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Finite Population
Sampling
Synthetic populations are used to study

methods for adapting Efron’s bootstrap

estimation technique to finite population

sampling. Of particular interest is the

extention of these methods to two-stage

cluster sampling. Using simulations based

on five artificial populations, two variations

of bootstrap estimators and two Taylor

series variance estimators for a ratio

estimator are compared by mean square

errors, stability of the variance estimators,

and coverage of the confidence intervals.

Generally, there appear to be small

differences among the variance estimators,

except the bootstrap estimators are

somewhat less stable than the Taylor

series estimators.
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The Bootstrap and Finite
Population Sampling
by Philip J, McCarthy, Ph. D., Cornell University, and

Cecelia B. Snowden, M. A., Office of Research and

Methodology, National Center for Health Statistics

Introduction

Efronl introduced the bootstrap as a nonparametric method
for providing answers to various statistical problems by “the
substitution of raw computing power for theoretical analysis.”z
The followingbrief description of the bootstrap is fleely adapted
from references 1-3.

Suppose the data points (univariate or multivariate) Yl,
y2, . . .. .s~ are independent observations from a dktribution
function F, and that one wishes to estimate and study the prop
erties of some parameter of F, say O(F). The distribution func-
tion F can be estimated by the empirical probability function

~: mass ~ on each observed data point yj, i = 1,2,.. ., n

A bootstrap sample is obtained by making n random draws

with replacement from {Yl,Y2, . . ., Yn), namely {~, ~, . . ..
q}. An estimate of the parameter 8*( ~, ~, . . .. q) is ob-
tained from this bootstrap sample. This obviously can be re-
peated any desired number of times, say B, leading to B inde-
pendent estimates of the parameter

and these values can be used in a variety of ways to study the
distribution of O*(8); for example, to estimate its variance,
standard deviation, bias, and percentiles. References to a variety
of applications are given in Efron and Gong.z Asymptotic re-
sults for. the bootstrap have been published by Bickel and
Freedman.4 Further applications are described by Diaconis
and Efron.s

. .. ‘—



Description of methods

Design-based, finite population sampling theory, for simple
random sampling without replacement, may be defined as fol-
lows. Given a finite population of N elements, a sample of n is
selected one at a time by choosing elements in such a fashion

that, at each stage of the selection, each of the remaining (un-
drawn) elements has an equal chance of being selected. This
means that selections are not independent of one another. As a
matter of fact, the correlation between the variate value of the

element selected at the ith draw and that selected at the jth
draw is –1/(N – 1). Such sampling designs frequently are
characterized by the sampling fraction, f = n/N.

When one attempts to apply Efron’s bootstrap to finite

population samples, difficulties are encountered. Perhaps the
easiest way of demonstrating this is by the following observa-
tions:

1. If the sample data points yl, yz, . . .. y. are n independent
observations from a distribution F, then any bootstrap
sample is a set of observations that might have been ob-
tained as a sample of n independent observations from F.

2. If the sample data points yl, y2, . . .. y. refer ton elements
drawn from a finite population of N elements, there is no
way of selecting n elements from the sample that will

produce a sample that might have been drawn from the
original population; for example,

a. If the n elements are selected with replacement from
the sample, repetitions of elements can occur in the
bootstrap sample. This, by definition, would not be
possible in an original sample from the finite popula-

tion.

b. If the n elements are selected without replacement,
then one simply obtains the original sample back again.

In searching for ways to adapt the bootstrap idea to finite

population sampling, several possibilities were considered.
One method is to use the sample to create an artificial popula-
tion from which repeated simple random samples could be

drawn without replacement. For example, if N = kn, that is,
the sampling fraction y= n/N= I/k, then each of the sample
elements can be replicated k times to create a finite population
of kn = N elements. If samples of n elements are drawn without

replacement from this artificial population, then the sampling
fraction n/N; n/kn is still I/k. In the case of a linear estimator,
such as ~ = Y, we obtain the following results for this procedure,
where y- is the mean of a sample of n drawn from the artificial

population:

(1)

E(~ Ioriginal sample of n) = ~

kjj(yi – -7)2
kn–nl i=l

P(P original sample of n) = ~;
kn–1

where the estimated variance of the original sample mean J is

given by

~(Yj ‘.Y)2
=(l–jl; i=’n_l (3)

Thus the variance of the sample means ~ of repeated samples
drawn from the artificial population must be multiplied by the
factor (nA– l/k)/(n – 1) to obtain the variance one would hope

to get, V(y). For example, if n = 5 and k = 2, the factor is
1.125, while if n = 5 and k = 10, it is 1.225. Obviously if n is
large, its value camot be far from 1. This is the approach used

by Bickel and Freedman6 to obtain asymptotic results for strat-
ified simple random sampling without replacement, a method
suggested earlier by Gross.7 This method will be .Iabeled the
without-replacement bootstrap (BWO).

This analysis also can be made if~is not 1 divided by an
integer. Suppose f= kl/k2, where kl and k2 are integers,
k, < kz. The procedure now is to replicate each sample element
k2 times and select, without replacement, a sample of kln ele-

2



ments. As before,

(4)

E(Y* original sample of n) = ~

k2~(yi–jy
nk2 — nkl 1

W(.F* original sample of n) = nk
iel

2 @ nk2 — 1

, *(Yi-Y)2

=(1 ‘-f); rf(n – l/~2) (5)

Now,

k*(k2n – 1)
v(y) = k2(n – 1) W(P original sample of n)

This factor might well be of a larger magnitude than one would
like to introduce into variance computations.

An alternative method that may work in some circum-

stances, and that does not require any correction factor, was
suggested by Bickel and Freedman.G Suppose N = kn + r,
1 S r S n – 1. Construct two artificial populations in the fol-

lowing manner:

Population Composition ofpopulation

1 Replicate each sample element k times,

select samples of n without replacement.

and

2 Replicate each sample element k + 1 times, and
select samples of n without replacement.

The variances of the sample means for these two populations
are as follows:

that

0<0!<1

and

fx~(~ original sample of n)

+(1 – a) ~(~ original sample of n)

~_n , ~(vnz.——
Nn n—l

That is, so that

k
a~+(l–a)(k+l)n–l

()

1
— (6)=l_; ~_l

This procedure is not feasible if both (k – 1)/(kn – 1) and
k/[(k + l)n – 1] are less than (1 – n/N)/(n – 1). For example,
iflc=2, n=5, and N= 12,

k–l
—=0.1111kn–1

(k+l~n–1 = 0.1429

and

1 – n/N
n—1 = 0.1458

It also is not feasible if k = 1. On the other hand, if k = 2,
n=8, and N=20,

0.0667a +(1 – a)O.0870 = 0.0857

Population Variance

1 V(..P original sample of n)

k~(yi – y)2
kn–nl 1=1

‘T; kn–1

2 q(.7* original sample of n)

(k+ l)~(yi –7)2
=(k+l)n–nl i=l

(k+ l)n ; (k+l)n–1

Select in the bootstrap samples population 1 with probability a

and population 2 with probability 1 – a, where a is chosen so

and a = 0.064.
The second procedure considered for bootstrapping finite

population samples was obtained from variance considerations.

