coarse and 
refined grids.  Therefore, discrepancies in the contours are not artifacts of the fine-grid solution 
having more data points available for drawing contour lines.  For example, in Figure 18a, the 
small offset in the 6.5-meter contour across the interface in the lower left corner results from the 
restriction of contoured data points and the contouring algorithm.  Figure 18b, which uses heads 
for the one-way coupling, shows good agreement with the fine-grid solution (Figure 18a).  The 
smooth appearance of the 6.5-meter contour across the interface of the two grids is because the 
heads are interpolated linearly onto the boundary of the child model and it is likely that the 
contouring algorithm also is based on a linear interpolation scheme. 

The larger discrepancies in the contours seen in Figure 18c demonstrate that the one-way 
coupling with fluxes does not provide consistent boundary conditions for heads along the child 
model. Lastly, the iteratively coupled method shown in Figure 18d has the best agreement with 
the fine-grid solution, and it also features the offset in the 6.5-meter contour at the interface of 
the two grids.  This indicates that the iterative coupling between the grids allows the coarse-grid 
solution to better mimic the fine-grid solution.  Such improvement in the coarse grid is not 
possible in the one-way coupled methods. 
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Figure 18.  Head contours for (a) the fine-grid solution, a one-way coupled TMR method in which (b) heads, or (c) 
fluxes are used as the interpolated boundary condition, and (d) an iteratively coupled local grid refinement method.  
The rectangular region denotes the area of local grid refinement.  The offset of the 6.5 m contour in (a) is caused by 
using only a subset of the fine-grid nodes for contouring. 

A more formal error comparison for heads at the boundary is shown in Figure 19a.  The 
black bars show the average of the absolute values of the percent errors for the heads along the 
boundary.  This figure demonstrates that the coupling with fluxes has much larger errors than 
coupling with heads, and that the iterative coupling provides the best head solution of the 
methods shown. 
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Figure 19.  Errors along the boundary of the locally refined grid.  Average of the absolute values of the percent errors 
in (a) heads, (b) individual cell-to-cell fluxes, and coarse grid equivalent fluxes. 

Boundary Flux Errors 

In the previous section, all comparisons were made relative to heads.  It is reasonable to 
expect that using heads for the one-way coupling will have a better match (in terms of head) with 
the fine-grid solution than one-way coupling using fluxes, as was seen in the previous results.  
However, for many models (for example, where advective transport is of interest), accurate 
fluxes are more important than accurate heads.  Using fluxes to couple the grids might produce 
models with more accurate fluxes.  This section examines how well the fluxes across the 
boundary of the two grids match those of the fine-grid solution. 

The average of the absolute values of the percent flux errors for the entire boundary is 
shown in Figure 19b.  It is apparent that one-way coupling using fluxes more accurately 
reproduces flows along the boundary than coupling using heads.  Even though the iterative 
coupling uses heads to couple to the child model, the boundary fluxes are still as accurate as 
those obtained using fluxes to couple the one-way model.  This is not surprising because the 
feedback in the iterative coupling is based on fluxes, which ensures that both heads and fluxes 
are consistent between both grids.  To provide a more thorough understanding of the boundary 
flux errors, Figure 20 shows the percent error in fluxes (relative to the fine grid) along the bottom 
boundary of the child model for all three methods.  The other boundaries had similar results.  A 
feature that is apparent in Figure 20 is the large spikes in the one-way coupling using heads.  The 
iteratively coupled method also has these spikes, but they are less dramatic than the TMR-heads 
result, which indicates the feedback is able to attenuate the errors.  Further examination shows a 
distinctive pattern in these spikes, which corresponds to the spacing between coarse grid cells.   

The patterns in Figure 20 suggest that it is important to consider fluxes integrated over 
the width of each of the corresponding coarse grid cells to determine how well the fluxes are 
balanced across the interfacing coarse grid.  Thus, in addition to comparing fluxes through the 
boundary for each individual refined grid cell, comparisons can be made based on the fluxes 
through the boundary of the corresponding equivalent coarse grid cells.  These results (Figure 
19b) show that all methods perform much better using this measure.  This indicates that, while 
the individual fluxes along the boundary may be in error (as high as 44 percent), the 
characteristics of the regional flow system represented by the coarse grid are reasonably 
maintained. The result for the iteratively coupled method is the best, but an error of 4.47 percent 
is still somewhat disturbing.  The next section further examines the implications of the boundary 
errors. 
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Figure 20.  Percent flux errors for nodes along the bottom boundary of the embedded model. 

Interior Errors 

Often the accuracy within the interior of the child model is of greater importance because 
the locally refined region is generally of most interest.  This issue was examined by comparing 
the errors within the interior 36 percent of the child model.  The results are shown in columns 4 
and 5 of Table 4 and Table 5.   

For the first set of transmissivities, the results in Table 4 show that the average head error 
is larger in the interior for all the methods.  This is because the rapid changes in gradient near the 
well are difficult to represent for all of the methods.  In contrast, the flows are more accurate 
because they all must represent the same flow to the well.  As expected, the variably spaced grid 
is the most accurate. These results also show that the iterative coupling substantially reduces 
internal head and flux errors relative to either of the TMR methods.  Although one-way coupling 
with fluxes produces more accurate fluxes along the boundary (Figure 19b and Figure 20) it does 
not produce more accurate fluxes in the interior.  Further examination of the flux errors indicated 
that there was a consistent bias in the flux solution, which then lead to larger errors throughout 
the interior of the domain. 

For the larger contrasts in heterogeneity, the results in Table 5 show that generally, the 
,errors are less in the interior of the child model because the influence of the well is minor and 
the hydraulics are more complicated near the perimeter of the refined model.  These results also 
show the same trend – TMR-coupled using heads produces heads that have less error, but fluxes 
with more error than the iteratively coupled methods.  This, of course, is the disadvantage of not 
having a rigorous coupling; there is no guarantee that both heads and fluxes are consistent 
between the grids.   

Calculation of Sensitivities 

Using the test case shown in Figure 15 and the first set of transmissivities, sensitivities 
are calculated for 96 head observations.  UCODE (Poeter and Hill, 1998) was used to generate 
the sensitivities by central differences and perturbations of 5 percent.  Other perturbation values 
were tested and it was found that, for the globally refined version of this test case, a value of 5 
percent produced the closest match to MODFLOW-2000’s analytically calculated sensitivities 
(Hill and others, 2000). Of the 96 observations, 61 are located within the area of local 
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refinement, and 35 are outside of this area. Inverse modeling was performed with UCODE, 
using the same 96 observations, to estimate the five low-contrast values of transmissivity shown 
in Figure 15. 

Sensitivities to the 96 observations for each of the transmissivities were calculated using 
a variably spaced grid, TMR using head as the coupling boundary condition, TMR using flux as 
the coupling boundary condition, and the iterative method of LGR.  The root mean square of the 
percent errors (RMSE) relative to the fine grid (equation 10) are shown in Table 6.     

RMSE =

96 

∑

⎛
⎜⎜
⎝


' s i − si ∗100 
s i 

⎞
⎟⎟
⎠


2 

(10) 

i i= 

96


where, 

RMSE= root mean square error. 

si = sensitivity for the ith observation calculated using the fine grid. 

s’i = sensitivity for the ith observation calculated using one of the other discretization 
methods. 

These results demonstrate that the variably spaced grid generally has the least error, as 
expected, while the TMR methods coupled using fluxes have the greatest error.  These results are 
consistent with the accuracy in heads of Table 4.  The iteratively coupled method has errors that 
are always less than the TMR methods, which indicates that the feedback between both grids is 
important for accurate sensitivity calculations.   
Table 6. Comparison of root mean square percent sensitivity errors of the local grid refinement methods for the 
transmissivities shown in Figure 15. 

[T, transmissivity (in square meters per second); %, percent; TMR, telescopic mesh refinement; LGR, local grid refinement] 

Refinement 
method 

T = 1.2×103 

% Error 
T = 4.306×102 

% Error 
T = 1.611×102 

% Error 
T = 1.35×101 

% Error 
T = 4.25×100 

% Error 

Variably Spaced 

TMR-head1 

13.60 

21.47 

0.1288

1.766 

 0.9437

7.604 

 0.2550

6.036 

 0.1321 

3.305 

TMR-flux2 16.24 2.066 60.22 105.2 5.577 

Iteratively coupled3 10.58 1.380 0.9457 1.630 2.921 

1Local model uses specified-head boundary conditions derived using linear interpolation from the regional model. 

2Local model uses specified-flux boundary conditions derived using linear interpolation from the regional model. 

3Coupling and interpolation used by LGR 

Parameter Estimation 

The availability of parameter-estimation software, such as UCODE (Poeter and Hill 
1998), PEST (Doherty, 2004), UCODE_2005 (Poeter and others, 2005), and OSTRICH (Matott, 
2005) has made inverse methods for ground-water model calibration increasingly popular in 
recent years.  The previous sections showed that the different methods of local grid refinement 
produce differences in heads, flow, and sensitivity to heads.  An important question is how these 
differences affect model calibration.  This section addresses this question by comparing inverse 
modeling results for the three local grid refinement schemes compared previously.  The success 
of inverse modeling depends both on the accuracy of the sensitivities and the inverse algorithm 
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used.  The influence of forward- and central-difference sensitivities is investigated by using the 
more computationally frugal but less accurate forward-difference method (fwd), as well as 
centered (cen) differences.  Three optimization algorithms are investigated using UCODE: 1) 
modified Gauss-Newton (G-N), modified Gauss-Newton with quasi-Newton (Q-N) updating, 
and the double-dogleg (DOG) trust region approach (Dennis and Schnabel, 1996), which was 
added to UCODE for this investigation.  The trust region approach is available in UCODE_2005. 

