Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs
Federal Reserve Board, Washington, D.C.

Solving Linear Rational Expectations Models:
A Horse Race

Gary S. Anderson
2006-26

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS)
are preliminary materials circulated to stimulate discussion and critical comment. The
analysis and conclusions set forth are those of the authors and do not indicate
concurrence by other members of the research staff or the Board of Governors.
References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character
of these papers.

Solving Linear Rational
Expectations Models:
A Horse Race

Gary S. Anderson*
Board of Governors of the Federal Reserve System

May 24, 2006

Abstract

This paper compares the functionality, accuracy, computational efficiency, and practicalities of al-
ternative approaches to solving linear rational expectations models, including the procedures of (Sims
1996), (Anderson and Moore| [1983), (Binder and Pesaran| [1994)), (King and Watson, [1998), (Klein
1999), and (Uhlig, [1999). While all six procedures yield similar results for models with a unique sta-
tionary solution, the AIM algorithm of (Anderson and Moore, [1983) provides the highest accuracy;
furthermore, this procedure exhibits significant gains in computational efficiency for larger-scale models.

*I would like to thank Robert Tetlow, Andrew Levin and Brian Madigan for useful discussions and suggestions. I would like
to thank Ed Yao for valuable help in obtaining and installing the MATLAB code. The views expressed in this document are
my own and do not necessarily reflect the position of the Federal Reserve Board or the Federal Reserve System.

May 24, 2006 2

1 Introduction and Summary

Since (Blanchard and Kahnl|1980)) a number of alternative approaches for solving linear rational expectations
models have emerged. This paper describes, compares and contrasts the techniques of (Anderson, (1997}
Anderson and Moore, {1983, 1985|), (Binder and Pesaran| [1994), (King and Watson, [1998), (Klein, 1999),
(Sims 1996), and (Uhlig, [1999). All these authors provide MATLAB code implementing their algorithmﬂ

The paper compares the computational efficiency, functionality and accuracy of these MATLAB implemen-
tations. The paper uses numerical examples to characterize practical differences in employing the alternative
procedures.

Economists use the output of these procedures for simulating models, estimating models, computing impulse
response functions, calculating asymptotic covariance, solving infinite horizon linear quadratic control prob-
lems and constructing terminal constraints for nonlinear models. These applications benefit from the use of
reliable, efficient and easy to use code.

A comparison of the algorithms reveals that:

e For models satisfying the Blanchard-Kahn conditions, the algorithms provide equivalent solutionsﬂ

e The Anderson-Moore algorithm requires fewer floating point operations to achieve the same result.
This computational advantage increases with the size of the model.

e While the Anderson-Moore, Sims and Binder-Pesaran approaches provide matrix output for accom-
modating arbitrary exogenous processes, the King-Watson and Uhlig implementations only provide
solutions for VAR exogenous processﬂ Fortunately, there are straightforward formulae for augmenting
the King-Watson Uhlig and Klein approaches with the matrices characterizing the impact of arbitrary
shocks.

e The Anderson-Moore suite of programs provides a simple modeling language for developing models. In
addition, the Anderson-Moore implementation requires no special treatment for models with multiple
lags and leads. To use each of the other algorithms, one must cast the model in a form with at most
one lead or lag. This can be a tedious and error prone task for models with more than a couple of
equations.

e Using the Anderson-Moore algorithm to solve the quadratic matrix polynomial equation improves the
performance of both Binder-Pesaran’s and Uhlig’s algorithms.

Section [2]states the problem and introduces notation. This paper divides the algorithms into three categories:
eigensystem, QZ, and matrix polynomial methods. Section [3| describes the eigensystem methods. Section
describes applications of the QZ algorithm. Section [5| describes applications of the matrix polynomial ap-
proach. Section [6] compares the computational efficiency, functionality and accuracy of the algorithms.
Section [7] concludes the paper. The appendices provide usage notes for each of the algorithms as well as
information about how to compare inputs and outputs from each of the algorithms.

1 Although (Broze, Gouriéroux, and Szafarz, [1995) and (Zadroznyl [1998) describe algorithms, I was unable to locate code
implementing the algorithms.

2 (Blanchard and Kahn| [1980) developed conditions for existence and uniqueness of linear rational expectations models. In
their setup, the solution of the rational expectations model is unique if the number of unstable eigenvectors of the system is
exactly equal to the number of forward-looking (control) variables.

31 modified Klein’s MATLAB version to include this functionality by translating the approach he used in his Gauss version.

May 24, 2006 3

2 Problem Statement and Notation

These algorithms compute solutions for models of the form

0
Z Hi$t+i:\I/Zt,t:0,...,OO (1)
i=—T

with initial conditions, if any, given by constraints of the form

Z; :xglatavi: _7—7"'7_1 (2)

where both 7 and 6 are non-negative, and z; is an L dimensional vector of endogenous variables with
lim ||z < oo (3)
t—o0

and z; is a k dimensional vector of exogenous variables.

Solutions can be cast in the form

(g —a") = i: Bi(ztyi — x¥)

i=—T

Given any algorithm that computes the B;, one can easily compute other quantities useful for characterizing
the impact of exogenous variables. For models with 7 = 6 = 1 the formulae are especially simple.
Let
® = (Hy+H B!
F=-®HB

We can write

(IBt — IE*) = B(xt_l — IZ'*) + ZFS¢¢Zt+s
s=0

and when
241 = Tz

vec(¥) = (I — YT @ F) tvec(®V)
(zt —2") = B(zp—1 — 27) + Iz

Consult (Anderson, [1997)) for other useful formulae concerning rational expectations model solutions.

I downloaded the MATLAB code for each implementation in July, 1999. See the bibliography for the relevant
URL’s.

May 24, 2006 4

3 Eigensystem Methods

3.1 The Anderson-Moore Algorithm

(Andersonl |1997: [Anderson and Moore, [1985) developed their algorithm in the mid 80’s for solving rational

expectations models that arise in large scale macro models. on page [I3] provides a synopsis of
the model concepts and algorithm inputs and outputs. presents pseudocode for the algorithm.

The algorithm determines whether equation [[]has a unique solution, an infinity of solutions or no solutions at
all. The algorithm produces a matrix) codifying the linear constraints guaranteeing asymptotic convergence.
The matrix @) provides a strategic point of departure for making many rational expectations computations.

The uniqueness of solutions to system [1| requires that the transition matrix characterizing the linear system
have appropriate numbers of explosive and stable eigenvalues (Blanchard and Kahnl {1980), and that the
asymptotic linear constraints are linearly independent of explicit and implicit initial conditions (Anderson
and Moore, [1985]).