If we have a sample of n drawn without replacement from a
finite population of N elements, then ~(~ is given by equation
(3). Suppose now that a sample of n* elements is drawn with
replacement from the n sample elements and we define

Then

E(F original sample) = ~



and

If we now choose

#=~-1 k
m=k–l(n–l)

(7)

Vi(’*loriginal sample) will be equal to ?(Y). This method will
be labeled the with-replacement bootstrap (BWR).

Rao and WU8 have suggested a different procedure for
achieving thesamegoalas BWR. Theywould transform~to

~i = ~ + ml/2(n – 1)-1/2(1 –~)1/2(y~ – ~)

where m is the size of the bootstrap sample drawn byBWR
from the original sample of n. It is easy’to show that I@original
sample) = J and that Vii’]original sample) is equal to P(J) as
given by equation (3). This has the advantage of avoiding the
rounding problem that occurs when n* is not an integer. This
approach did not come to our attention until after all work on
this report had been completed. Otherwise it would have been
included among the simulations described.

It is not immediately apparent which of the two procedures,
BWO or BWR, should be preferred. The first seems intuitively
appealing to some, and the second appeals to others. The second

seems more closely related to Efron’s bootstrap, and the first
seems more related to traditional finite population sampling
theory. In a certain limiting sense they are almost identical.
Thus, if k becomes very large, that is, if~becomes small, the
first procedure becomes essentially BWR from the sample be-
cause each element is replicated a large number of times. We
will later consider two-stage sampling there the first procedure
becomes very clumsy. We will attempt to provide comparisons
of the two procedures, except for two-stage sampling.

This investigation will focus on the behavior of the ratio
estimator

(8)

A variety of artificial populations and sample sizes will be used
in our study.



Populations used in the
investigation

Because the ratio estimator has optimum properties when
the relationship between y and x is linear through the origin

with variance of y for fixed x proportional to x (Cochran,g
p, 158), we first constructed a finite population having approx-
imately these properties. The variable x was assumed to have a
X2 distribution with nine degrees of freedom. Then, for a fixed
value of x, y was defined to be

y=x+N(o, x)

In the infinite superpopulation defined by these relationships
we have

E(x) = 9

V(x) = 18

E(ylx) = X

E(y) = 9

V(J+Y)= x

v(y)=27

COV(X,y) = 18

~Y= 0.8165P
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To obtain a finite population of N= 100 elements, we
selected 100 independent x values. For each of these an obser-
vation was selected from N(O, x), which, when added to the

observed x value, produced an associated y value. The popula-

tion actually obtained is shown in figure 1, and some of its

characteristics are given in table A. Because our other popula-
tions were obtained by performing various transformations on
this first population, we have chosen to refer to it as the basic
population.

The second population was obtained from the basic pop

ulation simply by increasing each y value by 20, leaving the x

values unchanged, The line of the relationship between y and x

no longer is close to the origin. Some of its characteristics are
given in table A. It will be referred to as y + 20.

The third population was obtained from basic by replacing

(9)

Figure I. Ulagram ot me Daslc population

each y value by y ‘“5, the x values remaining unchanged. The
intent was to introduce some curvature into the relationship

between y and x. This was not completely successfid, as is

evident from figure 2 and the correlation shown in table A. It
will be designated as y 1“5.

The fourth population was obtained from the third by in-

creasing each y value by 20. Again, its characteristics are shown

in table A.

The fifth population was obtained in the following manner.
For each point in the basic population, the deviation of y from
x was obtained. This deviation was then added to the quadratic
term 2.5x —O.1X2to obtain a new y value. That is, the new y
values are given by y —x + 2.5x —0.1x2 = y + 1.5x —O.lxz.
The x values again were left unchanged. This population is

shown in figure 3 and some of its characteristics are given iii

table A. Note that this population exhibits distinct curvature
and that the correlation between x and y has been reduced to
0.62. This population will be denoted as y + 1.5x – O.1X2.



Table A. Characteristics of populations used in the inveatigation

[See text for explanation of symbols]

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
20
50

y+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
20
50

/.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
20
50

yl.5 + 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
20

0.8488 1.0609 1.0607
1.0602
1.0605

0.8488 3.3168 3.3557
3.3373
3.3193

0.8185 3.6006 3.5803
3.5865
3.5957

0.8185 5.8565 5.8668
5.8657

0.0084
0.0038
0.0009
0.0962
0.0418
0.0097

0.3071
0.1349
0.0337
0.2461
0.1135

-0.2
-1.1
-1.3
12.6
10.0

2.6

-3.7
-3.8
-2.7

2.1
2.7

50 5.8582 0.0278 1,0

y+l.5x- 0.1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 0.6198 1.5109 1.5242 0.0229 8.8
20 1.5174 0.0104 6.4
50 1.5122 0.0028 2.5

NOTE: Estimatas (last 3 columns) are based on 5,000 samples.
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Figure 3. Diagram of the y + 1.5x - 0.1x2 population

Figure 2. Diagram of the Y1.5 population



I Variance estimation

After a sample has been selected from a finite population
and an estimate of a population parameter has been computed,
one ordinarily estimates the sampling vtmiabllity of the estimate.
Because our concern in thk investigation is with the ratio esti-
mator, we have used as our basis of comparison the two standard
Taylor series estimators of variance:

and

where X is the sample mean of the x values and ~is the popula-
tion mean of these values. The properties of these two estima-

tors of variance are discussed in Cochrang (section 6.4).
For BWO, for each of 500 samples we drew 100 bootstrap

samples, thus giving ~~, fr y,..., fi~m. From these we computed

(12)

and

100

x( & – 2;WO)’
n — I/k

‘Bwo(fi) = ‘= ‘ 99 —n—1 (13)

Thus ~~wo(~) is the BWO estimate of the variance of k We
chose 100 bootstrap samples on the basis of Efron’s recom-
mendation. Efron10 (p. 317) states, “For only estimating ~~wt,

N= 100 performs quite we# in most examples.” We also note
that Efron3 suggests that (R~wo – @ provides an estimate of
the ratio bias of k, that is, of& – R. Thus we can compute
directly an estimate of the mean square error (MSE) of ~ as

The ordinwy single sample approach, in conjunction with Taylor
series estimators of variance, provides no estimate of bias. This

estimate of bias will be discussed in greater detail later in this
report.

Finally, these various quantities were summarized over

500 samples drawn horn the original population, giving rise to

E

?@)

7Ti(fi)

ti(fim(i))

r=fli)

~ iTj@)

~:wo

(~:wo – I)

..7
HR:WO)

Z3Wo(a

‘( ‘iBwo(fi))

M~EBwo(fi)

ti(MSE~wo(fl))

Our comparisons of the various procedures will be made on the
basis of this average behavior.

Through an oversight in preparing the program, t~e factor

(n – l/k)/(n – 1) was not used on ~ery i~dividual VBwo(~).

Instead, it was introduced after VBWO(R) had been com-
puted. This causes no dif-; however, it does create a
problem with respect to M~EBwo(fi). Inserting the factor

(n – l/lc)/(n – 1) after the average mean square error has
been computed results in this factor multiplying the average
squared bias as well as the average variance. Because the
squared bias is usually of little consequence in computing

MSE’S, we do not feel that this error will seriously affect our
conclusions.
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Using a ditTerent set of 500 samples drawn from the original
population, this entire process was repeated for the BWR pr~
cedure. We=tius ob+ained exactly the same quantities just defined
for BWO: ~~w~, ~w~(fi), and so forth. Note, however, that
no correction is required in computing ~~w~(fi).

