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Abstract 

Within a decision-making group, such as the monetary-policy committee of a central bank, 

group members often hold differing views about the future of key economic variables. Such 

differences of opinion can be thought of as reflecting differing sets of judgement. This 

paper suggests modelling each agent’s judgement as one scenario in a macroeconomic 

model. Each judgement set has a specific dynamic impact on the system, and accordingly, a 

particular predictive density – or fan chart – associated with it. A weighted linear 

combination of the predictive densities yields a final predictive density that correctly 

reflects the uncertainty perceived by the agents generating the forecast. In a model-based 

environment, this framework allows judgement to be incorporated into fan charts in a 

formalised manner. 
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1. Introduction 

 

Most economists agree that there is no such thing as a perfect model. In the absence of 

such, it is widely accepted that incorporating judgement into forecasting and policy analysis 

is both desirable and necessary.1 The aim of this paper is to present a framework in which 

judgement can be incorporated in a formal and model-consistent manner into a model-

based forecasting process. Specifically, we show how predictive densities associated with 

differing sets of judgement can be combined to achieve the overall goal of one final 

predictive density for each macroeconomic variable of interest.  

 

Predictive densities are most familiarly represented as fan charts, which are used in a range 

of applications, the best known probably being the inflation fan charts published by the 

Bank of England. The nature of monetary policy and its lags demand that central banks 

devote much time and energy to forecasting, and addressing how to incorporate judgement 

into their forecasts is paramount. Consider the following situation: The monetary policy 

committee at a central bank is about to make a decision regarding the policy interest rate. A 

main scenario – generated, perhaps, by the staff responsible for macroeconomic forecasting 

– is presented. One member of the committee is concerned that upcoming wage 

negotiations will lead to faster wage growth the coming year, while another member 

believes that foreign demand will be stronger than predicted in the main scenario. How can 

these views be accommodated  in the forecasting process? 

 

The methodology put forward in this paper takes its starting point from the suggestion that 

judgement should be modelled as a scenario in a general-equilibrium type macroeconomic 

model. A scenario is defined by laying down the probability density function for a number 

of future observations for one or more variables in the system. Thus the way in which 

judgement is modelled in this paper resembles the way in which Sims (1982) and Leeper 

and Zha (2003) model policy interventions. The main methodological distinction between 

the current paper and previous studies is that we allow specification of distributions for 

future values of any variable instead of just those under the control of the policy maker. 

                                                 
1 See for example Lawrence et al. (1985), McNees (1990), Reifschneider et al. (1997), Sanders and Ritzman 
(1999), Svensson (2005) and Svensson and Tetlow (2005). However, the opposing viewpoint has some 
currency. Authors arguing against the general usage of judgement when statistical methods are available 
include Armstrong (1985) and Makridakis (1988). 

 2



This modelling choice allows us to observe the dynamic effect of judgement upon the 

system. The dynamic impact is encapsulated in a predictive density corresponding to each 

judgement set. We suggest that the predictive densities associated with the different 

scenarios be combined into one final fan chart via a weighted linear combination, a method 

also referred to as the linear opinion pool. This allows judgement to be incorporated in the 

final fan chart in a model-consistent manner that correctly reflects the uncertainty perceived 

by the agents generating the forecasts. 

 

In the previous literature, the typical way to address judgement has been to adjust the level 

of a chosen variable with “intercept corrections” or “add factors”; for examples of this, see 

Reifschneider et al. (1997), Clements and Hendry (1998) and Svensson (2005). Such 

adjustments may be based on systematic historical forecast errors, rules of thumb, 

alternative models or other, more or less ad hoc, methods. The methodology suggested in 

this paper aims to formalise the incorporation of judgement to some extent.2 The 

motivation for turning away from ad hoc methods is that whilst judgement may improve 

forecasting performance, it can also introduce inconsistencies and shortcomings in the 

process, such as forecast bias and damaged forecast accuracy (Armstrong, 1985; Hogarth, 

1987). An example of such shortcomings can be found in the Riksbank’s fan charts. 

Because of the way in which judgement is incorporated, the fan charts have the undesirable 

property that inflation and its determinants can always be more uncertain than usual.3 

While the methodology proposed in this paper is not immune to all potential problems that 

judgement can introduce to the forecasting process, it alleviates several through the use of 

general-equilibrium type models – such as DSGE or VAR models – that ensure the 

equilibrium properties of the system are taken into account. 

 

Another advantage of the method proposed in this paper is its ability to address several 

conflicting scenarios, a practical issue noted by Svensson and Tetlow (2005).4 From an 

empirical point of view, this is an appealing feature given the complexity of many 

forecasting processes and it is made feasible by the use of model-averaging techniques. 

                                                 
2 Formalised use of judgement is advocated by for example Lawrence et al. (1986) and Sanders and Ritzman 
(1999). 
3 For a description of how the Riksbank’s fan charts are generated, see Blix and Sellin (1998). See Leeper 
(2003) for a more detailed discussion of the shortcomings of this method. 
4 Conflicting judgement regarding coefficients and models has been addressed by Svensson and Williams 
(2005).  
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Model averaging has frequently been employed in the forecasting literature – see, for 

example, Diebold and Pauly (1990) and Garratt et al. (2003) – but not in the way presently 

suggested. We argue that model-averaging techniques, such as the linear opinion pool, are a 

valuable tool to address judgement and forecast uncertainty.5

 

The remainder of this paper is organised as follows: Section 2 presents the background and 

terminology regarding judgement and lays down some notation. Section 3 discusses the 

combination of forecast densities, with extra attention paid to the issue of how to determine 

the weights for the linear opinion pool. In Section 4, the method is employed in an 

empirical application using a Bayesian VAR model. Finally, Section 5 concludes. 

 

2. Modelling judgement 

 

As stated in the introduction, the aim of this paper is to suggest a framework through which 

judgement can be incorporated in a forecasting process. In order to present the statistical 

methodology upon which the analysis relies, it will be useful to first describe what we mean 

by judgement and how this will be modelled. One potential definition is that by Svensson 

(2005, p. 2), who describes judgement as “information, knowledge, and views outside the 

scope of a particular model”. This is an appealingly broad description and roughly in line 

with economists’ conception of judgement in forecasting. 