The 96 head observations used were generated, without adding noise, using the fine-grid 
discretization and the parameter values shown in Figure 15. The same set of starting parameter 
values, which were changed from the true values shown in Figure 15, were used in all 
simulations.  The inverse modeling was evaluated on the basis of how well the 5 transmisivities 
returned to their true values, thus lowering the sum-of-squared residuals.  

For this test case, Figure 21 shows how the sum of squared residuals is lowered as the 
regression proceeds and the total number of function evaluations at the final iteration, for each of 
the discretization methods.  The more accurate central differencing is important for good 
convergence of the G-N method when using the variably spaced grid (Figure 21a), but has little 
effect in the other situations.  These results also demonstrate that the double-dogleg approach can 
substantially reduce the number of function evaluations needed for convergence, thus reducing 
CPU time. The advantages of the Q-N updating were less dramatic and reliable.   

The inaccurate sensitivities calculated using the TMR methods (Table 6), hindered 
convergence of the G-N method, and even the more accurate central differencing was unable to 
alleviate this problem (Figure 21b and Figure 21c).  For these cases, parameter estimation 
sometimes converged but the resulting parameter estimates were grossly different than the true 
parameter values.  Good convergence was achieved using either Q-N updating or the double-
dogleg strategy in the case of coupling with heads. 

The sensitivities calculated by UCODE using the iteratively coupled method of LGR 
were accurate enough that good convergence was achieved for all scenarios (Figure 21d).  
Indeed, convergence equaled or exceeded that of the variably spaced grid. 

Considerations for Inverse Modeling with Locally Refined Grids 

These results demonstrate that different methods of local grid refinement can have a 
substantial effect on parameter-sensitivity calculations.  The results also show that the accuracy 
of the sensitivity calculations influence the regression, and that some of the inaccuracy can be 
overcome by using more sophisticated search techniques, as shown most notably by the double-
dogleg trust region results.  Similar difficulties in estimating parameters with error-prone models 
can be expected if the parameters are estimated by trial and error; use of regression just makes 
the consequences more obvious. 

For the case presented, the variably spaced grid method of local grid refinement is most 
accurate in terms of sensitivity calculations, while the TMR methods were least accurate.  This is 
because the TMR methods do not provide a way for changes to parameter values of the child 
grid to be fully accounted for in the regression if there are observations in the parent model.  For 
example, if changing hydraulic conductivities in the child grid increases the bulk flow rate 
through that grid, the extra flow should be coming from the regional flow system represented by 
the parent grid.  However, TMR methods cannot account for this because the heads and fluxes of 
the regional model are independent of the child grid.  If different parameters are defined within 
the local (child) model that do not have equivalents in the regional (parent) model, lack of a 
feedback means that there is no information available to the regional model regarding these 
parameters.  In this regard, example 1 may be viewed as a “best-case scenario” because all of the 
parameters of the local model also were represented in the regional model.  
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Figure 21.  Regression results using the Gauss-Newton (G-N), quasi-Newton (Q-N), double-dogleg (DOG) methods 
with forward (fwd) and central (cen) differencing for simulations using a (a) variably spaced grid, (b) telescopic mesh 
refinement (TMR) coupled using heads, (c) TMR coupled using fluxes, and (d) an iteratively coupled local grid 
refinement.  Total number of function evaluations is indicated at the final iteration. 

For the case presented, iterative coupling always was more accurate than the TMR 
methods of the same grid discretization and approached the accuracy of the variably spaced grid.  
The iterative feedback of LGR means the effects of changes within the local grid are accounted 
for in the regional grid, whether or not the parameter appears in both the regional and local 
models.  This decreases some of the burden on the modeler in that parameter sensitivities are 
consistent for both grids regardless of their presence (or lack there of) in each model so that the 
modeler does not have to devise a method to update the parent grid to account for parameter 
changes in the child grid. 

Example 2:  Two-Dimensional Transient Test Case with Homogeneity and 
Pumping – Forward Simulations 

A modification of the homogeneous test case that was used for the convergence analysis 
(shown in Figure 9 and Figure 10) is used to demonstrate the performance of LGR for simulating 
transient flow. For this demonstration, the specified-head boundaries are fixed at 10.0 m on the 
left and right sides.  An initial head distribution of 10.0 m is used throughout the aquifer before 
pumping begins at a rate of 270 m3/hr. Transmissivity and specific storage are set to 2.5 m2/hr 
and 2.0×10-5 m-1, respectively.  Six stress periods are used with lengths of 1, 1, 8, 10, 80, and 100 
hours; five time steps are in each stress period.  

The same set of locations shown in Figure 10, including the node of the pumping well, 
are used to compare heads in the child part of the grid using both locally and globally refined 
grids.  Because of the modifications to the boundary conditions, the transmissivity, and the 
pumping rate, the error at the pumping well does not dominate and is therefore included in the 
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analysis.  The globally refined grid has the same grid spacing as the child grid over the entire 
domain.  Head errors are measured as the average L1 norm of the percent difference between 
results simulated using the globally and locally refined models (sum of the absolute values of the 
percent differences divided by 361); comparisons are made at five times: 1, 2, 10, 20, 100, and 
200 hours. 

Here, a one-way coupled method is simulated by using LGR and setting the maximum 
number of iterations between the parent and child grids to one.  Figure 22 shows that for both the 
iterative and one-way coupling, the errors of the child grid peak around 10 hours while the 
smallest errors occur early and late in the simulation when the system is still near its initial and 
steady-state conditions, respectively.  Figure 22 shows that, generally, the error is reduced by 
iterating and this error is reduced as the grids are refined.  For example, for the 15×15 grid 
(Figure 22a), errors are between 0.7-10 percent, while the head errors for the 135×135 grid 
(Figure 22c) are between 0.006 and 0.2 percent.  In contrast, when one-way coupling is used, the 
errors are not substantially reduced as the grids are refined; they remain between 0.7 and 15 
percent. This is because the one-way coupled method does not feedback improvements to the 
parent grid; this is elaborated on using example 3. 
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Figure 22.  Average L1 norm of percent head errors (sum of the absolute values divided by 361) between globally 
and locally refined grids at five times using iteratively and one-way coupled grids.  The 361 head comparison 
locations are in the child grid and shown in Figure 10.  Child grids are a 3:1 refinement of the parent.  Parent grid 
resolutions are (a) 15×15 cells, (b) 45×45 cells, and (c) 135×135 cells. 
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Example 3:  Three-Dimensional Steady State Test Case with Homogeneity 
and Stream-Aquifer Interactions – Forward Simulations 

This test case demonstrates the performance of LGR in a three-dimensional, unconfined 
aquifer.  This test case also is used to examine the change in the errors as the LGR iterations 
progress. 

The hypothetical ground-water model used in this analysis is shown in Figure 23.  The 
meandering stream has a total length of 3,409 m and has a linear drop in stage along the length of 
the river from the inlet at 50.0 m to the outlet at 45.0 m.  This results in a gradient along the river 
of 0.00147. The width, thickness of the streambed, and the streambed hydraulic conductivity are 
constant throughout the length at 1.0 m, 0.5 m, and 1.0 m/day, respectively.  The land-surface 
elevation of the model domain follows a linear profile from 50 m at the left boundary and drops 
to 45 m at the right boundary.  The bottom elevation also follows this linear profile such that the 
model has a uniform thickness of 50 m throughout the domain.  The specified-head boundaries at 
both ends provide a background gradient equal to the slope of the top and bottom of the model 
(0.00347). The aquifer is homogeneous and isotropic with a hydraulic conductivity of 1.0 
m/day.  The system is unconfined, which causes nonlinearity in the flow because the saturated 
thickness depends on the value of head, which is not known beforehand.   

Three sets of parent-child grids of different resolutions were applied to the area shown in 
Figure 23.  The coarsest parent grid used is 15×15×3 and the child model is a 3:1 ratio of 
refinement, which results in a 19×22×5 child grid, as shown in Figure 23.  The refinement also 
extends in the vertical direction from the top of the model down to the middle of the aquifer, 
which accounts for the top 1 ½ layers of the three-layer parent model.  Thus, in the refined 
region, a single parent cell is replaced by 27 child cells.  45×45×3 and 135×135×3 parent grids 
also were used with child grids of a 3:1 refinement ratio, resulting in child grids of 55×64×5 and 
163×190×5. Using each of these grids, the hypothetical aquifer was simulated and the errors 
examined. 