These computations were performed for each of the five
populations described in table A and for each of the sample
sizes n = 10, 20, and 50. For these sample sizes we have

n k n? for BWR

lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10
20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 23.75 =24
50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 98

Finally, because theory does not generally provide the exact
values of E(@ and MSE(fi), we approximated these quantities

by drawing 5,000 samples from each population for each sample
size. These values are given in table A.

The results of these simulations, as far as variance estima-
tion is concerned, are presented in table B. We give the percent

errors in estimating MSE(~) for the various combinations of
sample size, population, and variance estimator. For example,
for the basic population and samples of size 10

~~[~) – MSE(~)... . , . .
X 100 = –2.6 percent

MSE(fi)

From a general examination of this table it appears that

1. There is not a great deal of difference in the performance
of any of the variance estimators. They generally provide
underestimates of the MSE(~).

2. As would be expected, the error in the estimates tends to
decrease as the sample size increases.

It might be noted that sampling errors are available for

these entries that permit comparisons of a column ( 1) entry
with a column (2) entry, within a row. Comparisons of entries
within a row that are in the same column designations, ( 1) or

(2), cannot be made because they are based on the same 500
samples and we did not compute the required covariances. An
indication of their magnitudes is given in table C.

The stability of the variance estimators is examined in

table C where a comparison of the mean square errors of the
mean square error estimators is given. We observe that

1. For all the estimators there is a great deal of variability in

relative performance over the different populations, with

the population y +20 causing particular difficulty for the
bootstrap estimators.

2. With the exception of population y i- 20, there does not

appear to be much difference in the various estimators for
~ = 10 ~d n = 20. For n = 50, the bootstrap estimators

generally seem less stable than the Taylor estimators.

Tabla B. Underpercent and ovarpercent estimates of MSE(h) by population and estimated parameters

[See text for explanation of symbols]

— —
n and population (7) (2) (7) (2) (7) (2) (1) (2)

“=10

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.6
y+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –2.1
~15, , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –4.5
Y15+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1 8,2
Y+l.5X -0,1X2..............,., . . . . . . . . . . . . . . . . . . –8.3

Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –7.1

rr =20

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –3.5
y+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –5.4

Y“S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –8.0
Y15+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y+l.5x -0.1x2 . . . . . . . .
–6.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . –6.2

Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –5.9

rr =50

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.1
y+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6

Y“5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3.5

Y’”5+ 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –3.2
Y+l.5x– 0.1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –5.0

Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –2.4

–6.6
–3.1

–1 9.2
-9.5

-7.3

-9.1

1.6

–1 .9
–2.6

–4.1

-2.4

–1 .9

-0.6

1.8

-3.1
1.9

–3.4

–0.7

-3.0
-10.2

0.7
-19.1
–7.2

–7.8

–2.9
–7.8
–6.7
–3.!3
–5.4

–5.3

-2.5
0.8

–3.0
–2.5
–5.0

–2.4

-5.5

–1 0.3
–1 7.7

-8.4
-4.2

–9.2

+2.3
–6.5
–1 .0
–3.1
–0.1

–1 .7

–1.1
1.0

-2.4
–1 .7
–2.9

–1 .4

0.2
8.8

–3.9
-15.9
-6.2

-3.4

–3.6
–2.5
–8.4
–7.3
–6.7

–5.7

–2.0
2.1

–4.3
–4.7
–4.8

–2.7

–4.2
8.0

-18.5
–8.3

–3.2

–5.2

3.5

3.2
–1 .8

–3.0
–1 .0

0.2

–0.0
3.2

–2.3
–1 .5
–3.4

–0.8

1.3
11.9

2.3
–1 4.7

-4.0

-1.6

–2,4
-0.9
–7.3.
–6.4
–5.5

–4.5

-1.0
3.3

-3.2
–3.6
–3.8

–1 .7

-3.1
10.8

–1 7.3

-6.7

-1.2

–3.5

4.5

5.0
-0.8
–2.0

0.4

1.4

-0.1
4.4

-1.3
–0.6
-2.3

0.0

NOTES: Values of MSE(k) sre baaed on 5,000 ssmples; ~valuea are based on 500 samples; BWR and BWO values are based on 100 bootstrap samples.

On any line m this table, the entries in column (1) are based on 1 set of 500 samples; the entnes in column (2) sre based on an independent set of 500 samples.
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Table C, Mean square errors of mean square error estimates by population and estimated parameters

[SOOtext for explanation of symbols]

OTi(;) VTX(;) VWR(F) ;Ewo( R) It&.wn(fi) M.3EWO(6)
— —

n and population (1) (2) (1)

“=10

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y+20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yl~+20, . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y+ I.5x-0.1 XZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“=2(3

Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y+20, ..,.,,...,.,..,..,......,.. , .,,,,,......,,.
Y1.5, , ,., ,., .,. . . . . . . . . . . . . . . . . . . !. ...,,., . . . . . . . . .

y13+’20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y-I- I.5x-0.1X Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n=50

Basic, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y+20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
~l,s.,...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y15+20 . . . ...!.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y-1- l.5x-0.1x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5(-5)
3.7(-3)

1.1(-1)

3.5(-2)
2.2(-4)

2.7(-6)
2.4(–4)
9.1 (–3)

5.7(-3)
2.5(-5)

5.0(–8)
3.5(-6)
1 .7(-4)
1 .0(-4)
4.0(–7)

2.5(–5)
3.0(–3)

6.9(–2)
4.6(–2)
2.0(–4)

3.0(-6)
2.4(–4)

10.7(–3)

6.0(-3)
2.3(–5)

5.0(–8)
3.7(–6)
1.7(–4)
1 .0(-4)
3.6(-7)

131
45

119

128
116

108

108
60

112
116
111

101

100
66

111
107
110

99

(2) (1) (2) (1) (2)

117
55

119

132
100

107

112
55

104

111
120

100

100
59

104
105

117

97

103 101
148 156

95 89
100 92
105 112

110 110

113 110
122 150
101 101

97 107
103 112

107 ’116

120 122
172 158
117 111
107 114

148 139

106
161

98
101
114

116

115
128
103

98
105

110

119
180
119
109
145

103
173

95
96

119

117

122
161

98

109
116

121

122
170
112
115
139

133 129 134 132Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NOTES: ~values are based cm 500 samples; BWR and BWO values are based on 100 bootstrap samples; ~fi(~) taken as 100 percent.

On kmyIlne In this table, the entries in column (1) are based on 1 aet of 500 samples; the entries in column (2) are based on an independent aet of 500 samples.

The numbers In parentheses are the powera of 10 by which the first numbar is to be multiplied. Thus the first entry of 2.5(-5) is 0.000025.
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The estimation of bias and an
adjusted ratio estimator

With a single sample and t~e estimate &, Jhere is no way
of estimating the ratio bias in R, that is, E(R) —R, without

resorting to some pseudoreplication technique, such as the jack-
knife. Efron3 (p. 33) and Efron and Gong2 (p. 41) argue that
the bootstrap provides an effective way of estimating bias. For
a single sample, which becomes the population for bootstrap

sampling, we have the ratio estimate fi. For each bootstrap
sample we have either ~~wo or &w~, depe;ding upon which
bootstrap procedure we have chosen. Thus R: – k is an esti-
mate of bias. Bec~use we generally have drawn 100 bootstrap

samples, we use Rg – ~ as an estimate of bias. Finally, the
average of this quan~ty ov~r the 500 samples drawn from the
original population, R: —R, provides a still better estimate of
bias. This quantity is shown in table D for our five populations

and three sample sizes.