The solution methodology entails

1. Manipulating equation [I] to compute a state space transition matrix.
2. Computing the eigenvalues and the invariant space associated with explosive eigenvalues
3. Combining the constraints provided by:

(a) the initial conditions,
(b) auxiliary initial conditions identified in the computation of the transition matrix and

(c) the invariant space vectors

The first phase of the algorithm computes a transition matrix, A, and auxiliary initial conditions, Z. The
second phase combines left invariant space vectors associated with large eigenvalues of A with the auxiliary
initial conditions to produce the matrix) characterizing the saddle point solution. Provided the right hand
half of @ is invertible, the algorithm computes the matrix B, an autoregressive representation of the unique
saddle point solution.

The Anderson-Moore methodology does not explicitly distinguish between predetermined and non-predetermined
variables. The algorithm assumes that history fixes the values of all variables dated prior to time t and that
these initial conditions, the saddle point property terminal conditions, and the model equations determine

all subsequent variable values.

3.2 King & Watson’s Canonical Variables/System Reduction Method

(King and Watson, |1998]) describe another method for solving rational expectations models.
provides a synopsis of the model concepts and algorithm inputs and outputs. The algorithm consists of two
parts: system reduction for efficiency and canonical variables solution for solving the saddle point problem.
Although their paper describes how to accommodate arbitrary exogenous shocks, the MATLAB function
does not return the relevant matrices.

King-Watson provide a MATLAB function, resolkw, that computes solutions. The MATLAB function trans-
forms the original system to facilitate the canonical variables calculations. The mdrkw program computes
the solution assuming the exogenous variables follow a vector autoregressive process.

Given:

AE(y441) = By + Cxy

May 24, 2006 5

system reduction produces an equivalent model of the form

E(dt+1> = Wdt + \I/d(F)E((Et)
Where d; are the “dynamic” variables and f; are the “flow” variables in the y,; vector.

The mdrkw program takes the reduced system produced by redkw and the decomposition of its dynamic
subsystem computed by dynkw and computes the rational expectations solution. The computation can use
either eigenvalue-eigenvector decomposition or Schur decomposition.

[Appendix B.2.T| shows one way to compute the King-Watson solution using the Anderson-Moore algorithm.
shows one way to compute the Anderson-Moore solution using the King-Watson algorithm.

4 Applications of the QZ Algorithm

Several authors exploit the properties of the Generalized Schur Form (Golub and van Loan| [1989).

Theorem 1 The Complex Generalized Schur Form — If A and B are in C™*™, then there exist unitary @
and Z such that Q7 AZ = T and Q¥ BZ = S are upper triangular. If for some k, ¢ and sz are both zero,
then A(4, B) = C. Otherwise, A(4, B) = {4 : s;; # 0}

i
Siq
The algorithm uses the QZ decomposition to recast equation [5]in a canonical form that makes it possible

to solve the transformed system “forward” for endogenous variables consistent with arbitrary values of the
future exogenous variables.

4.1 Sims’ QZ Method

(Sims, 1996)) describes the QZ Method. His algorithm solves a linear rational expectations model of the
form:

Doy = D'iye—1 + C + ¥z + 1, (5)

where ¢t = 1,2,3,--- ,00 and C is a vector of constants, z; is an exogenously evolving, possibly serially
correlated, random disturbance, and 7; is an expectational error, satisfying Eni41 = 0.

Here, as with all the algorithms except the Anderson-Moore algorithm, one must cast the model in a form
with one lag and no leads. This can be problematic for models with more than a couple of equations.

summarizes the Sims’ QZ method model concepts and algorithm inputs and outputs.

The IT designation of expectational errors identifies the “predetermined” variables. The Anderson-Moore
technique does not explicitly require the identification of expectational errors. In applying the Anderson-
Moore technique, one chooses the time subscript of the variables that appear in the equations. All predeter-
mined variables have historical values available through time ¢ — 1. The evolution of the solution path can
have no effect on any variables dated (¢ — 1) or earlier. Future model values may influence time ¢ values of
any variable.

Appendix B shows one way to transform the problem from Sims’ form to Anderson-Moore form and how
to reconcile the solutions. For the sake of comparison, the Anderson-Moore transformation adds L6 variables
and the same number of equations, setting future expectation errors to zero.

shows one way to transform the problem from Anderson-Moore form to Sims form.

May 24, 2006 6

4.2 Klein’s Approach

(Klein, {1999) describes another method. |[Appendix B.4] summarizes the model concepts and algorithm
inputs and outputs.

The algorithm uses the Generalized Schur Decomposition to decouple backward and forward variables of the
transformed system.

Although the MATLAB version does not provide solutions for autoregressive exogenous variables, one can
solve the autoregressive exogenous variables problem by augmenting the system. The MATLAB program
does not return matrices for computing the impact of arbitrary exogenous factors.

describes one way to recast a model from a form suitable for Klein into a form for the
Anderson-Moore algorithm. describes one way to recast a model from a form suitable for
the Anderson-Moore methodology into a form for the Klein Algorithm.

5 Applications of the Matrix Polynomial Approach

Several algorithms rely on determining a matrix C satisfying
H,C? 4+ HyC +H_; =0. (6)
They employ linear algebraic techniques to solve this quadratic equation. Generally there are many solutions.

When the homogeneous linear system has a unique saddle-path solution, the Anderson-Moore algorithm
constructs the unique matrix C 4y = B that satisfies the quadratic matrix equation and has all roots inside
the unit circle.

H10,24M + HOcAM + H_1 - 0

5.1 Binder & Pesaran’s Method

(Binder and Pesaran| |1994)) describe another method.

According to Binder & Pesaran(1994), under certain conditions, the unique stable solution, if it exists, is
given by:

Ty = Ciftfl + ZFiE(wFFl)
i=0
where
F=(I-BC)'B
and C satisfies a quadratic equation like equation [6]

Their algorithm consists of a “recursive” application of the linear equations defining the relationships between
C, H and F.

describes one way to recast a model from a form suitable for Binder-Pesaran into a form for
the Anderson-Moore algorithm. describes one way to recast a model from a form suitable
for the Anderson-Moore methodology into a form for the Binder-Pesaran Algorithm.

5.2 Uhlig’s Technique

(Uhlig, [1999) describes another method. The algorithm uses generalized eigenvalue calculations to obtain a
solution for the matrix polynomial equation.