Head and Flux Convergence and Analysis of Errors 

The goal of local grid refinement is to approach the accuracy of a globally refined grid. 
Thus, for this analysis, each comparison is made to results obtained from a globally refined 
model – a model with grid spacing equivalent to the child grid over the entire domain.  Both 
heads and fluxes are examined and results are presented in Figure 24 and Figure 25.  Heads are 
compared at 2,090 locations that correspond to all of the nodes of the coarsest child grid.  Head 
errors are measured as the average L1 norm of the percent difference between results simulated 
using the globally and locally refined models (sum of the absolute values of the percent 
differences divided by 2,090).  This error measure is plotted for heads in Figure 24 and indicates 
how the solution in the interior as well as the boundary changes as the iteration proceeds.   
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Figure 23.  Plan view of a three-dimensional aquifer system used to test the local grid refinement method.  A 15×15 
horizontal grid discretization is shown for the parent grid and the locally refined grid (19×22) spacing is equivalent to a 
45×45 discretization over the whole domain.  The shaded area is used to evaluate the accuracy of the interior fluxes 
within the child grid. 

Fluxes are compared along the parent-child boundary in Figure 24.  The fluxes along the 
parent-child boundary are the same fluxes used as a feedback from the child to the parent model.  
Comparing these fluxes indicates how the error in the coupling between the grids changes as the 
iteration proceeds.  Because a few individual fluxes that are small in magnitude dominate a 
percent difference comparison, the difference between the globally and locally refined boundary 
fluxes is instead compared using the net flux in and out of the refined region.  The absolute value 
of the percent errors of the net flux in and net flux out were then averaged, as shown in equation 
11. 

⎡
⎢
⎢⎣

1 
× 

2 

where, 

q is flux, 

superscripts “i” and “o” correspond to inflow and outflow, respectively, and subscripts 
“l” and “g” correspond to locally and globally refined grids, respectively. 

Figure 24 shows how the head errors throughout the child domain and the flux errors 
along the parent-child interface change with each iteration of the parent-child coupling. In this 
example, the starting hydraulic heads of the child model are equal to the heads from a parent-grid 
resolution model that includes the entire domain.  The errors from the coarse-grid solution are 
shown at iteration zero.  The errors from iteration one are the same as those produced by models 
that are one-way coupled using heads.   

⎤
qi
l − qi

g ql
o − qg

o 

(11) 
Average Flux Error (percent) = ⎥
⎥⎦


100
+
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In all cases, the errors oscillate in early iterations before they diminish.  This oscillation 
probably results from the iterative coupling between heads and fluxes – it tends to update the 
heads and fluxes in the correct direction, but overshoots.  The relaxation applied between 
successive iterations keeps the errors from growing and the oscillations eventually diminish.  The 
solution stabilizes after 10 iterations for the cases presented and further iterations do not improve 
the solution. This number of iterations is reasonably consistent with what was found for the 
homogenous test cases analyzed in Figure 14.  At this point, the parent and child grids are in 
equilibrium at the interfacing boundary – interpolated heads from the parent grid to the 
boundaries of the child grid result in a child grid simulation that produces fluxes across the 
interfacing boundary that are consistent with the parent head solution.   

For this test case, the head errors are small for all iterations, but the flux errors are large 
enough to be of practical concern.  Errors in flux are reduced to 2 to 5 percent with iteration.  As 
expected, comparison of Figure 24a, Figure 24b, and Figure 24c show that the magnitude of the 
errors in both heads and fluxes generally decreases as the resolution increases.  A noticeable 
exception occurs for the flux errors at iteration one for all the grids.  The flux error at iteration 
one is actually larger in Figure 24c than Figure 24b, which indicates that increased resolution 
does not alleviate this problem.  This suggests that one-way coupled approaches can produce 
poor results unpredictably because the results used are from the oscillatory stages of the coupling 
where the grids are not in equilibrium.   

Table 7 shows the ratio of error reduction of the locally refined grid to the coarse grid for 
the head and flux solutions.  The errors are those shown in Figure 24, which are calculated 
relative to the globally refined grid solution.  In most cases, the local refinement reduces the 
errors compared to the coarse grid.  The exception occurs for the one-way coupled method where 
the flux errors along the boundary are actually larger than if no refinement were used.  In the 
one-way coupled approach heads were used to couple the grids.  In contrast, if fluxes are used to 
couple the grids, the flux errors along the boundary are lower, but the head errors are worse.  
Furthermore, there is no guarantee that improved fluxes at the boundary produce a better flux 
solution in the interior of the model (Figure 19b and Table 4).   

In the iterative procedure used in LGR, the errors in head and flux influence each other 
until a solution is achieved where the two grids are in equilibrium.  This raises the question:  how 
do the parent and child grids interact to change the head solution so that equilibrium is achieved? 
To address this question, the iterations were started with the globally refined head solution and 
the resulting head and flux errors were tracked.  These results are shown as dashed lines in 
Figure 24. 
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Figure 24.  Head and flux errors along the parent-child bounary in relation to number of iterations of the local grid 
refinement procedure for parent grid resolutions of (a) 15×15×3, (b) 45×45×3, and (c) 135×135×3.  All child grids are 
a 3:1 refinement of the parent.  All errors are relative to the globally refined solution.  Dashed lines represent results 
from locally refined grids that were started with the head solution from the globally refined grid.  |·|1 represents L1 

norms (absolute values) for 2,090 heads throughout the refined region.  Flux errors are average error of the net inflow 
and net outflow.  Iteration one is equivalent to a one-way coupled with heads method. 
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Table 7. Error ratios of the coarse grid, one-way coupled, and iteratively coupled solutions. 

[Values less than one indicate that using the first method improved the solution relative to the second method.  Values greater than one indicate a 
worse solution and are shaded. Errors are calculated relative to the globally refined grid.] 

Parent 
Grid1 

rows×columns×layers 
15×15×3 

rows×columns×layers 
45×45×3 

rows×columns×layers 
135×135×3 

Methods 
Compared2 Head Error Flux Error Head Error Flux Error Head Error Flux Error 

One-way/ 
Coarse 
Iterative/ 
Coarse 
Iterative/ 
One-way 

0.254 

0.117 

0.460 

2.17

0.585 

0.270 

 0.897 

0.181 

0.202 

1.13

0.153 

0.136 

 0.917 

0.143 

0.157 

1.63 

0.108 

0.0661 

1Child grids are a three times refinement of the parent grid and cover the area shown in Figure 23. 
2The error ratios are calculated as the error for the first method divided by the error for the second method.  The errors are shown in Figure 24 
started from the coarse-grid solution.  The “Coarse” method errors are at iteration zero, the “One-way” method errors are at iteration one, and the 
“Iterative” method errors are at iteration twenty. 

The interacting of parent and child grids shown in Figure 24 for the simulations started 
from the globally refined solution reveal a number of features that are likely to be characteristic 
of all locally refined grids.  By definition, the globally refined grid head and flux solution error is 
zero at iteration zero.  The head error at iteration one is due solely to the error introduced from 
the two-step cage-shell interpolation along the boundary – the globally refined heads are 
imposed at the shared nodes, the two-step cage-shell interpolation procedure is applied to obtain 
the child specified-head boundary conditions, and the child simulation is completed.  If the 
interpolation were perfect, the head and, therefore, the flux error at iteration one would be zero.  
Investigating the error further, the interpolation produces fluxes between child nodes of the 
boundary that are consistent with the parent-grid fluxes.  The parent fluxes are constant between 
adjacent shared nodes (parent cells), and this forces the head interpolation to have the structure 
of the Darcy-weighted interpolation shown in Figure 6 – piecewise linear between shared nodes.  
The child grid has more than one cell between shared nodes, and potentially could represent 
curvature in the head profile between the shared nodes, but such curvature results from a change 
in flux along the length between the shared nodes which cannot be represented in the parent grid. 
Therefore, the child-grid boundary cells cannot represent such curvature given the premise of the 
cage-shell approach.  As the parent grid resolution is increased, the distance between the shared 
nodes decreases, and the piecewise linear approximation becomes more accurate.  This is 
reflected in the smaller errors of the globally refined grid head solutions at iteration one relative 
to their final values. 

The error in head interpolation is propagated into the interior and causes the fluxes to 
deviate from their true values, which can be seen at iteration one of the globally refined grid 
fluxes line of Figure 24.  This error in flux gets fed back and affects the parent-grid flux 
boundary condition and causes further errors in head at the subsequent iteration.  The cycle 
continues until the same equilibrium is reached as was achieved when starting with the coarse-
grid solution – the self correcting nature of the coupling finds the same equilibrium solution 
despite starting from a different initial guess.  The results above show that even if the true heads 
or fluxes were known, the other quantity would be in error.   

Table 7 shows that for the one-way coupled method, an accurate head solution may not 
imply an accurate flux solution.  This underscores the importance of using methods that balance 
both heads and fluxes when applying local grid refinement.   

The shift from the globally refined solution to one that satisfies both heads and fluxes in 
both grids is not unique to the iteratively coupled method of LGR.  The directly coupled 
techniques, for example, Wasserman (1987), Ewing and others (1991), Edwards (1999), Schaars 
and Kamps (2001) and Haefner and Boy (2003), produce solutions that satisfy the modified 
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equations at the interface, and these result in solutions that are different from the globally refined 
solution. 