 

As a typical example of what could be seen as judgement in this framework, consider the 

task of forecasting future CPI inflation using a VAR model four periods ahead standing at 

time T. Assume next that a substantial cut in the value-added tax is decided upon by the 

parliament and announced to take place at T+1. Since the VAR model is purely backward 

looking, it will never be able to take the effects of this tax cut into account by itself (unless 

it is a recurring event). Given that we have this information, it is desirable to incorporate it 

into the forecast though. 

 

Based on Svensson’s qualitative definition of judgement, it will be useful to look more 

closely at four cases of interest: 
                                                 
5 Whilst relying on tools from the multi-model inference literature, it should be noted though that this paper 
does not address the issue of model uncertainty; see for example Brock et al. (2003). Rather, the model will 
be taken as given in the analysis and it is the different sets of judgement that we wish to account for. 

 4



 

i) There are known future values for one or more variables in the system and 

these are different from those suggested by the model.6

 

ii) There are known future values for one or more variables not in the system, but 

which will affect the system, and these are different to those implicitly used by 

the model. 

 

iii) An agent’s perceived probability density function (PDF) for predictions for 

one or more variables in the system differs from that suggested by the model. 

 

iv) An agent’s perceived PDF for predictions for one or more variables not in the 

system, but which will affect the system, differs from that implicitly used by 

the model. 

 

The first case is usually reasonably straightforward to deal with since we often simply can 

condition on the known values in the model. It is not completely trivial though as the 

forecaster typically has to decide how to generate the conditioning. Put differently, it must 

be decided upon which combination of shocks that caused the outcome. The question of 

which combination of shocks to use in order to generate a particular outcome or distribution 

is an equally important issue in all four cases above though and we will therefore discuss 

this issue in more detail below. From now on the discussion will, however, focus on the last 

three cases which are more interesting and they will be treated in the same way 

methodologically. 

 

Turning to the way in which judgement will be modelled in this paper, we will initially 

denote by  the nx1 vector of variables being modelled. We assume that there is a main 

scenario in the forecasting process, given, for example, by a macroeconomic model’s 

endogenous forecast. Judgement – as described in cases ii), iii) and iv) above – is then 

represented as M-1 alternative scenarios, where a particular alternative scenario is defined 

as the PDF for the predictions of the x1 vector  over the horizon  to , 

tz

s
in s

ti ,z l
ihT + u

ihT +

                                                 
6 By “different” we mean that the value used for point forecasting and evaluation – which typically is given 
by the mean, median or mode – is different from the known future value. 
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applications, we would typically expect  to equal one – or at least be small – since it is at 

short horizons that we think that judgement may be superior to models.

l
ih

7 It also appears 

reasonable to expect  to be of fairly low dimension as it seems non-trivial to specify a 

distribution for a large number of variables over a long forecasting horizon. 

ik

 

Having specified ( )ii kφ , the practical issue of how to generate the predictive density 

associated with that scenario remains. A number of methods for such conditional 

forecasting have been used in the literature – see for example Sims (1982), Doan et al. 

(1984), Waggoner and Zha (1999), Leeper and Zha (2003), Adolfson, Laséen, Lindé and 

Villani (2005), Cogley et al. (2005) and Robertson et al. (2005) – where stochastic 

simulation typically is an important feature. As the purpose of this paper is to evaluate 

judgement using the dynamic impact on the system, we will follow the line of research 

relying on repeated simulation of the model. In this framework, forecasts are generated by 

feeding shocks into the system and after making sure that the restrictions defined by ( )ii kφ  

are met we can observe the dynamic effects that a particular scenario has.8

 

We will not dwell on the technical details regarding the different ways of generating 

predictive densities from different scenarios here – instead the reader is referred to the 

above mentioned articles for details. One method will also be more closely described in the 

empirical application in Section 4. However, it is worth pointing out that when a scenario is 

generated we should – depending on application and, in particular, the information 

available – carefully consider if any shock(s) should be given a more pronounced position. 

For example, a scenario that describes a higher wage growth than suggested by the model 

could be generated in a number of ways depending on what the underlying causes are 

judged to be: Higher productivity or stronger labour unions might be the answer, but it 

                                                 
7 See for example Lawrence et al. (1986) and McNees (1990). 
8 For empirical applications relying on the same principle, see for example Waggoner and Zha (1999) and 
Adolfson, Laséen, Lindé and Villani (2005). 
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could also be a weaker real exchange rate, a higher inflation rate or strong foreign demand. 

If we are fairly sure that the driving force in a particular scenario is a certain shock (or 

combination of shocks), this information should clearly be used when generating the 

scenario. Intuitively, it seems preferable to use as detailed information as possible as this 

should generate the highest accuracy. Empirical work along this line of reasoning can be 

found in Leeper and Zha (2003) and Adolfson, Laséen, Lindé and Villani (2005); in both 

articles was a constant future interest rate path generated by a monetary policy shock. 

Needless to say, we could on the other hand also be in the situation where we are almost 

completely agnostic regarding the underlying causes in a particular scenario. In such a case, 

it might be more reasonable to “plead ignorant” and a method such as that of Sims’ (1982) 

– in which the sum of squares of the shocks is minimised – could be one reasonable 

alternative. 

 

3. Combining predictive densities 

 

The way in which judgement is modelled is a key element in the methodological 

framework presented in this paper. An equally important issue though is how to generate a 

single predictive density which takes the M-1 sets of potentially conflicting judgement into 

account in a sensible way. In this paper we suggest that the linear opinion pool should be 

used for this purpose. This is a method to combine probability distributions with a strong 

support in the literature; see for example McKonway (1981) and Wallis (2005).9

 

Our goal is to generate the PDF for the stacked x1vector of predictions 

, where the x1 vector  is a subset of the variables in  with 

. Employing the linear opinion pool, this is accomplished by taking a weighted 

average of the predictive densities under the main and alternative scenarios according to 

Hn y

′
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9 An excellent review on previous literature regarding judgement and forecast combination can be found in 
Clemen and Winkler (1999). 
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where  and  are the predictive densities under the main and alternative scenarios 

respectively and 

( )yf ( )yjg

jω  are the weights each scenario receive which fulfil 0≥jω  and 

. ∑
=

=
M

j
j

1

1ω

 

The linear opinion pool has a number of appealing features; the weighted density 

automatically integrates to one and, as pointed out by Clemen and Winkler (1999, p. 189), 

the method also “satisfies a number of seemingly reasonable axioms” such as the unanimity 

property and marginalisation property. Most importantly though, it allows us to in a 

straightforward way combine the predictive densities from all scenarios under consideration 

and this can be done regardless of whether they are compatible or at odds with each other. 