May 24, 2006 7

One can view the Uhlig technique as preprocessing of the input matrices to reduce the dimension of the
quadratic matrix polynomial. It turns out that once the simplification has been done, the Anderson-Moore
algorithm computes the solution to the matrix polynomial more efficiently than the approach adopted in
Uhlig’s algorithm.

Uhlig’s algorithm operates on matrices of the form:

B 0 A C 0 0
H 0 G K F J

Uhlig in effect pre-multiplies the equations by the matrix

o 0
o+
—-KC*t I
where
c'Cc = 0,CT = (CTC)_lCT
to get

C'B 0 C°A 0 0 O
C*B 0 CtA I 0 0
H-KC*B 0 G-KCtA 0 F J

one can imagine leading the second block of equations by one period and using them to annihilate J to get

0 0 C'B 0 CA 0
H-KCt*B 0 G-KCtA—JC*B 0 F—JCtA 0
0 0 C*B 0 CtA 1

This step in effect decouples the second set of equations making it possible to investigate the asymptotic
properties by focusing on a smaller system.

0 C'B CA
H-KCt*B G-KCtTA-JCtTB F—-JCtA

Uhlig’s algorithm undertakes the solution of a quadratic equation like equation [6] with

oA C°B 0
B = {F - JC+A} Ho = {G ~KCtA - JC+B] yHo1 = [H - K0+B]

describes one way to recast a model from a form suitable for Uhlig into a form for the
Anderson-Moore algorithm. describes one way to recast a model from a form suitable for
the Anderson-Moore methodology into a form for the Uhlig Algorithm.

6 Comparisons

Section 2]identified B, 1, ¢ and F as potential outputs of a linear rational expectation algorithm. Most of the
implementations do not compute each of the potential outputs. Only Anderson-Moore and Binder-Pesaran
provide all four outputs (See Table @

Generally, the implementations make restrictions on the form of the input. Most require the user to specify
models with at most one lag or one lead. Only Anderson-Moore explicitly allows multiple lags and leads.

Each of the authors provides small illustrative models along with their MATLAB code. The next two sections
present results from applying all the algorithms to each of the example models.

May 24, 2006 3

Table 1: Modeling Features

Technique B | ¥ | ¢,F | Usage Notes

Anderson-Moore | ¢ | ¢ | ¢ | Allows multiple lags and leads.
Has modeling language.

King & Watson | ¢ | v/ one lead, no lags

Sims v v | one lag, no leads

Klein vV |V one lead, no lags

Binder-Peseran v | vV | ¢ | onelag, onelead; C must be non-
singular

Uhlig vV |V one lag, one lead; constraint in-
volving choice of “jump” wvari-
ables and rank condition on C.

Note:

e The Klein and Uhlig procedures compute ¥ by augmenting linear sys-
tem

e For the Uhlig procedure one must choose “jump” variables to guaran-
tee that the C' matrix has full rank.

6.1 Computational Efficiency

Nearly all the algorithms successfully computed solutions for all the examples. Each of the algorithms, except
Binder-Pesaran’s, successfully computed solutions for all of Uhlig’s examples. Uhlig’s algorithm failed to
provide a solution for the given parametrization of one of King’s examples. However, Binder-Pesaran’s and
Uhlig’s routines would likely solve alternative parametrization of the models that had convergence problems.

Tables present the MATLAB-reported floating point operations (flops) counts for each of the algorithms
applied to the example models.

The first column of each table identifies the example model. The second column provides the flops required
by the Anderson-Moore algorithm to compute B followed by the flops required to compute B, ¢, ¢, and F.
Columns three through seven report the flops required by each algorithm divided by the flops required by
the Anderson-Moore algorithm for a given example model.

Note that the Anderson-Moore algorithm typically required a fraction of the number of flops required by the
other algorithms. For example, King-Watson’s algorithm required more than three times the flops required
by the Anderson-Moore algorithm for the first Uhlig example. In the first row, one observes that Uhlig’s
algorithm required only 92% of the number of flops required by the Anderson-Moore algorithm, but this is
the only instance where an alternative to the Anderson-Moore algorithm required fewer flops.

In general, Anderson-Moore provides solutions with the least computational effort. There were only a few
cases where some alternative had approximately the same number of floating point operations. The efficiency
advantage was especially pronounced for larger models. King-Watson generally used twice to three times
the number of floating point operations. Sims generally used thirty times the number of floating point
operations — never fewer than Anderson-Moore, King-Watson or Uhlig. It had about the same performance
as Klein. Klein generally used thirty times the number of floating point operations. It never used fewer
than Anderson-Moore, King-Watson or Uhlig. Binder-Pesaran was consistently the most computationally
expensive algorithm. It generally used hundreds of times more floating point operations. In one case, it took
as many as 100,000 times the number of floating point operations. Uhlig generally used about twice the flops
of Anderson-Moore even for small models and many more flops for larger models.

Table [5| presents a comparison of the original Uhlig algorithm to a version using Anderson-Moore to solve
the quadratic polynomial equation. Employing the Anderson-Moore algorithm speeds the computation. The
difference was most dramatic for larger models.

May 24, 2006 9

6.2 Numerical Accuracy

Tables presents the MATLAB relative errors. I have employed a symbolic algebra version of the
Anderson-Moore algorithm to compute solutions to high precisiorﬁ Although ¥ and F' are relatively simple
linear transformations of B, each of the authors uses radically different methods to compute these quantities.
I then compare the matrices computed in MATLAB by each algorithm to the high precision solution.

Anderson-Moore always computed the correct solution and in almost every case produced the most accurate
solution. Relative errors were on the order of 10716, King-Watson always computed the correct solution, but
produced solutions with relative errors generally 3 times the size of the Anderson-Moore algorithm. Sims
always computed correct solutions but produced solutions with relative errors generally 5 times the size of
the Anderson-Moore algorithm. E| Sim’s F' calculation produced errors that were 20 times the size of the
Anderson-Moore relative errors. Klein always computed the correct solution but produced solutions with
relative errors generally 5 times the size of the Anderson-Moore algorithm.

Uhlig provides accurate solutions with relative errors about twice the size of the Anderson-Moore algorithm
for each case for which it converges. It cannot provide a solution for King’s example 3 for the particular
parametrization I employed. I did not explore alternative parametrizations. For the ¥ computation, the
results were similar. The algorithm was unable to compute ¥ for King example 3. Errors were generally 10
times the size of Anderson-Moore relative errors.