In a one-way coupled approach, the shifting away from the true solution would not occur 
(although some error could be introduced from the interpolation), but of course, one never has 
the luxury of starting with the true solution and instead typically starts with the coarse grid 
solution. Table 7 demonstrates that the error reduction achieved by iterating compared to a one-
way coupled approach improves as the refinement increases.  This is probably due to the 
improved accuracy of the parent grid as the grids are refined, which causes the interpolation 
procedure to be more accurate and provides better consistency between the parent and child 
grids.  In other words, as the grids are refined, the parent grid is better able to represent the 
hydraulics in the feedback from the child grid.  In contrast, the one-way coupled approach shows 
much less improvement over the coarse grid as the grids are refined.  Because the additional 
accuracy gained by the refined region is not fed back to allow further improvement, the accuracy 
is limited by the error in the head boundary conditions from the parent being propagated and 
diffused through the child grid (see Error Propagation in LGR in Appendix 3). 

Interior Errors 

When starting with the parent-grid solution, Figure 24 shows that, at iteration one – 
which is equivalent to a one-way coupled approach – the head error has decreased, but the flux 
error along the boundary has increased relative to iteration zero.  Because the coupling is based 
on a head interpolation, a better match to heads than fluxes is expected, but it is surprising that 
the flux error is worse than the coarse-grid solution.  Often, the phenomena of interest are within 
the child grid, so an important question is, “could the one-way coupled approach produce an 
interior solution that is worse than having no refinement at all?”  To address this question, the 
shaded area in the interior of Figure 23 was used to perform a flow budget analysis into the river, 
the lateral (side) boundaries, and the bottom boundary using ZONEBUDGET (Harbaugh, 1990).  
These results are shown in Figure 25.  The bottom boundary of the shaded area corresponds to 
the bottom of the first layer of the three-layer parent models, and is above the bottom of the child 
model which, in the shared node method of LGR, extends to the node of the second layer of the 
parent model. 

Figure 25 shows that the one-way coupled approach generally produces more accurate 
fluxes in the interior than the parent grid solution.  An exception occurs for the 15×15 grid at the 
bottom boundary of the interior region.  The reason for the poor results on the bottom boundary 
in all the locally refined models is because it is closest, in terms of the number of cells, to the 
parent-child interface.  The boundary flux errors shown in Figure 25 are attenuated when moving 
away from the boundary.  As the discretization increases, the number of cells from the interior to 
the boundary increases which insulates the interior cells from the boundary errors.  In this 
example, the parent and child models have increasing horizontal resolution which insulates from 
the side boundaries; however, the parent and child always have three and five layers, 
respectively.  Thus, the number of cells insulating from the bottom boundary stays the same.  
The iteratively coupled approach shows less susceptibility to the bottom-boundary errors, 
particularly as the grid is refined. 

For head error, the maximum error always occurs at the boundary and is propagated into 
the interior with the same properties of the governing ground-water flow equation (a diffusion 
equation) minus sink/source terms (see Appendix 3).  Therefore, in general, locations further 
from the interfacing boundary have greater opportunity to decrease the head error. 

In many ground-water models, the number of rows and columns is much greater than the 
number of layers.  This restricts the location of the refinement in the vertical direction and limits 
the possibilities of insulating from errors that arise from the coupling with the bottom boundary.  
Although not done here, many local grid refinement studies use a hierarchy of refinement 
(parent, child, grandchild, and so forth).  The quality of the interior solution is important because 
it will be used to provide boundary conditions to another local model.  It is in these two cases 

47 



Examples 

that the consistency and accuracy of the boundary conditions of the iteratively coupled shared-
node method are particularly advantageous. 
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Figure 25.  Flux errors evaluated for the river, sides, and bottom of the volume in the interior of the locally refined grid 
(shaded area shown in Figure 23 extends 1/3 of system depth).  Parent grid resolutions are (a) 15×15×3, (b) 
45×45×3, and (c) 135×135×3.  All child grids are 3:1 refinement of the parent.  Errors are relative to the globally 
refined grid solution.   

Computational and Accuracy Comparisons 

In addition to accuracy, CPU time and memory requirements are typically of concern for 
ground-water models.  Figure 26 shows this tradeoff for the finest grids used in example 3.  This 
figure demonstrates that a substantial savings in CPU time and memory can be achieved by using 
local grid refinement instead of globally refining the grids.  The iteratively coupled method 
requires that both the parent and child grids need to be solved many times, therefore its CPU 
time requirements are larger than the one-way coupled method which only solves each grid once.  
In this example, 11 iterations were used and the CPU time required is about 7 times greater than 
the one-way coupled method.  The reason why it is not 11 times greater than the one-way 
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coupled method is because the previous solution is used as the starting guess for subsequent 
solutions and the solvers tend to converge more quickly as the iterations proceed.  Furthermore, 
the iterative coupling stores the information for both grids in memory; therefore, its memory 
requirements are slightly larger than one-way coupling which only store information for one grid 
at a time (for one-way coupling, Figure 26a only lists the memory required for the child grid, 
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child grid is 163×190×5, and the globally refined grid is 405×405×9. 
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Appendix 1 – LGR Input Instruction and Selected Data Input and Output Files from Examples 1 
and 3 

Appendix 1 – LGR Input Instructions and Selected Input and 
Output Files from Examples 1 and 3 

LGR Input Instructions 

When executed, MODFLOW-2005 prompts for the name of a file.  If a Name File 
(Harbaugh and others, 2000, p. 7, 43) is entered, LGR is not used.  To use LGR, the name of the 
LGR Control File is entered.  The contents of this file are described here.   

The LGR Control File is distinguished from a Name file by the presence of a keyword 
“LGR” as the first non-commented input.  LGR reads its input data from this file.  Input for LGR 
is defined using 15 items.  Each item is read free format. 

FOR EACH SIMULATION 

1. LGR 


2. NGRIDS 


FOR THE PARENT GRID (the parent grid needs to be listed before the child grid) 

3. NAME FILE 


4. GRIDSTATUS 


5. IUPBHSV IUPBFSV 


FOR THE CHILD GRID 

6. NAME FILE 


7. GRIDSTATUS 


8. ISHFLG IBFLG IUCBHSV IUCBFSV 


9. MXLGRITER IOUTLGR 


10. RELAXH RELAXF 


11. HCLOSELGR FCLOSELGR 


12. NPLBEG NPRBEG NPCBEG 


13. NPLEND NPREND NPCEND 


14. NCPP 


15. NCPPL (NPLEND +1 - NPLBEG) 


Explanation of Variables Read by LGR 

NGRIDS – is the number of grids used in this simulation.  Currenlty (2005) NGRIDS needs to 
equal 2. 

NAME FILE– is the name of the Name file for either the parent or child grid.  The name can 
include the file path and is limited to 200 characters. 

GRIDSTATUS – is a character variable indicating whether the file listed in NAME FILE 
corresponds to a parent or child grid.   

If GRIDSTATUS = PARENTONLY, then it is a parent grid Name file. 
If GRIDSTATUS = CHILDONLY, then it is a child grid Name file. 
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IUPBHSV – a number greater than zero that corresponds to the unit number where the boundary 
heads are saved for later use by the BFH Package for independent simulations.  A file with this 
unit number needs to be opened in the Name file of the parent model.  A value of zero indicates 
that the file is not written. For the parent model, these are the complementary boundary 
conditions (see Appendix 2). 

IUPBFSV – a number greater than zero that corresponds to the unit number where the boundary 
fluxes are saved for later use by the BFH Package for independent simulations.  A file with this 
unit number needs to be opened in the Name file of the parent model.  A value of zero indicates 
that the file is not written. For the parent model, these are the coupling boundary conditions (see 
Appendix 2).   

ISHFLG – is a flag indicating whether heads from the parent grid simulation should be used as 
the starting head for the child grid simulation.  These heads apply to the interior of the child, not 
the boundary. 

If ISHFLG = 1, then use results of the parent grid simulation as the starting head for the 
child grid.  In the cells of the child grid that overlap the parent grid, the heads of 
the corresponding parent cell are used.  No interpolation is applied.  For steady-
state simulations, this can provide a good initial guess which can reduce 
computational time.  For transient simulations, this overwrites the initial condition 
of the child model defined in STRT of the Basic Package input file and therefore 
is not recommended. 

If ISHFLG = 0, then use the heads defined in STRT of the Basic Package for the child 
grid. 

IBFLG – is a negative integer used to define the interface of the child grid with the parent.  Use 
this value around the perimeter of the child model IBOUND array. Do not use IBFLG or ­
IBFLG anywhere else in the parent or child IBOUND arrays. 

IUCBHSV – a number greater than zero that corresponds to the unit number where the boundary 
heads are saved for later use by the BFH Package for independent simulations.  A file with this 
unit number needs to be opened in the Name file of the child model.  A value of zero indicates 
that the file is not written. For the child model, these are the coupling boundary conditions (see 
Appendix 2). 

IUCBFSV – a number greater than zero that corresponds to the unit number where the boundary 
fluxes are saved for later use by the BFH Package for independent simulations.  A file with this 
unit number needs to be opened in the Name file of child model.  A value of zero indicates that 
the file is not written. For the child model, these are the complementary boundary conditions 
(see Appendix 2). 

MXLGRITER – is the maximum number of LGR iterations; 20 iterations are sufficient for most 
problems. See Closure Criteria for LGR Iterations section.  Set MXLGRITER to 1 for a one-way 
coupling. 