 

The weighted density is not necessarily easy to describe though, as ( )yp  typically is not of 

the same form as the distributions that were weighted together. For example, weighting 

together M normal distributions, ( )yp  is in general not a normal distribution even though 

this assumption is not uncommon in the literature.10 But whilst this could be a potential 

problem when aiming for analytical expressions, it need not impose much of a problem in 

empirical applications.11 The potentially complicated form of ( )yp  should, however, not 

only be considered a problem. Clearly, it is also an advantage of the linear opinion pool that 

it – despite its simplicity – is able to generate for example bimodal distributions or 

distributions with fat tails. 

 

What we have seen so far is that the suggested method to weight together the M different 

predictive densities as such obviously is very straightforward and easy to implement. 

However, one key question still remains, namely that of how to determine the weights jω . 

 

3.1 Arbitrary weights 

 

                                                 
10 See for example Hendry and Clements (2004) 
11 One appealing solution is to rely on numerical methods; we discuss the practical implementation of this 
issue in Section 4 and Appendix B in this paper. 
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One solution to the problem of which weights to use in equation (1) is to simply employ an 

arbitrary set of weights which reflect the forecasters’ or decision makers’ probabilities over 

the different scenarios. This solution has a certain appeal and has the advantage that it 

generates a weighted predictive density that correctly reflects the risk picture as perceived 

by the forecasters or decision makers. In some cases it should also be unproblematic to 

determine such arbitrary weights: Several sets of judgement could for example reflect 

several models used by the same agent – an agent that alone has all the power in the 

decision making process. In such a case the agent obviously just has to decide herself which 

weights to employ in equation (1). 

 

However, different sets of judgement will often reflect the views of different agents; recall 

that the framework presented is intended as a potential tool for groups such as the monetary 

policy committee of a central bank. Needless to say, different agents need not necessarily 

agree upon which weights to assign to the different scenarios and formalised procedures to 

establish the weights are therefore of interest. Methods that describe decision making in a 

group in a formalised way include DeGroot (1974) and Öller (1978), where the former 

article describes a method to reach consensus and the latter suggests a voting procedure. In 

Öller’s voting procedure, the votes could be evenly distributed over the agents involved in 

the process or also take additional information – such as each agent’s previous forecast 

performance – into account. Relying on such procedures to establish the weights in 

equation (1) could clearly be of interest both to the equivalent of a monetary policy 

committee or a group responsible for generating forecasts at a lower level. 

 

Usage of arbitrary weights obviously has some advantages, but the literature on model 

averaging and forecasting has typically relied on more formal methods to address the issue 

of forecast combination. Equal weights over models – that is, Mj 1=ω  for all j – is one 

method that has been commonly employed; see, for example, Diebold and Pauly (1990) 

and Hendry and Clements (2004). Optimal weights, derived by minimising the mean square 

error of the point forecast, was used by Granger and Ramanathan (1984) and Diebold and 

Pauly (1990). Akaike and Schwarz weights were used by Garratt et al. (2003) and Pesaran 

and Zaffaroni (2004) and Hall and Mitchell (2004) suggested that a data driven approach – 

aiming to minimise a test statistic – should be employed. In line with these more data-based 

methods to determine weights, we will next suggest an alternative to arbitrary weights.
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3.2 Distance-based weights 

 

Despite the relatively good supply of methods to determine weights for forecast 

combination, an additional approach will nevertheless be suggested here.12 The suggested 

method takes its starting point in the idea that the main scenario in the forecasting process 

should be a forecast that there is quite some confidence in; this could for example be the 

endogenous forecast from a DSGE or VAR model with well-established forecasting 

properties. We next note that imposition of a certain PDF on  typically has effects on the 

rest of the variables in the system at horizons beyond . These effects can be large or 

small and the predictive density from an alternative scenario can accordingly have been 

shifted substantially or negligibly relative to the predictive density of the main scenario. A 

substantial shift implies a forceful intervention and we therefore argue that a substantial 

shift typically should render a scenario to be judged less likely.

ik

l
ihT +

13 A small shift in the 

predictive density on the other hand implies that the added judgement was largely 

consistent with the benchmark density. 

 

In line with the above arguments, we suggest that the weights in equation (1) could be set in 

such a way that deviations from the forecast density of the main scenario are penalised; the 

larger the distance between an alternative scenario’s predictive density and the predictive 

density of the main scenario, the lower is the weight assigned to that scenario. In order to 

implement this principle for determining the weights, we need a measure of the distance 

between two densities though. The Kullback-Leibler information criterion (Kullback and 

Leibler, 1951) is a highly useful tool for this task; it measures the distance between two 

(potentially time-varying) distributions – one “reference distribution” ( ) and one 

“alternative distribution” ( ) – and is defined as 

f

g

 

( ) ( ) ( )
( ) ( )[ ] ( )[ vvv
v
vv gEfEd

g
ffgf ff lnlnln, −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫δ ]

                                                

.  (2) 

 

 
12 The interested reader is referred to Clemen (1989) for an extensive survey on methods and earlier literature. 
13 A substantial shift maybe should not be judged unlikely if it is accompanied by a very good explanation 
However, in some cases we should perhaps be concerned even if the explanation is good. For example, if the 
intervention is so large that it changes the way expectations are formed in the economy, the Lucas critique 
applies. 
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Clearly, ( ) 0, ≥gfδ  and the smaller the value of ( )gf ,δ , the closer the alternative 

distribution is to the reference distribution; ( ) 0, =gfδ  only when gf = . In this paper we 

let f be the main scenario’s predictive density and we will measure the distance between 

this distribution and the predictive densities from all scenarios. 

 

The empirical usefulness of the Kullback-Leibler information criterion (KLIC) has been 

thoroughly established and it has been employed as an evaluation measure in recent work 

by for example Cogley et al. (2005) and Robertson et al. (2005). The work of Cogley et al. 

is similar in spirit to this paper; employing a Bayesian VAR to generate fan charts for U.K. 

inflation, they then investigated – using the KLIC as one of several measures – how much 

the model needed to be “twisted” in order to match the Bank of England’s fan charts. They 

concluded that large values of the KLIC, implying large deviations from the benchmark 

VAR, would require convincing arguments by the monetary policy committee. 