Table D. Estimation of bias of R using the bootstrap

[See text for explanation of symbols]

The general tendencies exhibited in this table areas follows:

1. With one exception, the sign of the estimated bias agrees

with the actual sign.
2. Both the BWO and BWR procedures appear to give quite

reasonable estimates of the actual bias, although the BWR

scheme tends to provide overestimates for n = 10.

Although not shown in the table, these estimates OJ bias
have small sampling errors. This occurs because A and R; are

obtained from a single s~ple and the correlation, over 500

samples, between fi and Rj is of the order of 0.995. Further-
more, their estimated variances are quite close together. For
example, for population y -t- 20 and n = 10

~= 3.3634

n=10 “=2(3 fl =50

T*
Population

T* T
RBWO

T*
RBWR

7
R;wo

T
RBWR R;wO R;w/z

Basic

Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-0.0002 2_o,ooo7 3–0.0004
Bootstrap estimate . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0007 -0.0009 0.0024 -0.0000 –0.0002 –0.0001

y+20

Bass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.0389 30.0205 30.oo25

Bootstrap estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0343 0.0395 0.0155 0.0172 0.0041 0.0043

~1,5

Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–0.0203 3–001 41

Bootstrap estimate . . . . . . . . . . . . . . . . . . . . . . . . . .
3-0.0049

-0.0272 -0.0355 -0.0129 -0.0121 –0.0046 –0.0043

#.5 +20

Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..$ 30.0103 30.0092
Bootstrap estimate . . . . . . . . . . . . . . . . . . . . . . . . . .

30.0017
0.0071 0.0170 0.0045 0.0001 0.0011 0.0014

Y+l.5X– 0.1X2

Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.0133 30.0065
Bootstrap estimate . . . . . . . . . . . . . . . . . . . . . . . . . .

30.0013
0.0126 0.0140 0.0063 0.0055 0.0017 0.0015

Average absolute bias . . . . . . . . . . . . . . . . . . . . . . . . 0.0166 0.0102 0.0022
Average estimate of absolute bias. . . . . . . . . . . . . . 0.0139 0.0214 0.0083 0.0072 0.0023 0.0023

1Based on 15,000 samples.

‘Based on 10,000 samples.

3Baaed on 5,000 samplea.

NOTE: All others are based on 500 samples.
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Table E. Bias of the adjusted ratio estimator

[See text for explanation of symbols]

“=70 n=20 “=5r3

Population

—

B WO B WR B WO B WR B WO B WR

Basic

Actual bias of; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0002 –0.0007 –0.0004
Bias of~j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0020 –0.0044 0.0097 –0.01 59 –0.0007 -0.0097

y+20

Actual bjas of fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0389 0.0205 0.0025
Bias of Rj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0124 –0.0046 0.0170 –0.01 39 -0.0025 0.0013

~1.5

Actual bias of~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0203 –0.01 41 –0.0049

Bias ofhj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0406 0.0028 0.0081 –0.0200 –0.0023 -00038

yl .5 + 20

Actual bJasof ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0103 0.0092 0.0017

Bias of Rj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.0026 –0.0436 -0.0106 0.0115 0.0052 –0.0045

y+l.5x–o.lx2

Actual bjasof ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0133 0.0065 0.0013

Biaaof Rj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0031 0.0081 0.0036 0.0025 –0.0034 0.0008

Average abaolute bias . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0166 0.0102 0.0022

Average estimate of absolute bias. . . . . . . . . . . . . . . . . 0.0121 0.0127 0.0098 0.0128 0.0028 0.0040

NOTE The actual bias valuea are based on 5,000 sampiea: the values of the biaa of fij are based on 500 samPles

~:wo= 3.3977

Bi& = 0.0343

V(R) = 0.0910

.=
V(R~wo) = 0.0961

;~.~. = 0.9933

From table D it appears that, at least approximately,

&~&&R

This suggests that

might be an “improved” estimator of R. This estimator will bc.
denoted by R&~ ~ or k~wo ~, the subscript A denoting “ad-

Therefore,
justed.” The estimated bias ‘of these two adjusted estimators

for all five populations and three sample sizes is given in
table E. These data do not seem to indicate that fi~ has sma[lcr

0.0910 + 0.0961
~(bi%) = ~oo

bias than ~ because roughly half the cases show increased bias
500 and half show decreased bias. However, the sampling errors of

-“o’’@WWR

these estimates are of such magnitude that none of the differ-
ences between the estimates and the corresponding bias is sig-

nificant. (The standard error of an estimate can be approxi-

-=0.0016
mated by taking the appropriate ~(~) from table A, dividing by
500, and taking the square root.)
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Coverage of confidence
intervals

For each sample used in this investigation we computed Five hundred independent samples were drawn for each
the following t-statistics:

1. BWR

A–R

‘T’=m
i/-R

‘BWR=A=
t &–R
MSEBwR =

V==@

2, BWO:

2ii – i;wo – R

‘Bwo= m=

2fi – ;~wo – R
tMSEBwo =

d
M~E,wo(R)

population, for each sample size, and for BWR and BWO.
Table F presents the percent of the 500 samples for which the
two-tailed t-statistic equaled or exceeded the tabular values for

a = 0.05 and 0.10. Nine degrees of freedom were used for

n = 10, 19 degrees of freedom for n = 20, and an infinite
number of degrees of freedom for n = 50.

There are two important factors to keep in mind when
looking at the entries in table F:

(14) 1. The numerator for any tin an+ line is ~ – R the numerator
for any tin a B line is (2~ – R~m) – R, and the numerator

for any tin a C line is (2fi – fijwo) – R. Actually, this
difference in numerators has little effect because table E
shows that there is very little difference among the esti-
mators ~, @jwKA, and fi~wo A.

2. The entries are two-tailed. We have not shown the one-
tailed values, but they differ markedly from what would be
expected under symmetry. For the first four populations,
the percent of t’s that are smaller than –ta is much larger

than the percent that exceed ●l-t&.For the fifth population
y + 1.5x —O.lxz, the reverse is true.

The only tendency that seems to stand out in table F is

(15) that the entries generally exceed the nominal value. This means
that confidence intervals will cover the parameter somewhat
less frequently than would be expected from the stated con-
fidence coefficient.

To bring out the more important aspects of table F, we
have computed a number of summary tables, always keeping

the numerators and denominators for each t-statistic separate

and, of course, always keeping the two a values separate. In
table G the comparison for variance estimators is pi-esented.
There are several points to note concerning this table:

1. There is very little difference among the four variance

estimators.
2. There is a slight tendency for the fifiwo’ results to be

larger than the other two.

(16)
In table H, comparison of tvalues among populations is

given. The most striking feature of this table is the extent to
which the t values for population Y1.5exceed the nominal values.
Again, we observe, as in table G, that the fi~wo A results fre-
quently are larger than the others.