IOUTLGR – is a flag that controls printing from LGR iterations of the maximum head and flux 
change.  For the maximum head change, the head value and corresponding layer, row, and 
column of the child grid is listed.  For the maximum flux change, the flux value and 
corresponding layer, row, and column of the parent grid is listed.  If IOUTLGR < 0, output is 
written to the screen.  If IOUTLGR >0, output is written to the child listing file.  If IOUTLGR = 
0, no results are written. 

RELAXH – is the relaxation factor for heads.   

RELAXF – is the relaxation factor for fluxes.   

Values of RELAXH and RELAXF less than 1 and greater than zero are needed for convergence 
of the LGR iterations.  Typically, values around 0.5 produce convergent solutions.  Values less 
than 0.5 may be needed when the LGR iterations have difficulty converging.  In cases when the 
LGR iterations exhibit no convergence difficulties, values greater than 0.5 may reduce the 
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number of iterations needed for convergence.  Convergence difficulties can be diagnosed by 
printing the maximum head and flux changes (IOUTLGR ≠ 0) to determine if the head and flux 
changes are decreasing (converging) or increasing (diverging) as the LGR iterations proceed. 

HCLOSELGR – is the head closure criterion for the LGR iterations.  The closure criterion is 
based on heads of the child interface nodes.  This closure criterion is satisfied when the 
maximum absolute head change between successive LGR iterations is less than HCLOSELGR 
(see equation 8b). 

FCLOSELGR – is the flux closure criterion for the LGR iterations.  The closure criterion is 
based on fluxes into the parent interface nodes.  This closure criterion is satisfied when the 
maximum absolute relative flux change between successive LGR iterations is less than 
FCLOSELGR (see equation 8a).  

NPLBEG – is the number of the topmost layer of the parent grid where the child model begins.  
Currently, (2005) refinement must begin at the top of the model so NPLBEG = 1. 

NPRBEG – is the row number of the parent grid where the refinement begins (cannot equal 1). 

NPCBEG – is the column number of the parent grid where the refinement begins (cannot equal 
1). 

NPLEND – is the number of the lowest layer of the parent grid where the refinement ends. 
NPLEND ≥ NPLBEG 

NPREND – is the row number of the parent grid where the refinement ends. NPREND > 
NPRBEG and NPREND cannot equal the number of rows in the parent grid. 

NPCEND – is the column number of the parent grid where the refinement ends. NPCEND > 
NPCBEG and NPCEND cannot equal the number of columns in the parent grid. 

NCPP – the number of child cells that span the width of a single parent cell along rows and 
columns. This must be an odd integer number > 1 and is applied to rows and columns. 

NCPPL – is the number of child cells that span the depth of a single parent layer.  This must be 
an odd integer number ≥ 1. Read one value for each refined parent layer.  The number of values 
needs to equals NPLEND +1 minus NPLBEG.  Values can be 1, which results in no vertical 
refinement for the layer, only in layers above the bottom of the child grid, unless the refinement 
extends all the way to the bottom of the parent model (see The Top and Bottom of the Child Grid 
section). For refinement that does not extend to the bottom of the parent model, the refinement 
terminates at the shared node; for example, in Figure 5b the values 5  3 would be needed. 

Example LGR Input Files 

The sample data inputs listed below are for the two-dimensional example 1 and three-
dimensional example 3 presented in the text of this report.  The systems are shown in Figure 15 
and Figure 23 

Example 1 uses a 9:1 refinement ratio.  The refinement begins in layer 1, row 20, column 
22 and ends in layer 1, row 31, column 39 of the parent grid.  The annotated LGR input file is: 

LGR #LGR Keyword 

2 #NGRIDS 

ex2_parent.nam #NAME FILE 

PARENTONLY #GRIDSTATUS 

70 71 #Unit #’s for complimentary and coupling B.C. 

ex2_child.nam #NAME FILE 
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CHILDONLY #GRIDSTATUS 

1 -59 80 81 #ISHFLG, IBFLG, Unit #’s for complimentary and coupling B.C. 

15 0 #MXLGRITER, IOUTLGR 

0.50 0.50 #RELAXH, RELAXF 

1.0E-5 1.0E-5 #HCLOSELGR, FCLOSELGR 

1 20 22 #Beginning layer, row, and column 

1 31 39 #Ending layer, row, and column 

9 #Horizontal refinement ratio 

1 #Vertical refinement ratio by Parent layer 

Example 3 is for a three-dimensional problem and uses a 3:1 ratio of refinement in all 
directions, in all layers.  The refinement begins in layer 1, row 6, column 2 and ends in layer 2, 
row 12, column 9 of the parent grid (see Figure 23). 

LGR #LGR Keyword 

2 #NGRIDS 

ex3_parent.nam #NAME FILE 

PARENTONLY #GRIDSTATUS 

0 0 #Unit #’s for complimentary and coupling B.C. 

ex3_child.nam #NAME FILE 

CHILDONLY #GRIDSTATUS 

1 -59 80 81 #ISHFLG, IBFLG, Unit #’s for complimentary and coupling B.C. 

15 0 #MXLGRITER, IOUTLGR 

0.40 0.40 #RELAXH, RELAXF 

5.0E-3 5.0E-2 #HCLOSELGR, FCLOSELGR 

1 6 2 #Beginning layer, row, and column 

2 12 9 #Ending layer, row, and column 

3 # Horizontal refinement ratio 

3 3 # Vertical refinement ratio by Parent layer 

Sample LGR Output 

The output from MODFLOW-2005 when using LGR differs from standard MODFLOW­
2005 output in two ways.  First, the LGR control input file is echoed.  Second, an overall 
volumetric budget includes interface fluxes.  When LGR is active, the budgets for the parent and 
child grid simulations include the amount of flow into and out of the child grid through the 
interface of the parent grid (see Closure Criteria for LGR Iterations section).  Using the three-
dimensional example 3, the output appears as follows: 

Parent model output: 
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Appendix 1 – LGR Input Instruction and Selected Data Input and Output Files from Examples 1 
and 3 

LGR -- LOCAL GRID REFINEMENT, VERSION 1.0, 02/15/2006 

INPUT READ FOR MODEL 1 DEFINED BY NAME FILE ex3_parent.nam 


LOCAL GRID REFINEMENT IS ACTIVE FOR PARENT ONLY 


VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP 1 IN STRESS PERIOD 

------------------------------------------------------------------------------


CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T 

------------------ ------------------------


IN: IN: 

--- ---

STORAGE = 0.0000 STORAGE = 0.0000 

CONSTANT HEAD = 158.2277 CONSTANT HEAD = 158.2277 
RIVER LEAKAGE = 142.0706 RIVER LEAKAGE = 142.0706 

PARENT FLUX B.C. = 51.2186 PARENT FLUX B.C. = 51.2186 

TOTAL IN = 351.5168 TOTAL IN = 351.5168 

OUT: OUT: 
---- ---- 

STORAGE = 0.0000 STORAGE = 0.0000 
CONSTANT HEAD = 154.0517 CONSTANT HEAD = 154.0517 
RIVER LEAKAGE = 22.3512 RIVER LEAKAGE = 22.3512 

PARENT FLUX B.C. = 175.5873 PARENT FLUX B.C. = 175.5873 

TOTAL OUT = 351.9903 TOTAL OUT = 351.9903 


IN - OUT = -0.4734 IN - OUT = -0.4734 


PERCENT DISCREPANCY = -0.13 PERCENT DISCREPANCY = -0.13 


Child model output: 

LGR -- LOCAL GRID REFINEMENT, VERSION 1.0, 02/15/2006 

INPUT READ FOR MODEL 2 DEFINED BY NAME FILE ex3_child.nam 


LOCAL GRID REFINEMENT IS ACTIVE FOR CHILD ONLY 


STARTING HEADS FROM PARENT WILL BE USED: ISHFLG = 1 

VALUE IN IBOUND INDICATING BOUNDARY INTERFACE = -59 

BOUNDARY HEADS WILL BE SAVED ON UNIT 80 

BOUNDARY FLUXES WILL BE SAVED ON UNIT 81 

MAX NUMBER OF LGR ITERATIONS = 15 

LGR ITERATIONS RESULTS NOT WRITTEN: IOUTLGR= 0 


WEIGHTING FACTORS FOR RELAXATION 

RELAXH(HEAD) RELAXF(FLUX) 

-------------------------

0.400E+00 0.400E+00 


CLOSURE CRITERIA FOR LGR ITERATIONS 

HCLOSELGR FCLOSELGR 

-------------------------

5.000E-03 5.000E-02 


STARTING LAYER, ROW, COLUMN= 1, 6, 2 

ENDING LAYER, ROW, COLUMN= 2, 12, 9 

NCPP: NUMBER OF CHILD CELLS PER WIDTH OF PARENT CELL= 3 

NCPPL: NUMBER OF CHILD LAYERS IN LAYER 1 OF PARENT = 3 

NCPPL: NUMBER OF CHILD LAYERS IN LAYER 2 OF PARENT = 3 
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FLUX ACROSS PARENT-CHILD INTERFACE AT TIME STEP 1 IN STRESS PERIOD 1 

-----------------------------------------------------------------------


CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T 

------------------	 ------------------------


TOTAL IN TO CHILD = 175.5873 TOTAL IN TO CHILD = 175.5873 


TOTAL OUT TO PARENT = 51.2186 TOTAL OUT TO PARENT = 51.2186 


The interface budget and the constant-head budget differ in two ways.  First, the constant-
head budget includes all constant heads in the child model, while the interface budget only 
includes the constant heads used along the interface.  Second, the constant-head budget does not 
include fluxes between constant head cells while the interface budget does. 