 

Armed with a method to measure the distance between different predictive densities, we 

can next turn to the issue of exactly how deviations from the main scenario’s predictive 

density should be penalised and, accordingly, the weights for the different scenarios 

determined. We propose that the weights for the different scenarios, jω , could be given by 

 

( )
( )∑

=

Δ−

Δ−
= M

i
ii

jj
j

q

q

1

exp

exp
ω , ,    (3) Mj ,,1…=

 

where  are prior weights assigned to each scenario, jq (KLICKLIC jj min− )=Δ  and 

 is the smallest value of the M different values of .(KLICmin )

                                                

jKLIC 14 Since the KLIC and 

the weights will be calculated for all scenarios by using the predictive density under the 

main scenario as the reference distribution, this implies that the main scenario will yield 

. It follows that  for the main scenario also will be zero. ( ) 0min =KLIC jΔ

 

 
14 Determining weights by employing the KLIC is in itself not a new suggestion but has also been advocated 
by Mitchell and Hall (2005). 
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Equation (3) penalises deviations from the main scenario’s predictive density in a non-

linear fashion; other things equal, scenarios will receive a higher weight the smaller the 

deviations of their predictive densities are relative to the benchmark density. As such, the 

suggested method is based on the same principle as when Akaike or Schwarz weights are 

used, except that the true distribution is treated as known in this case.15 The relationship 

between KLIC and Akaike weights can be seen by noting that the Akaike information 

criterion is a function of an estimator of the expected Kullback-Leibler information 

criterion; see Burnham and Anderson (2004). 

 

Regarding the specification of equation (3), we would like to point out that reasonably 

often when Schwarz weights are calculated – and almost always when Akaike weights are 

calculated – a uniform prior over models is used. This means that the weights are strictly 

data determined. However, instead of letting the weights be completely data determined, we 

argue that it is reasonable to assume that forecasters or decision makers a priori will have 

an opinion regarding how likely a particular scenario is. We accordingly want to 

incorporate this opinion into the analysis and therefore allow for non-uniform priors over 

scenarios in equation (3).16

 

Relying on the distance-based weighting scheme presented above introduces both benefits 

and shortcomings through the way in which deviations from the predictive density under 

the main scenario are being penalised. On the one hand, it means that an “extreme” scenario 

– which at a certain point in time may actually have a large probability of occurring – will 

receive a disproportionately low weight since it typically will be judged highly unlikely by 

the data. Using the distance-based weighting scheme in such cases would lead to an 

incorrectly assessed uncertainty and a misleading final fan chart. On the other hand, 

equation (3) implies an additional safeguard against bad judgement as the procedure can be 

seen as a way of “shrinking” the weighted predictive density towards that of the main 

                                                 

)

) )
)

15 Note though that instead of the traditional evaluation of a number of models against each other, we instead 
evaluate a number of scenarios. 
16 Overall, the suggested framework is related to traditional Bayesian model averaging – see for example 
Garratt et al. (2003) – even though it should not be given a formal Bayesian interpretation. The similarities 

can be seen by considering the Bayesian model averaging formula , 

where  are data,  is the predictive density conditional on data,  is the 
posterior probability of model  and  is the posterior predictive density of model . 

( ) ( ) (∑
=

=
M
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scenario. Since the main scenario here by assumption is free from judgement, the suggested 

method thereby mildly favours the views of Armstrong (1985) and Makridakis (1988). 

However, instead of following Armstrong and Makridakis – and actually exclude 

judgement whenever statistical models are available – judgement is only penalised in the 

present framework. 

 

The distance-based weights also imply that we in practice are evaluating the judgement 

provided and conclude that scenarios associated with a large KLIC are less likely that those 

with a small KLIC. Whilst the application is this paper is new, the suggested methodology 

is, however, clearly related to the policy evaluation conducted in Sims (1982), Doan et al. 

(1984), Leeper and Zha (2003) and Hamilton and Herrera (2004). In Sims, Doan et al. and 

Hamilton and Herrera, policy is evaluated by calculating how likely the sequence of 

structural shocks needed to generate a particular scenario is. Leeper and Zha on the other 

hand – whose methodology also was employed by Hamilton and Herrera – proposed that 

policy could be evaluated by constructing linear projections of macro variables conditional 

on hypothetical paths of monetary policy. These projections were judged reliable if the 

impact of an intervention was within plus/minus two standard deviations of the historical 

fluctuations. If not, the intervention was judged to be inconsistent with the prevailing policy 

regime, leading potentially to changes in private agents’ decision rules. As such, Leeper 

and Zha’s work could be seen as a way of empirically testing the relevance of the Lucas 

critique. The fact that the suggested methodology in this paper emphasises the dynamic 

impact on the system – rather than the size and sign of the intervention itself – makes it 

more closely related to the work of Leeper and Zha (2003) than that of Sims (1982) though.  

 

Summing up before we turn to the empirical application, we now have the following 

procedure to generate a final fan chart which takes judgement into account: 

 

a) A main scenario for the coming H quarters is generated in a macroeconomic 

model. This main scenario has a predictive density for the n variables that are 

being forecasted. 

 

b) Judgement is presented in terms of M-1 alternative scenarios which are 

defined as PDFs for future values for one or more variables in the system. 
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Each alternative scenario has a predictive density for the n variables that are 

being forecasted associated with it. 

 

c) M weights are determined for the linear opinion pool. These weights could be 

generated in a number of ways; we have in this paper suggested i) arbitrary 

weights and ii) a data-based method which takes the KLIC into account in a 

formalised fashion. 

 

d) The final predictive density (fan chart) is achieved by weighting together the 

predictive densities of the different scenarios.  

 

4. Empirical application 

 

In order to illustrate the method presented above, we next turn to an empirical application 

using Swedish macroeconomic data. Two completely hypothetical alternative scenarios 

will be presented and a final fan chart then generated by weighting together the predictive 

densities from the alternative scenarios to that from the model’s endogenous forecast. The 

empirical analysis will be carried out with a standard reduced form Bayesian VAR model. 

Such a model obviously has limitations as it is more or less impossible to associate 

behavioural explanations to the scenarios. In many practical applications this shortcoming 

is serious enough to warrant usage of structural VAR or DSGE models instead as such 

models can incorporate judgement in a more precise way. However, the purpose of the 

present exercise is merely to illustrate the principle behind the suggested methodology. For 

this purpose the reduced form VAR is quite sufficient and the simplicity of the model is 

appealing as it should maximise transparency. 