Table J presents the comparisons for sample size. There

seem to be no marked differences for the three sample sizes.
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Table F. Percent of 500 samples for which the 2-tailed t-statistic equals or exceeds the tabular value

[SIX!tc.t fur explanation of symbols]

a=o.05 CY=o. lo

Population n Methodl vi+) VTX(6) OB(R) A4~EB(~) VT:(R) OTx(6) VB(;) M.5EB( E)

1311slc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

20

50

y-l-zo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

20

50

Y
1,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

20

50

yl’’+zo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

20

50

p+l.5x- o.lx~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

20

50

A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c
A
B
c

6.2
5.6

5.8
4.2
4.2
7.3
5.2
6.4
8.8

7.4

8.2
4.4

5.6
5.6
6.5
4.2
4.6
4.B

7.6

7.2
6.4
6.8
6.0

6.5

8.6
7.8
8.2
5.B
5,2

6.0

6.0
6.0
5.5
6.8

6.6
B.O

5.2
5.4
7.0

B.2

8.4
8.0
3.4

3.4

5.4

6.4
6.4

5.4
4.B
4.8
8.0
6.4
7.2
9.B

6.B

6.4
4.6

6.B
6.6
7.1
4.6
4.2

5.2

8.8

9.0
7.6
8.4
8.4

7.1

8.8
B.B
8.2
6.6
6.8

6.6

6.0
6.4
6.4
6.6

6.8

8.4
7.4
6.6
B.6

9.4
9.4
9.4
4.0

3.8

5.2

6.0
5.B

5.6
4.6
4.8
7.4
6.4
7.0
8.6

7.0

7.4
4.0

6.0
6.0
4.5
4.6
4.2

5.B
7.0

7.2
8.0
7.0

6.B

6.3

B.4

8.2
9.2
5.0
5.4

6.6
6.4
7.0
6.7
6.4

6.4
B.6

5.4
5.8
7.4

9.B

8.6
9.3

3.6

3.6

5.B

6.0
5.8

5.6
4.6

4.6
7.3
6.4
6.B
8.4

7.0

7.2
4.0

5.B
5.6
4.6

4.4
4.2

5.6

7.0
7.0

B.O
7.0

6.6

6.3

8.2
8.0
8.8
4.6
5.4

6.6

6.4
7.0
6.1
6.4

6.4
B.6

5.4
5.B
7.2

8.8

B.4
9.1

3.6
3.6

5.6

10.2
10.6

B.B
9.8

10.6
13.1
13.2
140
12.8

12.6
13.4

7.6
11.6
12.4
13.7

9.4
8.4

10.6
12.2
13.6
13.4
12.8
13.8
13.7

13.B
14.1
12.6
11.4
12.2

10.B

11.0
10.2
11.7
10.6
10.6
12.0
14.0
13.6
12.4
14.8
14.4
15.2

6.B
7.2
9.8

10.6
11.0

9.6
9.6

10.6
12.8
12.6
14.2
12.B
12.2
12.2

8.8
10.6
10.8
14.1

B.8
8.8

10.0
13.2
12.8
13.0
12.8
13.4
14.1
13.2
13.6
12.6
11.4
11.B
12.2
11.2
11.4
12.3
11.0
10.6
13.0
13.4
12.6
14.6
14.4
14.6
15.6

7.0
7.4
B.6

9.4
9.8
9.4

10.6
10.8
14.5
13.2
14.0
13.0
11.6
12.4

9.0
11.2
13.6
11.6

8.4
8.2

10.0
11.8
12.0
14.4
13.4
14.0
15.1
14.8
15.2
13.4
11.6
11.B
11.6
11.4
11.2
12.3
10.8
12.2
12.6
13.2
13.2
14.4
14.4
14.8
16.1

8.0
7.8

10.2

9.2
9.8
9.4

10.2
10.8
14.3
13.0
13.8
12.8
11.4
11.8

8.8
11.2
12.4
10.6

B.2
8.0

10.0
11.6
11.8
14.0
13.2
13.4
14.7
14.6
15.2
13.2
11.6
11.2
11.0
11.4
11.0
12.0
10.4
11.B
12.6
13.0
12.6
14.0
14.4
14.6
15.6

7.8
7.8
9.8

1A 13WR,!nd ;, formulds (1 4). B: BWR and &VR,A = 2; - &R, formulss (15). C BWO and %BWO.A= 2; – &Jo, formulas (16).

NOTE F.w d pmtwlm rqmlatmn and sample size. all entries on hnea A and B are based On the same set of 500 sample% entries on any other I!ne In the table,

II II; lIIIjmII ihww m Imu C for the same population and sample stze, are based on independent sets of 500 samples.



Table G. Comparison of effects of variance estimators from table F

[See text for explanation of symbols]

Variance Ratio
estimator estimator rz=o.05 CY=O.1O

Vfi(fi). . . . . . . . . . . . . ,fiBwR
R;WR,A
Ajwo,A

of...,.......... ~RBw~

F@JR,A

Rm;wo,A

Oaf. . . . . . . . . . . . . . . ~RBw~

f+gwR.A

Rjwo,A

M$E#) . . . . . . . . . . . . ~’?%w,q
l?~wR,A
R&Io.A

6.1
6.0
6.6
6.8
6.8
7.2
6.2
6.3
6.9
6.1

6.2
6.8

11.6
11.9
11.9
11.5
11.7

12.3
11.6
12.1
12.5
11.4
11.7
12.2

Table H. Comparison of effects of different populations from
table F

[See text for explanation of aymbola]

Ratio
Population estimator CY=O.05 tx=o.lo

Basic . . . . . . . . . . . . . . . . . . . . . . . jawu
@Af~,A
R-~wo,A

y-i-20 . . . . . . . . . . . . . . . . . . . . . . RBWB

@w~,A

R;WO,A
p.5.........

. . . . . . . . . . . . . . . -RBw~

@R.A

Rjwo,A
yl.5+20. . . . . . . . . . . . . . . . . . . . .’?BwR

@wR,A

R’&o,A
Y+l.5x– O. IXZ . . . . . . . . . . . . . . ~RBw~

l&R,A

R~wo,A

5,6
5.5
7.3
5.8
5.8
5.1
7.8
7.6
7.6
6.1
6.3
7.0
6.2
6.1
7.3

11.0
11.7
11.9
10.6
11.0

10.4
13.1
13.6
13.7
11.2
11.3
12.0
11.8
11.7
13.0

Table J. Comparison of effects of different sample sizes from
table F

[See text for explanation of aymbola]

Ratio
Sample size estimator a =0.05 CI=O.1O

lo . . . . . . . . . . . . . . . . . iBwR
tiWR,A

“WO,A

20 . . . . . . . . . . . . . . . . . ~RBw~

@wR.A

RA:WO,A

50 . . . . . . . . . . . . . . . . . R:w~

k;wR,A

%BWO.A

6.4

6.5

6.3

6.6

6.6

7.0
5.8
5.9
7.4

11.6
12.0
11.4
12.0

12,4
13.6
10.8
11.6
11.6

14



Nonparametric confidence
intervals for F?

Efron3 (section 10.4) has suggested using C6F(~*) to de-
termine nonparametric confidence intervals for 6. We apply

this approach here to determine nonparametric contldence in-
tervals for R.