Binder-Pesaran converges to an incorrect value for three of the Uhlig examples: example 3, 6 and example 7.
In each case, the resulting matrix solves the quadratic matrix polynomial, but the particular solution has an
eigenvalue greater than one in magnitude even though an alternative matrix solution exists with eigenvalues
less than unity. For Uhlig’s example 3, the algorithm diverges and produces a matrix with NaN’s. Even
when the algorithm converges to approximate the correct solution, the errors are much larger than the
other algorithms. One could tighten the convergence criterion at the expense of increasing computational
time, but the algorithm is already the slowest of the algorithms evaluated. Binder-Pesaran’s algorithm does
not converge for either of Sims’ examples. The algorithm provides accurate answers for King & Watson’s
examples. Although the convergence depends on the particular parametrization, I did not explore alternative
parametrization when the algorithm’s did not converge. The ¥ and F results were similar to the B results.
The algorithm was unable to compute H for Uhlig 3 in addition to Uhlig 7. It computed the wrong value
for Uhlig 6. It was unable to compute values for either of Sims’s examples.

7 Conclusions
A comparison of the algorithms reveals that:

e For models satisfying the Blanchard-Kahn conditions, the algorithms provide equivalent solutions.
e The Anderson-Moore algorithm proved to be the most accurate.

e Using the Anderson-Moore algorithm to solve the quadratic matrix polynomial equation improves the
performance of both Binder-Pesaran’s and Uhlig’s algorithms.

e While the Anderson-Moore, Sims and Binder-Pesaran approaches provide matrix output for accom-
modating arbitrary exogenous processes, the King-Watson and Uhlig implementations only provide
solutions for VAR exogenous processﬂ Fortunately, there are straightforward formulae for augmenting

4] computed exact solutions when this took less than 5 minutes and solutions correct to 30 decimal places in all other cases.
5To compare F for Sims note that

v =1y
F= (@y‘gf)ée_zlact

6T modified Klein’s MATLAB version to include this functionality by translating the approach he used in his Gauss version.

May 24, 2006 10

the King-Watson, Uhlig and Klein approaches with the matrices characterizing the impact of arbitrary
shocks.

e The Anderson-Moore algorithm requires fewer floating point operations to achieve the same result.
This computational advantage increases with the size of the model.

e The Anderson-Moore suite of programs provides a simple modeling language for developing models. In
addition, the Anderson-Moore algorithm requires no special treatment for models with multiple lags
and leads. To use each of the other algorithms, one must cast the model in a form with at most one
lead or lag. This can be tedious and error prone task for models with more than a couple of equations.

May 24, 2006 11

8 Bibliography

Gary Anderson. A reliable and computationally efficient algorithm for imposing the sad-
dle point property in dynamic models. Unpublished Manuscript, Board of Governors
of the Federal Reserve System. Downloadable copies of this and other related papers at
http://www.federalreserve.gov/pubs/oss/oss4 /aimindex.html, 1997.

Gary Anderson and George Moore. An efficient procedure for solving linear perfect foresight models. 1983.

Gary Anderson and George Moore. A linear algebraic procedure for solving linear perfect foresight models.
Economics Letters, (3), 1985. URL http://www.federalreserve.gov/pubs/oss/oss4/aimindex.htmll

Michael Binder and M. Hashem Pesaran. Multivariate rational expectations models and macroeconometric
modelling: A review and some new results. URL http://www.inform.umd.edu/EdRes/Colleges/BS0S/
Depts/Economics/mbinder/research/matlabresparse.html. Seminar Paper, May 1994.

Olivier Jean Blanchard and C. Kahn. The solution of linear difference models under rational expectations.
FEconometrica, 48, 1980.

Laurence Broze, Christian Gouriéroux, and Ariane Szafarz. Solutions of multivariate rational expectations
models. Econometric Theory, 11:229-257, 1995.

Gene H. Golub and Charles F. van Loan. Matriz Computations. Johns Hopkins, 1989.

Robert G. King and Mark W. Watson. The solution of singular linear difference systems under ra-
tional expectations. International Economic Review, 39(4):1015-1026, November 1998. URL http:
//www.people.virginia.edu/ " rgkd4m/kwre/kwre.html.

Paul Klein. Using the generalized schur form to solve a multivariate linear rational expectations model.
Journal of Economic Dynamics and Control, 1999. URL http://www.iies.su.se/data/home/kleinp/
homepage .htm.

Christopher A. Sims. Solving linear rational expectations models. URLhttp://www.econ.yale.edu/ " sims/
#gensys. Seminar paper, 1996.

Harald Uhlig. A toolkit for analyzing nonlinear dynamic stochastic models easily. URL http://cwis.kub.
nl/~fewb/center/STAFF/uhlig/toolkit.dir/toolkit.htm. User’s Guide, 1999.

Peter A. Zadrozny. An eigenvalue method of undetermined coefficients for solving linear rational expectations
models. Journal of Economic Dynamics and Control, 22:1353-1373, 1998.

http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html
http://www.inform.umd.edu/EdRes/Colleges/BSOS/Depts/Economics/mbinder/research/matlabresparse.html
http://www.inform.umd.edu/EdRes/Colleges/BSOS/Depts/Economics/mbinder/research/matlabresparse.html
http://www.people.virginia.edu/~rgk4m/kwre/kwre.html
http://www.people.virginia.edu/~rgk4m/kwre/kwre.html
http://www.iies.su.se/data/home/kleinp/homepage.htm
http://www.iies.su.se/data/home/kleinp/homepage.htm
http://www.econ.yale.edu/~sims/#gensys
http://www.econ.yale.edu/~sims/#gensys
http://cwis.kub.nl/~few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm
http://cwis.kub.nl/~few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm

May 24, 2006

Appendix A The Anderson-Moore Algorithm(s)

Algorithm 1

1 Given H, compute the unconstrained autoregression.

2 funct Ap(H) =

3

0 X G

10

11

12
18
14

15

16

17 .

k:=0
Z0:=0
HY:=H
r:=90
while H5 is singular N rows(Z*) < L(r + 0)
do
k; Ué . k
U¥ = | 7| := rowAnnihilator(Hy)
Un
gt [0 UZHE . UZHG
UK HE UNHE
Qk
Zht+1l . — sk bk
ULHE ... UM,
k=k+1
od
I'=-H,'[H_, Hgp_1]
o1
| T
return{[HFT ... HE], A ZF}

Algorithm 2

1 Given V, Zt:*,
2 funct F(A, Z%*)

3
4
5

[

<

8 .