 

Turning to the model, it is given by 

 

( ) tttL ηΦDμxG ++= ,     (4) 

 

where ,  is an nx1 vector of macroeconomic variables,  is a 

kx1 vector of dummy variables and  is an nx1 vector of iid error terms fulfilling 

( ) p
p LLL GGIG −−−= …1 tx tD

tη ( ) 0η =tE  
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and . The model is estimated using Bayesian methods and priors on dynamics 

in the model follow the standard modelling approach, as they take their starting point in a 

Minnesota prior; see for example Litterman (1986).

( ) Σηη =′ttE

17 Priors on the constant term and the 

dummy variable are also mainstream with diffuse normal priors, as is the prior on the 

covariance matrix which is given by ( ) ( ) 21+−∝ np ΣΣ . 

 

The numerical evaluation of the posterior distributions is conducted using the Gibbs sampler – 

see for example Tierny (1994) – with the number of draws set to 10 000. The chain is serially 

dependent but there has been no thinning of it. Whilst this could be done in order to 

increase efficiency, it is largely a matter of taste since at convergence the draws are 

identically distributed according to the posterior distribution; see for example Gelman et al. 

(2003). 

 

We apply the model to Swedish data from 1980Q2 to 2004Q4 and define 

 

( )′ΔΔΔ= tt
cpi
tttt

f
t

fcpi
t

f
tt cqiwcycuiyc ππ ,x   (5) 

 

where ,  is the logarithm of GDP in fixed prices for the foreign economy,  is 

twelve month ended CPI inflation for the foreign economy and  is the three month treasury 

bill rate for the foreign economy.

100c = f
ty fcpi

t
,π

f
ti

18 The remaining variables in the system are all Swedish; 

 is the open unemployment rate,  is the logarithm of GDP in fixed prices,  is the logarithm 

of wages,  is twelve month ended CPI inflation and  is the three month treasury bill rate. 

Finally,  is the logarithm of the trade weighted real exchange rate, given as SEK per 

foreign currency. All variables except interest rates and the real exchange rate have been 

tu ty tw

cpi
tπ ti

tq

                                                 
17 A minor modification is, however, introduced regarding the dynamics: Sweden is a small open economy, 
but block exogeneity of the foreign economy not is enforced in the model with probability one. Instead, the 
exogeneity restriction is controlled using an additional hyperparameter; see Villani and Warne (2003) for 
details. 
18 Foreign GDP and CPI have been trade weighted according to the TCW index. The foreign interest rate has 
been weighted using a subset of the countries included in the TCW index due to missing data for some 
countries. 
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seasonally adjusted. We set lag length to 4=p  and let  be a single dummy variable taking 

on the value one between 1980Q2 and 1992Q4 and zero otherwise.

tD
19

 

The judgement that is to be included is defined as one scenario for the real exchange rate 

and one for the unemployment rate. In both cases we lay down paths from 2005Q1 to 

2005Q4 and we accordingly let  and  in both scenarios. The real exchange rate 

path is given by [465 460 457 452], which can be compared to the endogenous median 

forecast from the model of [473 474 474 474]. We can note that the last observation for the 

real exchange rate in (non-transformed) TCW terms was 112.85. The conditioning path 

implies an appreciation to 91.84 – or 18.6 percent – in 2005Q4. For the unemployment rate, 

the conditioning path is [4.5 4.0 3.7 3.5], which is a substantially stronger development for 

the labour market than the endogenous median forecast of [5.2 5.1 4.9 4.7]. 

1=l
ih 4=u

ih

 

By laying down particular paths for the real exchange rate and the unemployment rate, we 

are imposing distributions ( )ii kφ  which have all mass in one point each, just like in Sims 

(1982), Leeper and Zha (2003) and Adolfson, Laséen, Lindé and Villani (2005). Such exact 

imposition of particular paths is called hard conditions using the terminology of Waggoner 

and Zha (1999). This choice of how to model the scenarios is a simplification in some 

aspects. For example, it is typically easier to generate the desired distribution; since the 

variance is zero, we in practice only have to match the first moment.20  

 

We use the model to generate forecasts twelve quarters ahead from 2004Q4. This is slightly 

longer than the Riksbank’s traditional horizon of two years but in line with recent 

statements by the former governor Lars Heikensten (Sveriges Riksbank, 2005). The 

forecasts, and thereby the scenarios, are generated the following way: for every draw from 

the posterior distribution, a sequence of independent standard normal shocks, 

, are drawn. These shocks are then used together with the definition  ( HTT ++ εε ,,1 … )

                                                 
19 Since several of the countries that have large weights in the TCW index also experienced policy changes 
around the same period – for example Germany, Norway and the U.K. – we also let the dummy variable 
affect the foreign economy. Changing this assumption, thereby letting the dummy affect the Swedish 
economy alone, has negligible effects on the results. 
20 Hard conditions do, however, also introduce some restrictions when calculating the KLIC. We return to 
these restrictions below. 
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1f f fy i u y w i q
t t t t t t t t t t

π πε ε ε ε ε ε ε ε ε −′⎡ ⎤= =⎣ ⎦ε P ηt  – where  is obtained from the 

standard Cholesky decomposition of  as 

P

Σ ′=Σ PP  – to generate the reduced form shocks 

and thereby the future data. When a variable has been conditioned upon – that is, it has to 

take on a particular value at a certain horizon – the forecasts are obviously still generated 

sequentially one horizon at a time. However, one shock in each scenario –  in the real 

exchange rate scenario and  in the unemployment scenario – is used to generate the 

conditioning. This means that this shock is generated last for each horizon and its value is 

set such that given the elements in , the forecast of the variable in question is exactly 

that specified in the scenario.

q
tε

u
tε

ht+ε
21 This choice of generating the conditionings is obviously 

arbitrary, but it can probably also be described as one of the most intuitive alternatives. As 

our goal is to illustrate a principle, we argue that it therefore is well-suited for the purpose. 

 

Based on the above described routine, we get as many paths for each variable as we have 

iterations in the Gibbs sampling algorithm except for the variable we have conditioned 

upon which takes on the same value every iteration. The predictive densities from the 

respective scenarios are given in Figures A1 to A3 in Appendix A; the black line is the 

median forecast and the coloured bands are 50 and 90 percent confidence bands.22

 

Turning to the issue of how to combine the predictive densities under consideration, we 

will initially use a set of arbitrary weights and simply employ these to weight the 

predictive densities according to equation (1). Second, we will also make use of equation 

(3) – in which deviations from the benchmark predictive density are penalised – in the 

weighting procedure, thereby allowing both data and a set of arbitrary prior weights to 

influence the weights in equation (1). 