Consider a sample of n drawn without replacement from N
where R is the sample ratio. Draw samples with or without
replacement from this sample according to the procedures

previously suggested in this report. For a single such sample,
denote the ratio estimator as R*. In the present instance we
have used 1,000 bootstrap samples, each giving rise to an fl~,

i= l,,.., 1,000. Order these values of@ as

For 95 percent confidence intervals, take a = 0.025 and find
fi* (fit) such that 2.5 percent of the A* values are S FL a~d
~~P~ (fifi) such that 2.5 percent of the A* values are> R%. R;
and R~ provide a 95-percent nonparametric cotildence interval
for R, Ninety percent conildence intervals also were determined
in the same manner. These percentile confidence intervals were
computed for each of 500 samples drawn from the original

population,

Efron3 (section 10.7) also describes a “bias-corrected per-
centile method” that applies here if the fraction of A* values
< fi # 0.50. In the present instance, this involves the following

steps. (The rationale for these steps is given by Efron.) For a

single sample dr~wn from the original sample and the resulting
1,000 values of R*:

1, Find the fraction of values of A* S fi that is CDF*(~).
2, Find the standard normal variable ZOsuch that the fraction

of values of z < Z. is equal to C6F*(@.

3. Take Z. to be 1.96 for 95 confidence intervals and similarly
for other confidence coefficients, and determine 220 –

Z. = Z1 and 2Z0 + Z. = Zz.
4, Determine the areas under a standard normal distribution

such that al is the probability that z is less than or equal to

z, and az is the probability that z is greater than or equal to
Zz, denoted by al = Pr(z S Zl) and az = Pr(z > zJ, re-
spectively,

5. Find the bias-corrected percentile intervals&~ such that
of the al X 100 percent, &* values are S ~~’c and ~~ ~
such that of the az X 100 percent, A* values a’re > ~~ ~;

Efron3 characterizes this procedure by arguing that it

amounts to tinding a transformation which transforms the dis-
tribution of 1* to that of a normal distribution, if such a trans-

formation exists. It is not necessary to find the form of this
transformation. Here we have determined both 95 and 90 per-

cent confidence intervals.
TO provide a basis of comparison, fl(fi) has also been

computed from the 1,000 & values, thus leading to the standard
confidence intervals ~ * t~w. All three intervals have
been determined for the two populations Y1.5 and y -1-1.5x –

O.1X2 and for the three sample sizes 10, 20, and 50. For each
case we also have employed the BWR and BWO procedures.
These two populations were chosen because they seem to cause

difficulty in coverage of confidence intervals, as indicated in
table F. This is especially true for yl “5.

In table K the average widths of the three 95-percent con-
fidence intervals, together with the percent of 500 intervals that

cover the population value R, are presented. These are given
for the two populations, the three sample sizes, and for the
BWR and BWO procedures. From this table we observe:

1.

2.

3.

4.

5.

There is very little difference between the BWR and BWO
procedures for width or coverage of the intervals.
There is very little difference between the percentile inter-
vals and the bias-corrected percentile intervals.

All coverage percents are smaller than the nominal value,
95 percent.
For samples of size 10, the widths of the intervals for the
two percentile methods are noticeably smaller than those

of the ordinary method, 2t~~). At the same time,

however, the coverage of these intervals is smaller than
that of the ordinary intervals. These differences still exist
for samples of size 20, although they are less pronounced.
They have completely disappeared for samples of size 50.
There is no marked improvement in the coverages as n
increases from 10 to 50.

An analogous table for 90 percent confidence intervals yielded
results consistent with these conclusions stated and, therefore,
has not been included in this report.

Table K presents the major aspects of the differences

among the three ways of determining confidence intervals. One
other aspect, however, is worthy of brief consideration. In the
preceding section it was observed that for the symmetric inter-

vals considered there, the one-tailed coverages would be seri-
ously in error. One might hope that the nonparametric intervals
of this section would improve this situation. Although the inter-
vals arising from these procedures are not symmetric, at least

for small n. they do not produce more nearly equal tails. As an

example, consider population y -t 1.5x – 0.1 X2, n = 10, and
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Table K. Covereges and average width of nonparametric 95 percent confidence intervals

[See text for explanation of symbols]

Population n Method 2t ~G ~; – ;? i~,c - ~i,c

y+l.5x-o.lx2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 BWR 0.64(94.8) 0.55(88.0) 0.54(87.8)
BWO 0.62(92.2) 0.53(84.8) 0.53(85.8)

20 BWR 0.41 (93.2) 0.38(90.0) 0.38(90.4)

BWO 0.41 (93.2) 0.38(90.0)

50

0.38(89.4)

BWR 0.20(93.4) 0.20(93.0) 0.20(92.8)

8W0 0.20(89.4) 0.20(89.2) 0.20(89.0)

Y“S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 BWR 2.20(93.4) 1.88(90.6) 1.89(90.8)

BWO 2.08(92.4) 1.78(89.2) 1.79(89,0)
20 BWR 1.44(93.6) 1.34(92.2) 1.34(92.4)

BWO 1.38(93.4) 1.29(90.6) 1.29(91 .4)

50 BWR 0.69(92.2) 0.69(91 .6) 0.69(91 .8)
BWO 0.70(93.6) 0.69(93.0) 0.69(93.4)

NOTES The entnes on esch line of tha table are bssed on 500 samples from the population. Entries on different lines are based on independent sets of 500 samples.

The entries in parentheses are the percents of 500 confidence intervals that include R.

Each interval is based on 1,000 bootstrap samples; coverages and average widths are based on 500 samples from the population.

Table L. Location of R with respect to specified percentile intervale of k“ with BWR

[See text for explanation of symbols]

Percent of 500 samples for which—

Y“S. . . . . . . . . . . . . . . . . . . . . . . . 10 7.0 13.0 23.6 24.0 14.8 17.8
20 6.6 14.2 25.0 21.4 15.2 17,6
50 5.6

y+l.5x -0.1x2 . . . . . . . . . . . . . . 10
15.2 25.4 19.4 14.8 19.6

20.6 14.6 22.2 25.8 10.2 6.6
20 19.8 12.2 23.6 25.0 13.0 6.4
50 12.6 13.6 26.0 23.0 17.8 7.0

NOTE Based on 1,000 BWR ssmples.

o~these half-widths, averaged’over 500 sin-pies,are as follows:

Intewal Percentile

~:–i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.24

/?; -k... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.30

R:c–~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.25

i;c-fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.29

These compare with the symmetric intervals Yt<m of
–0.32 and +0.32. For the percentile intervals, R was below
h; in 10.2 percent of the samples, above fig in 1.8 percent of
the samples, and between fi~ and ~~ in 88 percent of the
samples. The corresponding values for the percentile-corrected
intervals were 10.2, 2.0, and 87.8 percent, The same situation
exists for the population yl.5, except that the right tail of the
distribution is the heavy tail instead of the left tail. This behavior
does not improve with larger sample sizes.