Compute V', the vectors spanning the left
invariant space associated with eigenvalues
greater than one in magnitude

jioes
2= 1]
return{Q}

Algorithm 3

1 Given Q,
2 funct 7g(Q)

3

4

v

cnt = noRows(Q)

{Q, 0} ent < L6

{Q7 O} cnt > Lo
return

{Q, 00} (Qrsingular)

{B = fQ;leL, 1} otherwise

12

May 24, 2006

Appendix B Model Concepts

13

The following sections present the inputs and outputs for each of the algorithms for the following simple

example:

Vier = (1+ R)V; — Dy
D = (1 - 6)Dt,1

Appendix B.1 Anderson-Moore

Inputs

0
Z Hiwyy; = Uz

zs+1 = Yz the infinite sum simplifies to give
Tt—r

xt:B +192t

Tt—1

Model Variable Description Dimensions
Ty State Variables L(r+0) x1
2 Exogenous Variables M x1
0 Longest Lead 1x1
T Longest Lag 1x1
H; Structural Coefficients Matrix (LxL)(t+60+1)
LG Exogenous Shock Coefficients Matrix LxM
T Optional Exogenous VAR Coeflicients | M x M
Matrix(zi41 = Tzp)
Outputs
Tyt Joe)
ze=B| ¢ [+[0 ...0 I]> (F* [wgm])

Ti—1 =0
Model Variable Description Dimensions
B reduced form coeflicients matrix L x L(r+9)
P exogenous shock scaling matrix LxL
F exogenous shock transfer matrix Lo x Lo
Y autoregressive shock transfer matrix when LxM

May 24, 2006 14

Anderson-Moore input:
AIM Modeling Language Input

MODEL> FIRMVALUE

ENDOG>

v

DIV

EQUATION> VALUE

EQ> LEAD(V,1) = (1+R)*V - LEAD(DIV,1)
EQUATION> DIVIDEND

EQ> DIV = (1-DELTA)*LAG(DIV,1)

END

© 00 N O U = W N

Parameter File Input

DELTA=0.3;

R=0.1;

psi=[4. 1.;3. -2.]1;
upsilon=[0.9 0.1;0.05 0.2];

N R

0 0 -1.1 0 1 1 4. 1. 0.9 0.1
H= {0 -07 0 10 O] ¥ = [3. —2.] » T {0.05 0.2}
produces output:
0. 1.225 0.909091 0.909091 —0.909091 1.75
R e L e i L el
1.61364 —4.40909 21.0857 —3.15714
U= { 3. —2. } U= [3. —2.]

Usage Notes for Anderson-Moore Algorithm

1. “Align” model variables so that the data history (without applying model equations), completely
determines all of z;_1, but none of x;.

2. Develop a “model file” containing the model equations written in the “AIM modeling language”

3. Apply the model pre-processor to create MATLAB programs for initializing the algorithm’s input
matrix,(H). Create ¥ and, optionally, T matrices.

4. Execute the MATLAB programs to generate B, ¢, F' and optionally 1

Users can obtain code for the algorithm and the preprocessor from the authOIE]

7 http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html July, 1999.

May 24, 2006

Appendix B.2

King-Watson

Inputs

0
AEyyi+1 = By + Z CiE(x444)

i=0
Ty = Q(St
Ot = pdi—1 + Ges
=i
Model Variable Description Dimensions
0 longest lead 1x1
Yt Endogenous Variables m X1
Ay Non-predetermined Endogenous Variables (m—p)x1
k¢ Predetermined Endogenous Variables px1
Tt Exogenous Variables Ng X 1
Ot Exogenous Variables ns X 1
A Structural Coefficients Matrix associated with lead m X m
endogenous variables, y¢41
B Structural Coefficients Matrix associated with con- m X m
temporaneous endogenous variables, y;
C; Structural Coefficients Matrix associated with con- mXxXn
temporaneous and lead exogenous variables, x;
Q Structural Coefficients Matrix associated with con- Ng X Mg
temporaneous exogenous variables, ¢
p Vector Autoregression matrix for exogenous variables ns X Ng
G Matrix multiplying Exogenous Shock nsg x 1
Outputs
Yt = HSt
st = Ms;_1+ Ge;
v 5]
: 5,
Model Variable Description Dimensions
St Exogenous Variables and predetermined variables (nz +p) x1
II Matrix relating endogenous variables to exogenous m X (p+ nz)
and predetermined variables
M (p+nz) X (p+ na)
G Matrix multiplying Exogenous Shock (nz +p) x1

May 24, 2006

16

King-Watson input:

2.
0.1
0.2

1 0 O 0 0 o0 1 0 0 0
01 0 0 0 o0 0 1 0 0
A= 0o 0 -1 -1. B = 0 0 —-1.1 0 O = 4. 1.
00 O 0 0 -0.7 0 1 3. —2.
10 0.9 0.1 0
@= [0 1} P [0.05 0.2} G = [0}
produces output:
1. 0. 0. 0. 0. 1.225 —21.0857 3.15714
0. 1. 0. 0. 0. 0.7 -3.
= 0. 1.225 —21.0857 3.15714 M = 0 0. 0.9
0. 0.7 —3. 2. 0 0. 0.05

Usage Notes for King-Watson Algorithm

1. Identify predetermined variables

3. Create matlab “system” and “driver” programs generating the input matrices.

variables. “driver” generates (Q, p, G).

4. Call resolkw with sytem and driver filenames as inputs to generate II, M, G

2. Cast the model in King-Watson form: endogenous variable must have at most one lead and no lag.

“system” generates

(A, B,C;,nz = ng,,ny = m), and a matlab vector containing indices corresponding to predetermined

Appendix B.2.1 King-Watson to Anderson-Moore

Obtaining Anderson-Moore inputs from King-Watson inputs
I
0 .= 9, Ty .= ¢ , 2t 1= 0 5
Tt
5 et
v:=[0 0 G]Y:=[0 0 p
[B1 BQ} = B, [Al AQ] = A
0 —B, 0 0 —B1 Ay —-Cop O
H:= |0 0 0 0 0 0 -1 Q
0 0 0 0 —p 0 0 1
A 0 —-Ci 0 0 0 —Cs O
0 0 0 0 0 0 0 0
-G 0 0 0 0 0 0 0