 

                                                 
21 The method used to generate the conditionings in this paper is the same as that used by Adolfson, Laséen, 
Lindé and Villani (2005) which in turn is a generalisation of Leeper and Zha’s (2003) method.  
22 It can be noted that the model attributes non-negligible probabilities to the event of the interest rate taking 
on negative values in the future; the same thing would be true for the unemployment rate in some cases if the 
forecast horizon was increased. Such violations of theoretical and practical restrictions are obviously a 
shortcoming of any model but nevertheless extremely common in empirical work. The issue could be dealt 
with in several ways: One solution is to transform the variables so that they always meet the theoretical 
restrictions – that is, bounded between zero and one for the unemployment rate and strictly positive for the 
interest rate. Another solution is to discard all data from iterations in the Gibbs sampling algorithm in which 
restrictions are not met. However, this shortcoming does nothing to interfere with the exposition of the 
methodology and we therefore do not address it in the present application. 
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4.1 Combination of predictive densities using arbitrary weights 

 

Figures 1 and 2 show predictive densities for Swedish GDP growth, CPI inflation and the 

three month treasury bill rate.23 The plots give the median forecast and 50 and 90 percent 

confidence bands for different sets of weights.24 The solid lines in both figures represent 

the predictive densities from the model’s endogenous forecast, that is, weights have been 

set to [ ] [ ]′=′= 001321 ωωωω where 1ω  is the weight given to the model’s 

endogenous forecast, 2ω  the weight on the real exchange rate scenario and 3ω  the weight 

on the unemployment scenario. The predictive densities given by the dashed lines have 

been generated by weighting the three different predictive densities using the arbitrary 

weights [ ′= 313131ω ] ]in Figure 1 and [ ′= 5.05.00ω  in Figure 2.25

 

Looking at Figures 1 and 2 it is obvious that by taking the two alternative scenarios into 

account the shape of the predictive densities has been changed substantially. In practice, 

this means that the risk picture – as perceived by the agents producing the forecast – can be 

significantly altered when judgement is included. Considering the way in which the shape 

of the predictive densities has been changed, we note that there appears to have been a 

downward shift at the longer horizons for all variables regardless of whether the weight 

vector is [ ]′= 313131ω  or [ ]′= 5.05.00ω . The predictive densities using 

 do clearly deviate more from the benchmark, but this is only to be 

expected since 

[ ′= 5.05.00ω ]
[ 313131 ]  is a linear combination of [ ]001  and . [ ]5.05.00

 

The shifts in the predictive densities are consistent with a stronger real exchange rate 

generating lower GDP growth and inflation and thereby a lower interest rate. At the shorter 

horizons though, the confidence bands for GDP growth are approximately the same for the 

weighted predictive densities as those for the endogenous forecast; it can also be noted that 

the predictive density for inflation has been shifted up slightly. This reflects the increase in 

GDP growth and inflation that initially follows a negative shock to the unemployment rate 

                                                 
23 Note that we have chosen to present marginalised distributions for each variable instead of joint 
distributions since the latter do not visualise very well. 
24 That is, the 5th, 25th, 50th, 75th and 95th percentiles of the predictive densities are plotted. 
25 For a description of how the weighted predictive densities were generated, see Appendix B. 
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and this effect counteracts the decrease that the negative real exchange rate shock has. 

Another feature worth mentioning is that for all variables – but maybe most obviously so 

for GDP growth – the weighted predictive density is skewed relative to that from the 

endogenous forecast. Put differently, by taking a linear combination of the predictive 

densities from the three scenarios we have generated predictive densities that have not just 

been shifted in a symmetric way. This serves as an empirical illustration of the claim in 

Section 3 that the weighted densities potentially can have complicated forms. 

 

We have now seen the predictive densities that were the outcome of an arbitrary choice of 

weights. Keep in mind though that these weights for example could have been the outcome 

of a consensus decision or voting procedure in a group and therefore potentially highly 

legitimate. Next we will investigate the effect of letting data influence the weights and 

accordingly turn to predictive density combination using the weights from equation (3). 

 
Figure 1. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
weight vector [1/3 1/3 1/3]. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
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Figure 2. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
weight vector [0.0 0.5 0.5]. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
 

4.2 Combination of predictive densities using distance-based weights 

 

The weights generated by equation (3) are functions of the KLIC for the different scenarios 

and we must therefore first calculate the KLIC for each scenario. As pointed out above, the 

two hypothetical alternative scenarios impose paths for the real exchange rate and 

unemployment rate respectively which are reasonably far from the model’s endogenous 

median forecasts. However, our method is based on an evaluation of the dynamic impact 

on the system from this conditioning and we therefore turn to the KLIC to find out how 

large this is. The KLIC for each scenario is calculated relative to the predictive density 

from the endogenous forecast from the model; using the definition in equation (2), we see 

that this implies that the KLIC for the endogenous forecast is zero. 

 

The practical calculation of the KLIC is described in Appendix C. Before the KLIC can be 

calculated though,  – that is, the subset of the variables in  employed in the 

calculation of the KLIC – must be established. This issue will matter for the weights and 

attention should therefore be paid to it in practical applications. In principle, as many 

v
tz tz
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variables as possible should be included in  if one wants to take into account the 

dynamic effects in all dimensions. However, it is also possible to picture a situation in 

which only a few variables are included in ; this might be the case for example if 

deviations in some dimensions are judged unimportant by the decision makers. In order to 

illustrate the importance of this question, the KLIC has here been calculated using three 

different sets of variables. Letting numbers denote the variables’ position in  in equation 

(5), the three alternatives are given by 

v
tz

v
tz

tx

[ ]′= 8765321v
tz , [ ]′= 8765v

tz  and 

.[ ]7=v
tz 26 Note that the first vector is the largest possible given that we have used hard 

conditions. As pointed out in Appendix C, the calculations would not be fruitful if the real 

exchange rate and/or the unemployment rate were included. Values for the various 

combinations are given in Table 1. 