Literature Cited 

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, 
the U.S. Geological Survey modular ground-water model – User guide to 
modularization concepts and the ground-water flow process:  U.S. Geological 
Survey Open-File Report 00-92, 121 p. 

Appendix 2 – Independent Simulations Using the Boundary 
Flow and Head (BFH) Package 

The Boundary Flow and Head (BFH) Package reads input data from the file indicated in 
the Name file as described by Harbaugh and others (2000, p. 7, 43) using the File Type BFH.  
Input for the BFH Package is created by LGR and requires that the coupling boundary conditions 
calculated by LGR be saved using variable IUCBHSV and (or) IUPBFSV of the LGR input file.  
For an independent child model simulation, IUCBHSV needs to be nonzero; for an independent 
parent model simulation, IUPBFSV needs to be nonzero.   

The BFH Package and LGR cannot be used simultaneously.  Thus, when using LGR, the 
Name file specified in the LGR control file cannot use file type BFH. 

The procedure needed to run independent child or parent models with LGR boundary 
conditions is as follows: 

1)	 Use LGR to calculate and save the coupling boundary conditions. 

2)	 Activate the BFH Package in the Name file with a file name that corresponds to 
the file saved on IUCBHSV or IUPBFSV for child and parent simulations, 
respectively. 

As discussed in the Running the Parent and Child Model Independently Using the 
Boundary Flow and Head (BFH) Package section, the BFH package can be used to evaluate the 
effects of model changes on the boundary conditions.  In this case, the complementary boundary 
conditions also need to be saved when running LGR.  For the child model, IUCBFSV needs be 
nonzero; for the parent model, IUPBHSV needs to be nonzero.  If the file containing the 
complementary boundary conditions for the child or parent models is opened in the Name file on 
the unit number corresponding to IUCBFSV or IUPBHSV, respectively, then the BFH package 
will evaluate the discrepancies in the complementary boundary conditions.  

Each of these files contains a header record and a list of the child and parent cells 
involved in the coupling, indicated by the layer, row, and column.  For the child models, the 
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corresponding adjoining parent cells and a node index is listed with each child cell.  This is 
followed by a listing of the boundary head or flux values, corresponding to these cells, for each 
time step. 

Example BFH Inputs 

The options for the BFH Package can be controlled through inputs to LGR and the Name 
files.  Using the three-dimensional example 3 in Appendix 1, a simulation using LGR is 
performed first.  For an independent simulation of the child grid, the coupling boundary 
condition (specified head) is saved on unit 80 and the complementary boundary condition 
(boundary flux) is saved on unit 81.  

The Name file for the child grid for the LGR simulation is: 
LIST 26 ex3_child.out 
BAS6 2 ex3_child.ba6 
BCF6 21 ex3_child.bc6 
DIS 29 ex3_child.dis 
OC 20 ex3_child.oc 
DATA(BINARY) 31 ex3_child.hed 

DATA(BINARY) 41 ex3_child.flw 

PCG 22 ex3_child_3.pcg 

RIV 25 ex3_child.riv 

DATA 80 ex3_child_bfh.hed 

DATA 81 ex3_child_bfh.flw 

DATA 51 ex3_child.bot


After successful completion of an LGR simulation, the child model can be simulated 
independently using the BFH Package.  Only the Name file of the child grid needs to be 
modified. Activate BFH with a file name corresponding to the file where the coupling boundary 
conditions were saved.  Although not required, in the example above, the complimentary 
boundary conditions were saved.  If this file is opened in the Name file on the same unit number 
on which it was saved, the BFH Package will report any changes in the boundary fluxes of the 
child model. This is done in the example below.  Use of # in the first column results in the line 
being ignored. 

LIST 26 ex3_child.out 
BAS6 2 ex3_child.ba6 
BCF6 21 ex3_child.bc6 
DIS 29 ex3_child.dis 
OC 20 ex3_child.oc 
DATA(BINARY) 31 ex3_child.hed 

DATA(BINARY) 41 ex3_child.flw 

PCG 22 ex3_child_3.pcg 

RIV 25 ex3_child.riv 

BFH 80 ex3_child_bfh.hed 
#DATA 80 ex3_child_bfh.hed 
DATA 81 ex3_child_bfh.flw 
DATA 51 ex3_child.bot


Sample BFH Output 

The output from MODFLOW-2005 when using the BFH Package will show the 
volumetric budget contributions from the coupling boundary conditions.  If the complementary 
boundary conditions are saved by LGR and activated in the Name file, then the BFH Package 
reports changes in the complementary boundary conditions.  That is, for the child model, which 
is coupled using specified-head boundary conditions, changes in flow through the interfacing 
boundary are reported.  For the parent model, which is coupled using specified-flux boundary 
conditions, changes in head along the interfacing boundary are reported.  Using the three­
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dimensional example above, the additions to the MODFLOW-2005 output for an independent 
child grid simulation appears as: 

BFH -- BOUNDARY FLOW AND HEAD PACKAGE, VERSION 1.0, 02/15/2006 

INPUT READ FROM UNIT 80 


CHILD HEAD B.C. 

RUNNING CHILD MODEL WITH 730 SPECIFIED HEAD BOUNDARY NODES 

CHECKING AGAINST FLUX BOUNDARY CONDITIONS ON UNIT 81 


VOLUMETRIC BUDGET FOR BFH SPECIFIED HEADS AT TIME STEP 1 IN STRESS PERIOD 

------------------------------------------------------------------------------


CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T 

------------------ ------------------------


TOTAL IN = 176.0170 TOTAL IN = 176.0170 


TOTAL OUT = 50.9548 TOTAL OUT = 50.9548 


BFH: BOUNDARY FLUX COMPARISON 


NEW TOTAL BOUNDARY FLUX = 125.062187 

OLD TOTAL BOUNDARY FLUX = 124.368706 

AVERAGE ABSOLUTE FLUX DIFFERENCE = 0.991417468E-02 

MAXIMUM ABSOLUTE FLUX DIFFERENCE OF 0.729522705E-01 

OCCURS AT PARENT LAYER 2 ROW 9 COLUMN 5 

NEW FLUX AT THIS NODE = -9.00437832 

OLD FLUX AT THIS NODE = -9.07733059 


There are some small discrepancies in the boundary fluxes even though no modifications 
were made to the child model.  However, these errors are on the same order of magnitude as the 
LGR closure criterion for fluxes (FCLOSELGR), which was 5.000E-02 for this simulation 
(Appendix 1).  Furthermore, the volumetric budget error for the parent model, which indicates 
the overall quality of the LGR solution, is 0.13 percent (Appendix 1).  Therefore, the small 
discrepancies reported by the BFH Package are expected.  As the LGR closure criteria are 
decreased, the discrepancies decrease.  Using the BFH Package in this way provides an indicator 
of the quality of the LGR solution. 

If the child model is modified, the BFH Package can be used to assess the effects on the 
coupling boundary conditions.  For example, consider changing the child model to include 
pumping at a rate of 9.0 m3/day from layer 2, row 8, column 12 and simulated with the BFH 
Package.  The results are shown below: 

60 

1 



 

             

               

                          

                           

 

 

 

 

 

----------------------------- 

1 

Appendix 3 – Error Propagation in LGR 

VOLUMETRIC BUDGET FOR BFH SPECIFIED HEADS AT TIME STEP 1 IN STRESS PERIOD 

------------------------------------------------------------------------------


CUMULATIVE VOLUMES L**3 RATES FOR THIS TIME STEP L**3/T 

------------------ ------------------------


TOTAL IN = 180.9922 TOTAL IN = 180.9922 


TOTAL OUT = 50.3717 TOTAL OUT = 50.3717 


BFH: BOUNDARY FLUX COMPARISON 


NEW TOTAL BOUNDARY FLUX = 130.620560 

OLD TOTAL BOUNDARY FLUX = 124.368706 

AVERAGE ABSOLUTE FLUX DIFFERENCE = 0.776892602E-01 

MAXIMUM ABSOLUTE FLUX DIFFERENCE OF 4.10331678 

OCCURS AT PARENT LAYER 2 ROW 8 COLUMN 6 

NEW FLUX AT THIS NODE = 11.9733610 

OLD FLUX AT THIS NODE = 7.87004423 


Although the pumping well is located below a river node, only about 3 m3/day comes 
from the river; the remaining 6 m3/day come from the boundaries.  Of this, about 4 m3/day 
comes from the cells adjoining the parent cell in layer 2, row 8, column 6.  The child cells that 
correspond to this parent cell can be determined from the complementary boundary condition file 
where the child and corresponding parent cells are listed. 

Literature Cited 

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, 
the U.S. Geological Survey modular ground-water model – User guide to 
modularization concepts and the ground-water flow process:  U.S. Geological 
Survey Open-File Report 00-92, 121 p. 