May 24, 2006

Obtaining King-Watson outputs from Anderson-Moore outputs

0 ﬂAk 0 f[ms
0 Mkk 0 M| _ B
0 Iz 0 Ilgs
0 0 0 o
M= [Mkk Mk6:|
0 p

= [Tz, TIas) M1
G:=[0 0 0 I]o¥

Appendix B.2.2

Anderson-Moore to King-Watson

Obtaining King-Watson inputs from Anderson-Moore inputs

Tt—r Tt (i,
Y 1= s A = ki = L\t = 2t
Tt4+0—1 Tt4+60—1 L Tt—1
I 0 7
A= .
I 0
0 ... 0 —Hp]
0 I
B = . :
0 I
H_. H_,4r ... Hp:
C .= [\(I)/] ,Q:=1,p:=0,G:=0,p:=L7,0:=1,m:=L(r+0)

Obtaining Anderson-Moore outputs from King-Watson outputs

17

May 24, 2006

Appendix B.3 Sims

Inputs

Doy = Diye—1 +C + Wz + 1y,

Model Variable Description Dimensions
Yt State Variables Lx1
2 Exogenous Variables M; x1
i Expectational Error My x 1
Ty Structural Coefficients Matrix L xL
Iy Structural Coefficients Matrix L xL
C Constants Lx1
v Structural Exogenous Variables Coeflicients Ma- | L x M;
trix
II Structural Expectational Errors Coefficients Ma- | L x My
trix
Outputs
¢ =O11-1+ O + 0oz + 6, Y05 0. Eyzss
s=1
Model Variable Description Dimensions
@1 LxL
(CH Lx1
O L x M,
Gy L x M2
@f M2 X M2
92]\/.[2 X M1

18

May 24, 2006

19

Sims input:
1 00 0 0 0 10 0
0 10 0 0 0 01 0
o=l 91 01 ' %o 0o 0 o9 o]’
0 10 0 0 07 00 0
0 0 10
0 0 0 1
il P T IRl 1V
3. —2. 00
produces output:
0. 1.61364 —4.40909])
0. 3. -2. 0.909091 1.23405
Oclo.|°9= | 3675 245 ’@f*_ 0. 0. }
0. 2.1 ~14 |
1.28794 1.74832
o — —2.22045107% —1.1102210"'6 0. — [—0.0796719 —2.29972
y— 1.41673 0.702491 | 7% | 24577 —1.63846
—1.11022107 6 1.22066
4.19421 —5.82645
6.6. — —2.551681071¢ 6.9254610~'¢
yrE 1.61364 —4.40909 |’
3. —2.

—_

. Identify predetermined variables

w

. Create the input matrices I'g,I'1, C, ¥, and II

N

. Call gensys to generate ©1,0.,0¢,0,,0;,0,

Usage Notes for Sims Algorithm

2. Cast the model in Sims form: at most 1 lag and 0 leads of endogenous variables.

Appendix B.3.1 Sims to Anderson-Moore

Nt+s

—-I'ty 0 Iy

H::{o 0 0

Obtaining Anderson-Moore inputs from Sims inputs

Tits = {yt“] — ¥,z = {Zﬂ , W= [%)j COV}

—II 0 O
0 0 I

May 24, 2006

Obtaining Sims outputs from Anderson-Moore outputs

OL(T*l)XL IL(Tfl)

©: = : Or(r+o)x Lo
By
OL(r—1)xL
@ ©.]=| Br |ov
Bor
Or(r—1)xL
Tt

3S50;=5FS"',0,0, =

Tiror1

and z¢41 =1

where #’s come from iterating equation forward 6 + 1 time periods with z;4s = 0,5 # 1

Appendix B.3.2 Anderson-Moore to Sims

Obtaining Sims inputs from Anderson-Moore inputs

Tt—1
Yt = y 2t = 2t
Tt4+6—1
I 0 0 I
I'o = : I =
1 0 0 I
0 Ho ... —Hy H., ... H;1 0
Or(r—1)xLe6
I — Iro U o— |:OL7—><L9:|
U
OrxLe

Obtaining Anderson-Moore outputs from Sims outputs

(B]:= 0, [2¥] :=0,0/

20

May 24, 2006

Appendix B.4 Klein

Inputs

A(.c/'.%'t+1 = th + CZt+1 + DZt

k
Zi41 = Qzp + € = [Ui]

21

Model Variable Description Dimensions
Ty Endogenous Variables Lx1
2t Exogenous Variables M x1
N The number of state Variables M x1
ks State Variables ng X 1
Ut The Non-state Variables (L—mng) x1
A Structural Coefficients Matrix for Future Vari- | L x L
ables
B Structural Coefficient Matrix for contemporane- | L x L
ous Variables
Outputs
U = Fk?t
ki = Pky—q
Model Variable Description Dimensions
F Decision Rule (L —ng) X ng
P Law of Motion nE X N
Klein input:
1 0 O 0 0 0 1 0 0 0
01 0 0 0 0 0 1 0 0
A= 0 0 -1 -1. B = 0 0 -1.1 0 O = 4. 1. |’
0 0 O 0 0 —-0.7 0 1 3. 2.

produces output:

0.9 0.1 ~21.0857 3.15714
P= [0.05 0.2] F{ -3, 2. |

Usage Notes for Klein Algorithm

1. Identify predetermined variables. Order the system so that predetermined variables come last.

2. Create the input matrices A, B[

3. Call solab with the input matrices and the number of predetermined variables to generate F' and P

“The Gauss version allows additional functionality.

May 24, 2006

Appendix B.4.1

Klein to Anderson-Moore

Obtaining Anderson-Moore inputs from Klein inputs

0 B, 0 0 —B1 Ay, —Co O
H=|0 0 00 0 0 -I Q
0 0 00 —p 0 0 I

Al 0 —-Cp 0 00 —Cy O

0 0 0 0 00 0 0

-G 0 0 0 00 0 0

Obtaining Klein outputs from Anderson-Moore outputs

0 FAk 0 FA5
0 Pu 0 Pps —B
0 Fur 0 Fus
o 0 0 »p
P |:Pkk Pk6:|
0 p

F = [ﬁAk FA(;:I P71
G:=[0 0 0 I]o¥

Appendix B.4.2

Anderson-Moore to Klein

Obtaining Klein inputs from Anderson-Moore inputs

Tt—r Tt Tt—71
Yt = ,At = kt =
Tt+0—1 Tt+0—1 Tt—1
1 0
A=
1 0
0 0 —Hp
0 1
B =
0 1
H . H_rp1 ... Hyp_y