Further information on the behavior of the percentiles of
the distribution of fi~ is given in the following analysis of our
basic data. For each sample drawn from a population we have

the ordered values of@ as indicated in equation (17). These
were used to determine selected percentiles of the empirical
distribution ~~~, ~~o, @O~,~~~~,@Oo, @ ~,~~~o, and h;, ~.
~~~ and fi$~,~dete&ined the 95-percent nonparametric con-
fidence intervals discussed earlier in this section. For each of
the 500 samples, the location of R with respect to ~~oo, ~~~~,
fifo,o, &~5o, ~d @~o.owas observed. The percents of “the500
samples for which R fell in the stated intervals are given in
table L. These values refer to BWR. The entire process was
repeated for BWO, but because the results do not differ
markedly from those given here they are not included.

From this table we observe the following

1. R falls in one tail too high a percent of the time and in the
other tail too low a percent of the time. The heavy tails are
reversed in the two populations.

2. This situation improves somewhat with increasing sample
size for population y + 1.5x —O.1X2,but appears to worsen
with increasing sample size for population y1”5.

Rao and Wus suggest that a second phase bootstrap pro-
cedure on t values might provide improved confidence intervals,
but this proposal did not come to our attention soon enough to
be included in this study.
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Two-stage sampling

In cluster sampling, where one first selects a sample of If N = /cln and A4 = k2m, then the estimated variance ~(’)
clusters and then draws a sample of elements from each of the of a sample mean
selected clusters, the variability of an estimate of a population
parameter depends upon the variability between clusters and nm

the variability within clusters. Thus, Cochrang (chapter 10)
xx Y~

presents the theory for the sampling and subsampling of equal- i=lj=l
j=

size clusters. For example, if the population consists of N nm

clusters, each with i14elements, and a simple random sample of
n clusters is selected, with m element’s drawn at random from is equal to

each, we have for the sample mean

and

~_n , ~(7i-~)2.— —
Nn n—1

(17)

Suppose that we now replicate each cluster ICItimes and draw a
sample of n clusters without replacement from this artificial

population. For the selected clusters, replicate each element
k,k2 times and draw, without replacement, a sample of kim
elements. Then the variance of the bootstrap sample mean -P,
given the original sample, is

P(F original sample) = fi~wo(-fi)

+%==;’i)’(18) k,~(jii–yy
() 1 1 i=l

To estimate J@ from a single sample it is necessary to esti- = l–~ z kln – 1
mate the first and second terms separately and add them together.
This is true whether one uses a Taylor series approximation or

a pseudoreplication technique, such as balanced half samples
( )–

11
+ l–F nk,m

or the jackknife, 11

Various attempts have been made to devise a pseudorepli-
cation technique where the variability between replicate esti- m

mates would account correctly for the between and within kfk’y,y,(yti – .7i)2

components without the necessity of estimating them separately. x
i=lj=l

These attempts have been unsuccessfid; see, for example, nkl(k1k2m – 1)

McCarthyl 1 and Mellor12 (p. 189). However, it is possible to
use the bootstrap to accomplish this end. We will describe * ~ ~(.Yi ‘~)’
BWO and BWR schemes, but the BWO scheme is not of value
except in very special circumstances. ()= l–Z ~ n–l/kl
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() 1 11
— ——

+ l–Z klnm

pj’(y,-yi)z
;=l-j=l

x n(m – l/k1k2) (20)

When we compare ~(.~) and V(j*\original sample), we see
that the correction factors needed to make the two equal are
different for the within and between components: (n – I/kI)/
(n – 1) for the between component and (m – l/k1k2)/(m – 1)
for the within component. Thus, the only situations in which
thk would be a practical approach are those in which these two
factors are approximately equal or, better still, where they are

both approximately equal to 1.
For BWR, suppose we draw n* clusters with replacement

from the n sample clusters and m* elements with replacement
from the m elements in each of the n* clusters selected at the

first stage. Then the variance of the sample mean is given by

, *(.7,-7)2
1

V*(J* original sample) = 7 n + —@m*

~,$(yfj-~i)’

x
nm (21)

This will be equal to l@,

choose n* and m* so that

()
1 –+

1

as given by equation (19), if we

11 1—— .—
nn—1 ~*n

or

n –1
‘* = 1 – I/kl

k,
=~(n–1)

and

or

k1k2 n
m* =_.k2–lnX(m–1)

Thus, with this choice of n* and m*,

t*(j*loriginal sample)= ~~w~(jl = fi(y)

(22)

(23)

and it is only necessary to draw repeated bootstrap samples

from the original sample, make the estimate ;* from each
sample, and compute the variance among these estimates.

No attempt has been made to study this procedure when
kl and k2 are not integers or when n* and m* are not integers.

The approach of Rao and WU,8 described earlier in this
report, also can be extended to two-stage sampling.

To try out the BWR scheme on actual data, we developed
a reasonable superpopulation model from which an actual finite
population could be drawn. We started with

Yu=P+c, +eu

where c, is the cluster effect and eti controls the variability within

clusters. Let c, have mean zero and variance u?, and eti have
mean zero and variance u:,, c, and eu being independent. Then

V(yv) = u; + u:,

and the intraclass correlation coefficient between elements in

the same cluster is

~;

Pyfi~ik= —a; + a;,

We took Ci to be X2 with nine degrees of freedom and eb to be
normal with mean of zero and variance u;. p was arbitrarily

assigned the value 0.10 because thk appears to be a value that
might well arise in practice. This leads to u~.= 162. Finally, ~
was taken to be 40 to insure that y, is greater than zero.

Because we wanted to apply the bootstrap method to the
ratio estimator, it was next necessary to generate an XUto be
associated with each yy We started with the customa~ model

YU= Rxti -1-e;

E(e;) = O

V(e~) = d;

with e; normal and independent of c, and ev thus leading to

-vii e;

‘c=x+x

J@u) = *(U;+fJ;+ d;)

Taking R = 2 and d; = 90, we find

~,= 0.82P

Px@xik = 0.067

Using this model, we generated two different populations
to obtain information on different cluster sizes and sample
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sizes. The characteristics of these populations are as follows:

Population

Parameter AB

N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 10
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 18
Al . ., ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2
k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
n., .,,.,., . . . . . . . . . . . . . . . . . . . ..!..... . . 55
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
n* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8
m“, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3

These two populations are shown in figures4 and 5. We also
added 50 to each y value for each population, leaving the x
values unchanged, thus leading to populations A + 50 and
B + 50. Some of the characteristics of these four populations
are given in table M.

Five hundred samples were drawn from each population
and 100 bootstrap samples were selected from each sample.
The following estimates of mean square error were computed
for each sample:

nM—m 1
+ V--W-E

m

$Yl yu – lixuy

x
i=lj=l

n(m – 1) -

N-n 12(7’-fizi)2——
Nn n—1

(24)

(25)

(26)

(27)

Th~se valu~ were a~eraged over tQOO samples, giving rise
to Vm(fi), V#), V~wR(i?),and MSE;wR(@.

These values were compared with the MSE(I?) as com-

puted from table M and expressed as the perce~ devia-
tions presented in table N. Thus, for populatio~ A and V&J~),
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Table M. Populations used in the investigation of clustered
populations and samples

[Seetextfor explanationof symbols]

Percent

A . . . . . . . . . . . 2.0113 2.0173 0.0060 0.01353 5.2

A -I-50 . . . . . . 3.9959 4.0283 0.0283 0.09984 9.0

B. . . . . . . . . . . . 2.0149 2.0228 0.0079 0.01056 7.7