Appendix 3 – Error Propagation in LGR 

For the case where specified-head boundary conditions are used around the perimeter of 
the child grid, as in LGR, and when the governing ground-water flow equation is linear, we show 
that the error in the specified heads propagate into the interior by the governing equation for the 
aquifer system being modeled, minus the sink and source terms.  First, define the specified-head 
boundary condition as the true head plus some error (from grid resolution, interpolation, and so 
on): 

{hb} = {hTb} + {e} (12) 

where, 

{hb} = head boundary condition, 

{hTb} = true head at the boundary, and 

{e} = error at the boundary 
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The matrix equations resulting from a finite-difference discretization can be written as: 

[A]{h} = {C·hb + q} (13) 

where, 

[A] = the standard coefficient matrix resulting from a finite-difference discretization, 

{h} = head in the child grid, 

C = a coefficient multiplying hb which accounts for the conductance between the 
specified-head boundary condition and the aquifer, and 

{q} = all other sink and source terms in the child grid 

Substituting equation 12 into the right-hand side of equation 13: 

[A]{h} = {C·(hTb+e) + q} (14) 

Reordering the right-hand side, the solution can be written as: 

{h} = [A]-1{C·hTb+q+C·e} (15) 

The matrix multiplication can be distributed across the terms of the right-hand side: 

{h} = [A]-1{C·hTb+q} + [A]-1{C·e} (16) 

which can be written as, 

{h} = {hT} + {he} (17) 

where, 

{hT} = [A]-1{C·hTb+q}, and 

{he} = [A]-1{C·e} 

This result stems directly from the principle of superposition where the effects of two 
components are added together (see Reilly and others, 1987).  The first term on the right-hand 
side of equation 17 is the true head solution, {hT}, which would be obtained if the true boundary 
conditions were used, {hTb}. The second term on the right-hand side, {he}, has the same 
coefficient matrix and represents how the additional error on the boundary is diffused through 
the grid.  Because there are no sinks or sources for this second term – the sinks/sources are 
accounted for in the first term – it contains the boundary errors only.  This results in two 
important properties: (1) the maximum error occurs at the boundary and (2) the error is 
propagated from the boundary through the grid by a purely diffusive process with the same 
coefficients of the ground-water flow system.  The diffusion process causes a smoothing effect 
by averaging with neighboring cells.  Thus, positive and negative errors on the boundary tend to 
cancel as they propagate into the interior.  If the error is constant along the boundary, there will 
be no cancellation by averaging with neighboring cells, and the error is propagated directly into 
the interior.   

The above analysis is strictly valid only when the governing ground-water flow equation 
is linear and the principle of superposition holds.  For nonlinear situations, such as flow in 
unconfined aquifers, the errors are still propagated through the grid by a diffusion process; 
however the coefficients in the matrix are not identical to those from the ground-water flow 
system. 

The above analysis can be used to evaluate the errors from transient simulations because 
the numerical solution to the transient ground-water flow equations can be viewed as a series of 
steady-state solutions.  The error after the first time step is the same as that outlined above except 
that the coefficient matrix [A] and right-hand side include a storage term.  The error at 
subsequent time steps include diffusion of errors in the interior from the previous time step, plus 

62 



Appendix 4 – Using MODTMR and MF96TO2K to Create Child-Model Input Files 

the error introduced at the boundary at the current time step.  Starting from equation 13, the 
modification for transient flow is: 

[A]{hn} = {C·hb+S·hn-1+qn} (18) 

where, 

superscripts n and n-1 denote the current time step and previous time step, respectively, 
and 

S = a coefficient multiplying the heads at the previous time which accounts for the 
changes in storage during the time step. 

Substituting equation 12 for hb and equation 17 for hn-1 in equation 18 and following the previous 
derivation: 

{hn} = [A]-1{C·hTb+S·hT
n-1+qn} + [A]-1{C·en + S·he

n-1} (19) 

The first term on the right-hand side of equation 19 is the true head solution that would be 
obtained if true boundary conditions were used in this time step, and the previous solution also 
were true.  The second term represents the error due to errors at the boundary of this time step 
plus the errors that were propagated into the interior from the previous time step.  Setting the 
storage term, S, to zero in equation 19 simplifies to the steady-state solution shown in equation 
16, indicating that the errors will approach those given in equation 16 as the solution approaches 
steady state. 

Literature Cited 

Reilly, T.E., Franke, O.L., and Bennett, G.D., 1987, The principle of superposition and 
its application in ground-water hydraulics:  U.S. Geological Survey Techniques of 
Water-Resources Investigations, book 3, chap. B6, 28 p. 

Appendix 4 – Using MODTMR and MF96TO2K to Create 
Child-Model Input Files 

Users can use MODTMR (Leake and Claar, 1999) to construct child-model data sets 
based on a parent model by specifying the grid coordinates and refinement such that there is an 
odd ratio of refinement and shared nodes, as required by LGR.  The MF96TO2K conversion 
utility distributed with MODFLOW-2000 can be used to further modify the data sets generated 
by MODTMR to be compatible with MODFLOW-2005.  Thicknesses are not explicitly defined 
in MODFLOW-96; therefore users should look carefully how thickness-dependent properties of 
the BCF Package, such as transmissivity, are converted and make necessary adjustments. 

Literature Cited 

Leake, S.A. and Claar, D.V., 1999, Procedure and computer programs for telescopic 
mesh refinement using MODFLOW: U.S. Geological Survey Open-File Report 
99-238, 53 p. 
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Appendix 5 – Brief Program Description 

Variables in Fortran Module LGRMODULE 

Table 5-1.  Variables in Fortran module LGRMODULE 

Variable Name Size Description 
ISCHILD Scalar Flag: -1=parent grid, 1= child grid. 
NPLBEG Scalar Layer in the parent grid where refinement begins. 

NPRBEG Scalar Row in the parent grid where refinement begins. 
NPCBEG Scalar Column in the parent grid where refinement begins. 
NPLEND Scalar Layer in the parent grid where refinement ends. 
NPREND Scalar Row in the parent grid where refinement ends. 
NPCEND Scalar Column in the parent grid where refinement ends. 
NCPP Scalar Refinement ratio along rows and columns. 

NPL Scalar Number of parent layers that are refined. 
IBOTFLG Scalar Flag: 0=bottom layer is not refined, 1=bottom layer is refined. 
ISHFLG Scalar Flag: 0=do not use initial parent solution for interior of child, 1=use initial 

parent solution for interior of child. 
IBLFG Scalar Unit number used in child IBOUND array that denotes the interface boundary. 
IUPBHSV Scalar Unit number where parent boundary heads are saved for use with the BFH 

Package. 
IUCBHSV Scalar Unit number where child boundary heads are saved for use with the BFH 

Package. 

IUPBFSV Scalar Unit number where parent boundary fluxes are saved for use with the BFH 
Package. 

IUCBFSV Scalar Unit number where child boundary fluxes are saved for use with the BFH 
Package. 

MXLGRITER Scalar Maximum number of LGR iterations allowed. 
IOUTLGR Scalar Flag: -1=print LGR iterations to screen, 1=print LGR iterations to listing file, 

0=do not print LGR iterations. 
RELAXH Scalar Relaxation factor for heads. 
RELAXF Scalar Relaxation factor for fluxes. 

HCLOSELGR Scalar Head closure criterion for LGR iterations. 
FCLOSELGR Scalar Flux closure criterion for LGR iterations. 
HDIFFM Scalar Maximum absolute head change between successive LGR iterations. 
FDIFFM Scalar Maximum absolute flux change between successive LGR iterations. 
NCPPL NPL Vertical refinement ratio for each parent layer that is refined. 
NODEH 3 NODEH(n) identifies cell with maximum head change (HDIFFM): 

n=1 – Layer number. 
n=2 – Row number. 
n=3 – Column number. 

NODEF 3 NODEF(n) identifies cell with maximum flux change (FDIFFM): 
n=1 – Layer number. 
n=2 – Row number. 
n=3 – Column number. 

KPLC Number of child boundary 
nodes 

Array that maps the index of the child interface cell to the corresponding parent 
layer number.  The index is defined by looping through the child interface cells 
in the order of columns, rows, and layers. 

IPLC Number of child boundary 
nodes 

Array that maps the index of the child interface cell to the corresponding parent 
row number.  The index is defined by looping through the child interface cells in 
the order of columns, rows, and layers. 
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JPLC Number of child boundary 
nodes 

Array that maps the index of the child interface cell to the corresponding parent 
column number.  The index is defined by looping through the child interface 
cells in the order of columns, rows, and layers. 

NPINDX Number of boundary nodes Array that maps an index of child interface cells to an index of the parent 
interface cells based on looping through the interface cells in the order of 
columns, rows, and layers.   

ICBOUND NODES (child model) A copy of the child IBOUND array. 

HOLDC NCOL,NROW,NLAY 
(child model) 

Head in the child grid at the previous LGR iteration. 

CCC NCOL,NROW,NLAY 
(child model) 

Copy of the child conductance along columns. 

CCR NCOL,NROW,NLAY 
(child model) 

Copy of the child conductance along rows. 

CCV NCOL,NROW,NLAY 
(child model) 

Copy of the child vertical conductance. 

PFLUX (NPCBEG:NPCEND, 
NPRBEG:NPREND, 
NPLBEG:NPLEND) 

Flux across the parent-child interface, accumulated to parent-grid cells. 