C .= [0] ,Q:=1,p:=0,G:=0

22

May 24, 2006

Obtaining Anderson-Moore outputs from Klein outputs

1 0
01 0 Bir Bir U

Bor, Bor By-1)r®¥

23

May 24, 2006 24

Appendix B.5 Binder-Pesaran

Inputs
C’mt = /Alxt,l + B&rtH + Dyw; + Dawyyq
wy = lwi_1

Model Variable Description Dimensions
Ty State Variables Lx1
Wy Exogenous Variables M x1
A Structural Coefficients Matrix LxL
B Exogenous Shock Coefficients Matrix LxL
C Exogenous Shock Coefficients Matrix LxM
D, Exogenous Shock Coefficients Matrix LxM
Do Exogenous Shock Coefficients Matrix LxM
r Exogenous Shock Coefficients Matrix LxM

Outputs

ry = Cxi_1+ Huwy
(oo}
Ty = C.]?t_l + ZFiE(wt—i-l)

Model Variable Desc;p?tion Dimensions
C reduced form codifying convergence constraints L x L(r+90)
H exogenous shock scaling matrix LxM

Binder-Peseran input:

a=lo ore=o le=10t -]y 4

0 0 09 0.1
D2 = {0 o}r_ {0.05 0.2}

produces output:

= [0. 1.225] - {21.0857 —3.15714]

0. 0.7 3. —2.

Usage Notes for Binder-Pesaran Algorithm

1. Cast model in Binder-Pesaran form: at most one lead and one lag of endogenous variables. The matrix
C must be nonsingular.

2. Modify existing Matlab script implementing Binder-Pesaran’s Recursive Method to create the input
matrices A, B, C, D1, DoI' and to update the appropriate matrices in the “while 1oop.”

3. Call the modified script to generate C' and H and F'.

May 24, 2006

Appendix B.5.1

Binder-Pesaran to Anderson-Moore

Obtaining Anderson-Moore inputs from Binder-Pesaran inputs

Wt
Tt = T, 2t = |:’lUt+1:|
H:=[-A C B]

i
Y= [F F} 0= (D, Di

Obtaining Binder-Pesaran outputs from Anderson-Moore outputs

C =B, H:=dV¥

Appendix B.5.2

Anderson-Moore to Binder-Pesaran

Obtaining Binder-Pesaran inputs from Anderson-Moore inputs

—Irr—1y Or(r—1)xL(0-1)

A:= | Op-1) Orp-1)xr(6-1)
H_ OLxr(r+0-2)
Op(r—1) OrL(r—1)xL(6-1)
B:=| Ipe-nyxtr Or-1)
OLxL(0+7—2) Hy
Inz—1y On(r—1yxL(e—1) Or(—1)xL
C:= (Opp-1)xL Or(o—1) Iro—1yxre-1)
H .1 Hy 1
D, = v Dy =0,T=0
1.= \IJ) 2 = I -

Obtaining Anderson-Moore outputs from Binder-Pesaran outputs

0
U
BroOV | ._ g
Bo—1)n®W
010
B 0
=C
L0
By 0

25

May 24, 2006 26

Appendix B.6 Uhlig

Inputs

A:Et + th,1 + Cyt + DZt =0
E(FZL'H_l + GZCt + HCCt_l + Jyt+1 + Kyt + LZt+1 + MZt)
2441 = Nzp + €441

56t+1 =0
Model Variable Description Dimensions
Ty State Variables mx 1
Yt Endogenous “jump” Variables nxl1
2t Exogenous Variables kx1
A, B Structural Coefficients Matrix Ixm
C Structural Coefficients Matrix Ixn
D Structural Coefficients Matrix I xk
F,G/H Structural Coefficients Matrix (m4+n—1)xm
J, K Structural Coefficients Matrix (m+n—1)xn
LM Structural Coefficients Matrix m+n—1Ixk
N Structural Coefficients Matrix kxk

Outputs

xy = Py + Q2
Yy = Rry1 4+ Sz

Model Variable Description Dimensions
P mxXm

Q m X k

R nxm

S nxk

For Uhlig cannot find C with the appropriate rank condition without augmenting the system with a “dummy
variable” and equation like Wy = D; + V4.
Uhlig input:

1 -1 1
F=[1. 0]G=[0 0]H=[0 0]J=[1]K = [-1.1]
e N R

produces output:

p_]07 0. o= 3 -2.
T 1,925 6.16298107%) ¥ T |24.0857 —5.15714
R=[1.225 6.16298107%] S = [21.0857 —3.15714]

May 24, 2006 27

Usage Notes for Uhlig Algorithm

1. Cast model in Uhlig Form. One must be careful to choose endogenous “jump” and and “non jump” variables to
guarantee that the C' matrix is appropriate rank. The rank null space must be (I —n) where [is the number of
equations with no lead variables,(the row dimension of C) and n is the total number of “jump” variables(thee
column dimension of C).

2. Create matrices A, B,C,D,F,G,H,J, K, L, M, N

3. Call the function do_it to generate P,Q, R, S, W

Appendix B.6.1 Uhlig to Anderson-Moore

Obtaining Anderson-Moore inputs from Uhlig inputs

o [#] g._[B 0O A C D 0 0
Ty, "~ |H 0 G K F J 0

YT =N, ¥:=1,

Appendix B.6.2 Anderson-Moore to Uhlig

Obtaining Uhlig inputs from Anderson-Moore inputs

—Irr—1y Or(r—1)xL(0-1)

A:=|0pp-1) Orp-1)xr6-1)
H_: OrLxL(r+0-2)
Or(r—1) OrL(r—1)xL(6—1)
B : Ino—1yxr Oro—-1)
0L><L(0+-r—2) Hy
In+—1) Op(r—1)xL(o-1) OL(r—1)xL
C = |OLp-1)xL Ore—1) Ire—1yxL(6-1)
H_ 41 Ho_y

find permutation matrices or, 0r

B 0 A C 0 0
H 0 G K F J}:QLH(I:”@QR)

and such that with 1 row dimension of C and n the column dimension of C
rank(nullSpace(CT)) =1—n

o[

oLV

May 24, 2006

Obtaining Anderson-Moore outputs from Uhlig outputs

28

May 24, 2006

Appendix C Computational Efficiency

Table 2: Matlab Flop Counts: Uhlig Examples

L,7,0,B,9,4,F See[Appendix B.1|
. Soo Do B

L, Mz Sec Fppendx B3
i See ppond]