 
Table 1. Results from Bayesian VAR model on Swedish data. Predictive density from endogenous forecast is 
reference distribution. 
Variables used 
for evaluation 

Prior weight 
( )q  

Endogenous forecast Real exchange rate 
scenario 

Unemployment 
scenario 

  KLIC 1ω  KLIC 2ω  KLIC 3ω  

        
[1 2 3 5 6 7 8] [1/3 1/3 1/3] 0.0000 0.7300 2.5871 0.0549 1.2213 0.2150 

[5 6 7 8] [1/3 1/3 1/3] 0.0000 0.6127 1.5174 0.1343 0.8845 0.2530 
[7] [1/3 1/3 1/3] 0.0000 0.3788 0.2613 0.2917 0.1397 0.3294 

        
[1 2 3 5 6 7 8] [0.0 0.5 0.5] 0.0000 0.0000 2.5871 0.2035 1.2213 0.7965 

[5 6 7 8] [0.0 0.5 0.5] 0.0000 0.0000 1.5174 0.3468 0.8845 0.6532 
[7] [0.0 0.5 0.5] 0.0000 0.0000 0.2613 0.4696 0.1397 0.5304 

        
The order in which scenarios are referred to in prior weight vector is [endogenous forecast, real exchange 
rate scenario, unemployment scenario]. 
 

The KLIC values obviously tell us something about how likely the different scenarios are in 

light of the model and the data. In this particular application, we can for example tell that 

the unemployment scenario is judged more likely than the real exchange rate scenario; 

regardless of which variables are included in the calculation of the KLIC, the value for the 

unemployment scenario is approximately half of that for the real exchange rate scenario. 

However, the KLIC values are difficult to interpret – it is not obvious what constitutes a 

“small” or “large” deviation from the reference distribution. By next turning to the 

distance-based weights, we instead face non-negative numbers that sum to one. These 
                                                 
26 This means that all variables but unemployment and the real exchange rate are included in the biggest set. 
The second set consists of GDP, wages, inflation and interest rates and the smallest set is inflation alone.  
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weights accordingly tell us in a straightforward way how deviations from the reference 

distribution are penalised. 

 

The weights have been calculated by assuming that the prior weights over scenarios are 

given either by [ ] [ ]′=′= 313131321 qqqq or , where  is the 

prior weight given to the model’s endogenous forecast,  the prior weight on the real 

exchange rate scenario and  the prior weight on the unemployment scenario. This choice 

of weights was made so that the fan charts are directly comparable to those in Figures 1 and 

2; through this setup any difference between the weighted predictive densities is due to the 

KLIC. Note that the KLIC is calculated using three different subset of variables: 

, 

[ ]′= 5.05.00q 1q

2q

3q

[ ]′= 8765321vz [ ]′= 8765vz  and [ ]7=vz . Weights for the scenarios – 

calculated with the two sets of prior weights and three sets of variables for evaluation – are 

given in Table 1. 

 

Figures 3 to 5 show the predictive densities from the endogenous forecast and those 

generated by weighting predictive densities according to the weights from equation (3), 

where [ ′= 313131q ]  were used as prior weights; just like above, solid lines represent 

the former and dashed lines the latter. As can be seen, the weights generated by equation 

(3) are always highest for the endogenous forecast but as the number of variables used for 

calculation of the KLIC is reduced, more weight is put on the alternative scenarios. This is 

clearly illustrated in Figures 3 to 5 where there are only minor differences between the 

predictive density of the endogenous forecast and the weighted predictive density when all 

variables except unemployment and the real exchange rate are used to calculate the KLIC. 

Using fewer variables in the evaluation though, the weighted predictive densities look more 

and more different from that of the endogenous forecast. When only inflation is used to 

calculate the KLIC, the weights given by equation (3) are actually fairly close to 1/3 for all 

scenarios and Figure 5 accordingly looks a lot like Figure 1. The fact that weights are more 

evenly distributed over scenarios as fever variables are used to calculate the KLIC is in line 

with our expectations. It can intuitively be explained by the fact that as fewer variables are 

included in , there are fewer dimensions in which the densities can deviate from each 

other. 

vz
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We next turn to the case where [ ]′= 5.05.00q  in which the benchmark model – whilst 

we might not be interested in it per se – can be seen as a “neutral” way of evaluating two 

conflicting views regarding the economy before weighting the predictive densities together. 

It can then be seen in Figures 6 to 8 that the influence of the unemployment scenario – 

which was judged more likely by the KLIC – is reduced as the KLIC is being calculated 

using fewer variables. As only inflation is used to calculate the KLIC, the predictive 

densities in Figure 8 are virtually identical to those in Figure 2. This is of course precisely 

what we expect since the weights according to equation (3) in that case are very close to 0.5 

for both scenarios. 

 

Summing up, we think that the above exercise has shown that judgement can be introduced 

in the analysis in a formal and reasonably straightforward way. The linear opinion pool 

allows us to combine the predictive densities from several scenarios and conflicting sets of 

judgement can thereby be accounted for in the forecasting process. In the empirical analysis 

we used arbitrary weights and weights based on the KLIC of a scenario’s predictive density 

relative to a benchmark predictive density. Both of these approaches seem reasonable in 

practice. A combination of these two methods, in which arbitrary weights are used but 

where the decision makers can use the KLIC values as input in the decision making 

process, is also a potential solution. However, the method to determine weights should 

probably be made application and institution specific in order to generate the best possible 

result. More work is therefore needed on this particular issue. 
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Figure 3. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [1/3 1/3 1/3] and evaluated using all possible variables. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
 
Figure 4. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [1/3 1/3 1/3] and evaluated using GDP, wage, inflation and interest rate. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
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Figure 5. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [1/3 1/3 1/3] and evaluated using inflation. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
 
Figure 6. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [0.0 0.5 0.5] and evaluated using all possible variables. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
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Figure 7. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [0 0.5 0.5] and evaluated using GDP, wage, inflation and interest rate. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
 
Figure 8. Fan charts from model’s endogenous forecast compared to weighted fan charts generated with 
prior vector [0 0.5 0.5] and evaluated using inflation. 
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Solid lines are fan charts from model’s endogenous forecast; dashed lines are weighted fan charts. 
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5. Conclusions 
 

This paper has outlined a new method to incorporate judgement into a forecasting process. 

We have suggested that each judgement set be modelled as an alternative scenario in a 

macroeconomic model, with its dynamic effect on the system described by a predictive 

density. Specifically, we suggest combining the predictive densities stemming from the 

different sets of judgement into one final predictive density. This final density thereby 

reflects the judgemental views within the context of the macroeconomic model.  