PFLUXOLD (NPCBEG:NPCEND, 
NPRBEG:NPREND, 
NPLBEG:NPLEND) 

Flux across the parent-child interface at the previous LGR iteration. 
Accumulated to parent-grid cells. 

VCB 4 Volumetric budget values for the interface specified-head cells of the child grid: 
(1) – Inflow rate for current time step. 
(2) – Outflow rate for current time step. 
(3) – Cumulative volume of inflow. 
(4) – Cumulative volume of outflow. 

Description of LGR Subroutines 

Listed below are the subroutines that are within the gwf2lgr1.f file.  Subroutines that are 
called from main are in bold, underlined text.  

GETNAMFILLGR – Reads the Name files from the LGR control file. 

GWF2LGR1AR – Allocates and reads data for LGR.  Calls SGWF2LGR1PSV to save 
pointer arrays for LGR data. 

GWF2LGR1DA – Deallocates LGR module data. 

GWF2LGR1RP – Finds the mapping between the column, row, and layer of interface 
child cell to the corresponding location of the parent grid.  Calls SGWF2LGR1PNT to change 
pointers for LGR data to the appropriate grid. 

GWF2LGR1INITP – Zeros out the interior cells of the parent grid which are completely 
covered by the child cells.  Called after the first full parent solution. 

GWF2LGR1FMCBS – Adjusts the child interface boundary storage coefficients.  Calls 
SGWF2LGR1FMCS which does the adjustment based on which flow package is active by 
calling SGWF2LGR1BCFSA if BCF is active, SGWF2LGR1LPFSA if LPF is active, or 
SGWF2LGR1HUFSA if HUF is active. 

GWF2LGR1FMPBS – Adjusts the parent interface boundary storage coefficients.  Calls 
SGWF2LGR1FMPS which does the adjustment based on which flow package is active by 
calling SGWF2LGR1BCFSA if BCF is active, SGWF2LGR1LPFSA if LPF is active, or 
SGWF2LGR1HUFSA if HUF is active. 
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GWF2LGR1FMIB – Adjusts the child interface boundary IBOUND, and the child 
interior CC, CR, and CV arrays for the cage-shell interpolation.  Calls SGWF2IBSHARE1 to set 
up the cage solution and SGWF2IBSHARE2 to set up the shell solution. 

GWF2LGR1FMCBC – Adjusts the child interface boundary conductances.   

GWF2LGR1FMPBC – Adjusts the parent interface boundary conductances.   

GWF2LGR1BH – Transfers the parent interface boundary heads to the shared nodes of 
the child grid.  Calls SLGR1HRLX to relax the head change at the shared nodes and find the 
location and value of the maximum head change. 

GWF2LGR1FMBF – Calculates child interface boundary fluxes and creates the 
specified flux boundaries for the parent grid.  Depending on which flow package is active, calls 
SGWF2LGR1BCFSF, or SGWF2LGR1LPFSF, or SGWF2LGR1HUFSF to find flux 
contribution from changes in storage.  Calls SLGR1FRLX to relax the flux change and find the 
location and value of the maximum flux change. 

GWF2LGR1CNVG – Checks for convergence of the LGR iterations.  Calls 
SGWF2LGR1PNT to change pointers for LGR data to the appropriate grid. 

GWF2LGR1PBD – Calculates the volumetric budget of the parent interface boundary 
flux.  Calls SGWF2LGR1BFHPOT to output parent interface boundary heads and fluxes for use 
with the BFH Package. 

GWF2LGR1CBD – Calculates the volumetric budget of the child interface boundary 
specified heads.  Calls SGWF2LGR1BFHCOT to output child interface boundary heads and 
fluxes for use with the BFH Package 

Variables in Fortran Module GWFBFHMODULE 

Table 5-2.  Variable in Fortran module GWFBFHMODULE. 

Variable Name Size Description 
ISCHILD Scalar Flag: -1=parent grid, 1= child grid. 
NPLBEG Scalar Layer in the parent grid where refinement begins. 
NPRBEG Scalar Row in the parent grid where refinement begins. 
NPCBEG Scalar Column in the parent grid where refinement begins. 

NPLEND Scalar Layer in the parent grid where refinement ends. 
NPREND Scalar Row in the parent grid where refinement ends. 
NPCEND Scalar Column in the parent grid where refinement ends. 
NCPP Scalar Refinement ratio along rows and columns. 
IBOTFLG Scalar Flag: 0=bottom layer is not refined, 1=bottom layer is refined. 
IBLFG Scalar Unit number used in child IBOUND array that denotes the interface boundary. 

NBNODES Scalar Number of interface boundary nodes in the child grid. 
NPBNODES Scalar Number of interface boundary nodes in the parent grid. 
NTIMES Scalar Number of times the interface boundary conditions are saved. 
IUBC Scalar Flag and unit number.  If IUBC ≠ 0, it is the unit number of the file where the 

complimentary boundary conditions are saved. 
BTEXT C*17 Name of the boundary condition. 
KLAY NBNODES Array that maps an index of child interface boundary cell to the corresponding 

layer number of the child.  The index is defined by looping over the interface 
cells in the order of columns, rows, and layers. 

IROW NBNODES Array that maps an index of child interface boundary cell to the corresponding 
row number of the child.  The index is defined by looping over the interface 
cells in the order of columns, rows, and layers. 
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JCOL NBNODES Array that maps an index of child interface boundary cell to the corresponding 
column number of the child.  The index is defined by looping over the interface 
cells in the order of columns, rows, and layers. 

KPLAY NBNODES Array that maps the index of the child interface cell to the corresponding parent 
layer number.  The index is defined by looping through the child interface cells 
in the order of columns, rows, and layers. 

IPROW NBNODES Array that maps the index of the child interface cell to the corresponding parent 
row number.  The index is defined by looping through the child interface cells in 
the order of columns, rows, and layers. 

JPCOL NBNODES Array that maps the index of the child interface cell to the corresponding parent 
column number.  The index is defined by looping through the child interface 
cells in the order of columns, rows, and layers. 

NPINDX NBNODES Array that maps an index of child interface cells to an index of the parent 
interface cells based on looping through the interface cells in the order of 
columns, rows, and layers.   

BFLUX NPBNODES Flux across the parent-child interface.  Used as the coupling boundary condition 
for the parent grid. 

BFLUXCHK NPBNODES Flux across the parent-child interface.  Used as the complimentary boundary 
condition for the child grid. 

BHEAD NBNODES Head at the child interface boundary.  Used as the coupling boundary condition 
for the child grid. 

BHEADCHK NBNODES Head at the child interface boundary.  Used as the complimentary boundary 
condition for the parent grid. 

VCB 4 Volumetric budget values for the interface specified heads of the child grid: 
(1) – Inflow rate for current time step. 
(2) – Outflow rate for current time step. 
(3) – Cumulative volume of inflow. 
(4) – Cumulative volume of outflow. 

Description of BFH Subroutines 

Listed below are the subroutines that are within the gwf2bfh1.f file.  Subroutines that are 
called from main are in bold, underlined text.  

GWF2BFH1AR – Allocates and reads data for the BFH Package.  Calls 
SGWF2BFH1PSV to save pointer arrays for BFH data. 

GWF2BFH1DA – Deallocates BFH module data. 

GWF2BFH1RP – Reads the column, row, and layer indices for cells along the interface 
where the boundary conditions are applied.  Calls SGWF2LGR1PNT to change pointers for BFH 
data to the appropriate grid.  Calls SGWF2BFH1FMCS to adjust child grid storage coefficients 
or SGWF2BFH1FMPS to adjust parent grid storage coefficients.  These routines call 
SGWF2BFH1BCFSA if BCF is active, SGWF2BFH1LPFSA if LPF is active, or 
SGWF2BHF1HUFSA if HUF is active to adjust the storage. Zeros out the interior cells of the 
parent grid that will be completely covered by the child grid. 

GWF2BFH1AD – Reads the coupling boundary condition data for the current time step 
and also the complimentary boundary condition data, if used.  If it is a child grid, apply the 
specified head boundary conditions to HNEW. 

GWF2BFH1FM – Calls SGWF2BFH1FMCBC or SGWF2BFH1FMPBC to adjust 
conductances along the parent-child boundary interface for the child or parent grid, respectively. 
For the parent grid, calls SGWF2BFH1FMPBF apply the parent interface boundary specified 
flux to RHS. 
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GWF2BFH1BD – Calculates the volumetric budget for the parent interface boundary 
specified fluxes and the child interface boundary specified heads.  For the parent grid, the fluxes 
are added to the global budget accumulators.  Calls SGWF2BFH1PNT to change pointers for 
BFH data to the appropriate grid.  For the child grid, calls SGWF2BFH1CBF to find budgets for 
interface boundary specified heads.  Call SGWF2BFH1BCFSF if BCF is active, 
SGWF2BFH1LPFSF if LPF is active, or SGWF2BFH1HUFSF if HUF is active to find the flux 
contribution from changes in storage. 

GWF2BFH1OT – this subroutine calls SGWF2BFH1CBD to output to the listing file a 
separate budget for the child interface boundary specified heads when global budgets are printed.  
If complimentary boundary conditions are used for either the parent or child grid, then report the 
location and value of the maximum difference. 
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