0+50 . . . . . . . 4.1062 4.1288 0.0226 0.07914 8.0

lPopulation A N= 15, M= 12, n = 5, and m = 2. Population B: N= 10,

M=18, n=5, andm =3.

NOTE Based on 5,000 samples

Table N. Undarpercent and overpercent estimates of MSE(~) for
clustered populations and samplas

[See text for explanation of symbols]

Population 1

A . . . . . . . . . . . . . . . . . . . . 3.3 – 0.4 12.1 14.3

A -f-50 . . . . . . . . . . . . . . . . –2.2 –11 .0 12.0 14.9
B . . . . . . . . . . . . –7.1 –1 0.4 –3.2 –1 .9
B+50: : : : . . . . . . . . . . . . -1.3 –5.6 4.9 7,9

lPopulation A P/= 15, M= 12, n = 5, and m =2. Population B: N= 10,

M=l B,n=5, andm=3.

NOTE: Va~es of MSE(fi) are baaed on 5,000 samples; ~valuea are based on

500 samples; BWR va[uea are based on 100 bootstrap samples.

~wR(@ – 0.01357

0.01357
X 100 percent= 12.1 percent

From this table we see that

1. The Taylor series estimators generally underestimate

MSE(8); the bootstrap estimators are overestimates.
2. Populations A and A +50 cause some problem for the

two bootstrap estimators, but they do well for populations

Band B+50.

If desired, sampling errors can be approximated from the entries
in table M and the first column in table O.

The stability of the variance estimators is examined in
table O. As was the case with ~ for simple random sampling
(see earlier discussion), the two bootstrap estimators are con-
siderably less stable than the two Taylor series estimators.
M$E “~wR(R) generally IS th: least stable of the four.

As discussed earlier, R; – R should provide an estimate
o&the gas of ~. This quantity, averaged over 500 samples

(Rj – R), is presented in table P, where it is compared with the

actual bias as determined from 5,000 samples. The estimated
bias agrees quite well with the actual bias in all cases.

For each of the 500 samples, for each of the populations,
we computed the respective t-statistic from equations ( 14). In
assessing the coverage of confidence intervals based on these t

values, there occurs the problem of choosing the appropriate

number of degrees of freedom. There seems to be no obvious
answer to this concern. For populations A and A + 50, a vari-
ance estimate is based on a weighted sum of a between com-
ponent (based on five clusters) and a within component (based

on two elements per cluster). Therefore, it would seem reason-
able that the number of degrees of freedom should be between
five and nine (five for within plus four for between). We have
assumed arbitrarily that the t values have seven degrees of

freedom. Some empirical evidence that this choice is reasonable,
in connection with a closely related problem, is presented by
McCarthy.l 1 For populations B and B + 50, the same line of
reasoning leads to using a tvalue with 12 degrees of freedom.

Table Q gives the percent of the 500 samples for which the
two-tailed t-statistic equals or exceeds the tabular value. These
values suggest that quite reasonable confidence intervals for R
can be obtained using any of the variance estimators.

Table O. Mean square arrors of maan square error estimates for
clustered populations and samples

[See text for explanation of symbols]

7.Y .

Populationq VTZ(R) VT~( R) =VewR(;) M:EBWR(I+

A . . . . . . . . . . . . . . . . . . . 7.8(–5) 68 150 162
A +50 . . . . . . . . . . . . . . 5.7(-3) 51 184 203
B . . . . . . . . . . . . . . . . . . . 2.2(–5) 69 121 125
B+50 . . . . . . . . . . . . . . 1.6(-3) 69 135 144

lPopulation A: N= 15, M= 12, n = 5, and m =2. Population B: n = 10, M= 18,

n=5, andm =3.

NOTES: The numbers in parentheses are the powers of 10 by which the fvat

number IS to be multiplied. Thus the first entry of 7.8[-5) IS 0.000078.

v
V values a~e based on 500 samples; BWR values are based on 100 bootstrap

samples; VTi(R) taken as 100 percent.

Table P. Comparison of actual and estimated bias of A by each
population using the bootstrap for cluster sampling

Population 1 Actual bies2 Estimated bias3

A . . . . . . . . . . . . . . . . . . . . . 0.0060 0.0088
Ai’50 . . . . . . . . . . . . . . . . . . 0.0283 0.0326
B . . . . . . . . . . . . . . . . . . . . . . . 0.0079 0.0057
B+50 . . . . . . . . . . . . . . . . . . 0.0226 0.0245

lPopulation A: N= 15, M= 12, n = 5, and m =2. Population B: N= 10,

M=18, n=5, andm=3.

2Actusl bias based on 5,000 samples for each population.

3Estimated bias based on 500 samples for each population with 100 bootstrap

samples for each sample.
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Table Q. Percent of 500 samples for which 2-taiIed t-statistic aquals or exceeds the tabular value

[See text for explanation of symbols]

Denominator oft

Om(;) ik(ii) ;a~~(fi) M.k’qw(ii)

Population ~ 5 percent 70 percent 5 percent 10 percent 5 percent 70 percent 5 percent 10 percent

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 10.6 4.2 10.6 4.4 9.3 4.2 9.0

A +50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 10.2 6.2 10.0 5.8 9.6 5.6 9.6
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 11.0 4.2 10.4 3.4 11.2 3.4 11.2
B+50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 9.8 5.0 10.4 5.2 9.4 5.2 9.2

lPupulmmn AN=15, M=12, n =5, andrn=2. Population B:N= 10, M=18, rr=5, andrrr =3.

NOTE: 7 degrees of freedom for populations A and A -b 50; 12 degrees of freedom for populations B and B + 50.
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Summary

Two procedures are suggested for adapting Efron’s boot-

strap to finite population sampling. With the first procedure,
sample elements are replicated to create an artificial population
from which repeated samples are drawn without replacement.
With the second procedure, sample elements are drawn with

replacement from the original sample, the sample size being

chosen so as to account for the finite population correction.
Using simulations based on five artificial populations and

the ratio estimator, these two procedures are compared with

each other and with two Taylor series variance estimators with
regard to

1. The estimation of the mean square error of R.

2. The stability of the variance estimators.
3. The coverage of confidence intervals obtained from the

variance estimators.

In very general terms, there appear to be small differences
among the variance estimators, except that the bootstrap esti-
mators are somewhat less stable than the Taylor series esti-

mators. The confidence intervals usually cover the population
parameter a smaller fraction of times than would be expected
from the nominal values.

The bootstrap procedures are employed in obtaining esti-
mates of the ratio bias of R and to produce nonparametric con-
fidence intervals for R. This is not possible with an ordinary

single-sample Taylor series estimation of the variance approach.

The estimates of bias are quite good, but the nonparametric
confidence intervals do somewhat worse, at least for small
samples, than the ordinary approach where coverage probabil-
ities are concerned.

The BWR procedure is applied to the two-stage cluster

sampling situation. It is possible to draw, with replacement,
clusters from the sample clusters and elements from within these
clusters in such a manner that the variance of the bootstrap

means, in the linear case, is equal to the ordinary variance
estimator. No separate estimation of the within- and between-
cluster components is required. This procedure is evaluated by

simulation with a number of artiilcial populations using the
ratio estimator. It compares favorably with the ordinary Taylor
series approximations in variance estimation and coverage of
confidence intervals. It also produces a good estimate of the
ratio bias in f. The BWO procedure cannot be used in this

situation unless very special conditions hold.
It is clear that the BWR schemes will generalize directly to

stratified and stratified cluster sampling situations. BWO does
not generalize to these except in very special circumstances. It

also is possible to deal directly with medians by using the
bootstrap.

Further work in adapting the bootstrap to sampling with
unequal probabilities and without replacement from a finite
population is planned.
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