 

Forecasters in general, and central banks in particular, often wish to provide an accurate 

predictive density for a number of macroeconomic variables. The framework offers a 

formalised and model-consistent way to incorporate judgement into predictive densities in a 

model-based environment. The methodology is best suited to a forecasting process that 

places a great deal of emphasis on one model which, given recent improvements in the 

forecasting ability of DSGE models, increasingly describes the forecasting practices of 

several central banks.27 As policy institutions head further along the path of incorporating 

models into the policy process, a new and straightforward way to address judgement when 

generating predictive densities is available. 

 

Although the empirical application in this paper focused upon marginal predictive densities 

for one variable at a time, the method also yields joint predictive densities, facilitating 

answering joint-probability questions of the type posed by Leeper and Zha (2003). For 

example, knowing the probability with which inflation may exceed a target and output 

growth may be negative at the same time is clearly of interest to policy makers, as it reveals 

the policy tradeoff they face in a particular scenario or across all scenarios. This issue can 

be readily addressed in the proposed framework, increasing its appeal in applied policy 

work. The framework also explicitly addresses how conflicting sets of judgement can be 

taken into account in the forecasting process, as it is rarely the case in practice that 

judgement sets are completely compatible with each other. The paper thus extends related 

literature on predictive densities and judgement, such as Svensson and Tetlow (2005). 

 

                                                 
27 See for example Smets and Wouters (2004) and Adolfson, Andersson, Lindé, Villani and Vredin (2005). 
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Finally, it is important to stress that although the framework put forward in this paper 

places a model in the prominent position, this does not detract from the value of judgement. 

Rather, our goal is to step away from ad hoc judgemental adjustments and toward a more 

formal framework, thereby generating more accurate predictive densities. The use of fan 

charts is a relatively new development and the implementation at different policy 

institutions suffers from various shortcomings, as pointed out by Leeper (2003), Clements 

(2004) and Hall and Mitchell (2004). As interest in fan charts and model-based forecasting 

increases, there is reason for improvement and refinement of the techniques.  
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Appendix A – Predictive densities  

 
Figure A1. Endogenous forecast from Bayesian VAR model using Swedish data. 
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Figure A2. Forecasts from real exchange rate scenario in Bayesian VAR model using Swedish data. 
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Figure A3. Forecasts from unemployment scenario in Bayesian VAR model using Swedish data. 
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Appendix B – Generating weighted predictive densities 
 
This appendix shortly describes how the weighted predictive densities are generated in this 

paper. Clearly, this is only one of many potential ways in which the weighting can be 

conducted. 

  

The predictive density from each scenario is generated using a Gibbs sampling algorithm as 

described in Section 4. For each scenario – Mi ,,1…=  – we have a three dimensional 

matrix  of dimensions BxnxH which contains all predictions generated under that 

scenario. Using the M matrices , a weighted predictive density – stored in the LxnxH 

matrix A – can be produced the following way: 

iC

iC

 

1.  Decide which of the M matrices to sample a 1xnxH plane from. The 

probability of matrix  being chosen is given by the weight of that scenario, iC

iω .  

 

2.  Sample, with a probability given by B1 for all planes in the matrix, a 1xnxH 

plane from the chosen . iC

 

3.  Store the plane in A. 

 

4. Return to 1. Repeat the procedure L times. 
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Appendix C – Calculating the Kullback-Leibler information criterion 

 

From a practical point of view, the integral in equation (2) could be very difficult to solve 

analytically in many cases. This can of course be circumvented by relying on numerical 

methods, but a numerical calculation of the integral could potentially come at a high 

computational cost if the system is of high dimension. A simplification which will be used 

in this paper is therefore to assume that we have a simple known form for the densities in 

question which yields a convenient analytical solution. We describe this assumption in this 

appendix. 

 

Initially, define 
′
⎟
⎠
⎞

⎜
⎝
⎛ ′′

= ++
v

HT
v
T zzv …1  as the stacked x1 vector of forecasts, where 

the x1 vector  is the subset of the variables in  employed in the calculation of the 

KLIC,  and H is the forecast horizon. We next assume that  follows a 

multivariate normal distribution which implies that knowledge of the mean  and 

covariance  of the distribution is sufficient to completely describe it.

Hnv

vn v
tz tz

nnv ≤≤1 v

( )μ
( )Σ 28 The distributions 

 and  are hence given by f g

 

( ) ( ) ( ) ( ⎟
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⎞

⎜
⎝
⎛ −′−−= −−−

ffff
Hnv

f μvΣμvΣv 1212

2
1expln2π )   (A1) 

 

( ) ( ) ( ) ( ⎟
⎠
⎞

⎜
⎝
⎛ −′−−= −−−

gggg
Hnv

g μvΣμvΣv 1212

2
1expln2π )   (A2) 

 

Relying on the above assumptions, the KLIC can be calculated as 

 

( ) ( ) ( ) ( gfggfgf

v

gf trHngf μμΣμμΣΣΣΣ −′−++−−= −−− 111

2
1

2
1

2
ln

2
1,δ )

                                                

 (A3) 

 

where we have made use of the following lemma: 

 
 

28 Note that this assumption also implies that information regarding higher moments of the predictive 
densities is being ignored in the calculations. 
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Lemma 1 

 

Let  be a p-dimensional vector with mean θ  and covariance matrix , then x Ω

 

( ) ( ) ( ) ( ) ( bθBbθΩBbxBbx − )′−+=⎥⎦
⎤

⎢⎣
⎡ −′− trE   (A4) 

 

for every p vector b and symmetric pxp matrix B. [Proof: Schott (1997).] 

 

Whilst equation (A3) is a simple expression, we still need means and covariance matrices 

of the distributions in question to implement it. These moments could be calculated in 

numerous ways depending upon the chosen framework but one convenient solution in 

empirical applications is to once again rely on stochastic simulation. Using numerical 

techniques, B values taken on by  are generated as the predictive densities for the main 

and alternative scenarios are simulated. The x1 vectors  and  and the 

x  covariance matrices  and  can then be estimated using maximum 

likelihood by employing equations (A5) and (A6) respectively. 

v
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fμ gμ

Hnv Hnv
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−
rrj
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j
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1

1 )

)

    (A6) 

 

for  and where B is the number of iterations in the numerical algorithm. The 

KLIC is then computed by simply replacing the true parameters in equation (A3) with their 

maximum likelihood estimates. 

( gfr ,=

 

A technical issue that we want to point out here is that relying on the above described 

method and hard conditions, any variable included in  cannot be included in  since 

 in that case would be singular. Put differently, we cannot include variables that we have 

imposed hard conditions on in the calculation of the KLIC.  

s
ti ,z v

tz

gΣ
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