L See [Xppendix B

m.n See (xppendix B

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

Model AIM KW Sims Klein BP Uhlig

(La 7, 9) (mvp) (La MQ) (Lv nk) L (ma n)

Computes (B,Y,¢,F) (B,Y) | (B,¢,F) (B) (B,Y,0,F) | (B,9)
uhlig 0 (2514, 4098) || 3.38385 | 23.9387 | 28.8007 88.7832 | 0.922832
(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 (6878,9817) | 3.81346 | 46.9301 | 29.1669 15347.3 | 1.88979
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 (6798,9773) 3.292 | 52.2499 | 35.7318 6468.78 | 1.80494
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 (112555,276912) || 3.62782 | 40.5874 | 22.6611 205753. | 16.7633
(14,1,1) || (28,14) (28,14) | (28,13) 14 (10,4)
uhlig 4 (6850,9789) || 3.58292 45.675 | 29.5441 16250.5 | 1.89752
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 (6850,9789) || 3.58292 45.675 | 29.5441 16250.5 | 1.89752
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 (7809,26235) || 2.53182 | 47.5947 | 46.3196 190.905 | 3.42169
(6,1,1) | (12,6) (12,6) | (12,4) 6 (4,2)
uhlig 7 (82320, 108000) 2.8447 | 48.1792 | 28.9946 131.785 | 2.60423
(13,1,1) || (26,13) (26,13) | (26,11) 13 (11,2)

Note:

29

May 24, 2006

Table 3: Matlab Flop Counts: King & Watson, Klein, Binder & Peseran and Sims Examples

L,7,0,B,9,¢, F See[Appendix B.]|
m.p Seo [PpodTE B

I Ms Seo [ppend B
i See ppond]

L Seo [Xppendix B

m.n Sce (xppendix B

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

Model AIM KW Sims Klein BP Uhlig
(L,7,0) (m,p) | (L,M) | (L,ng) L (m, n)
Computes (B,v%,¢,F) (B,Y) | (B,¢,F) (B) (B,Y,¢0,F) | (B,9)
king 2 (2288,2566) || 2.36713 | 9.64904 | 20.7072 165.623 | 1.76311
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 3 (1028, 2306) || 2.81809 21.1284 | 77.1858 368.545 NA
(3,1,1) (6,3) (6,3) (6,-1) 3 (2,1)
king 4 (40967, 146710) 5.2211 39.8819 30.493 185.299 | 14.2569
(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)
sims 0 (3501,5576) || 4.70923 | 59.9526 | 59.2871 NA | 5.72694
(5,1,1) | (10,5) (10,5) | (10,3) 50 (41)
sims 1 (16662, 39249) || 4.20292 56.8375 | 48.4135 NA 9.2849
(8,1,1) (16,8) (16,8) | (16,5) 8 (6,2)
klein 1 (3610, 15147) || 2.13213 10.2756 | 16.7828 35555.2 | 2.30526
(3,1,1) (6,3) (6,3) (6,2) 3 (1,2)
bp 1 (533,1586) 3.1257 | 13.8987 | 59.7749 613.814 | 2.88743
(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
bp 2 (3510 5659) 3.5265 | 77.2456 | 67.7846 800.98 | 21.4259
(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

30

May 24, 2006

Table 4: Matlab Flop Counts: General Examples

Model AIM KW Sims Klein BP Uhlig
(LaTa 0) (map) (L7M2) (L7nk) L (mﬂn)

Computes (B,Y,9,F) (B,¥) | (B,¢,F) (B) (B,%,¢,F) | (B,9)
firmValue 1 (535,1586) || 2.90467 11.5252 | 92.9738 534.686 NA
(2,1,1) (4,2) (4,2) (4,0) 2 (11)

athan 1 (18475,70162) || 3.75578 135.329 | 113.463 1385.73 | 196.251
(9,1,1) (18,9) (18,9) (18,1) 9 (8,1)

fuhrer 1 (352283, 1885325) NA 125.141 | 148.459 NA NA
(12,1,4) (60,12) (60,48) (60,1) 48 (9,39)

Note:

L.7.0,B.9,6,F Sec[Sppendi B
m.p Seo [Sppendix B

L. M; Sec[Sppendix B
Loy See [Sppendi B
L Sce [Xppondix B

m.n See (Fppend B

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006

Table 5: Using Anderson-Moore to Improve Matrix Polynomial Methods

Model(m,n) Uhlig | AM/Uhlig
uhlig 0(3,1) 2320 2053
uhlig 1(5,1) 12998 12731
uhlig 2(5,1) 12270 12003
uhlig 3(10,4) | 1886798 304534
uhlig 4(5,1) 12998 12731
uhlig 5(5,1) 12998 12731
uhlig 6(4,2) 26720 24233
uhlig 7(11,2) | 214380 213450
Note

32

May 24, 2006

Appendix D

Accuracy

Table 6: Matlab Relative Errors in B: Uhlig Examples

|| Bz - Bezact ||
|| Bewact H

Model AIM KW Sims Klein BP Uhlig
(L,7,0) (m,p) (L’M2) (L’nk) L (m,n)
Computes (B,9,¢,F) (B,9) | (B,¢,F) (B) (B,v,¢, F) | (B,9)
uhlig 0 = 1.69446 10~ 1° 8. 40. 11. 134848. 49.
(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 =3.8237510" " || 0.518098 | 2.63371 | 0.617504 10217.1 | 3.32793
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 = 4.8878510~ 1. | 2.00589 | 6.43964 9520.85 | 2.82951
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 :=1.1501510"" || 2.65517 | 1.78046 | 1.45676 | 8.5799410™ | 20.9358
(14,1,1) (28,14) (28,14) (28,13) 14 | (10,4)
uhlig 4 = 1.1835710" 2.2561 | 1.00348 | 14.7909 10673.4 | 34.6115
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 =1.1835710~ 7 2.2561 | 1.00348 | 14.7909 10673.4 | 34.6115
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 = 1.60458 10~ || 7.32281 | 38.3459 | 13.4887 | 7.6352410™ | 203.291
(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 =2.3333210" ™ || 7.59657 | 4.15248 | 0.335751 NA | 2.63499
(13,1,1) (26,13) (26,13) (26,11) 13| (11,2)

Note:

L,7,0,B,9,¢, F See[Appendix B.1|
. Seo [podE B

LMz Seo Fppeondi= B3
i See ppond g

L See [Xppendix B

m.n See (xppendix B

KW, Sims, Klein, BP, Uhlig column normalized

by dividing by comparable AIM value.

May 24, 2006

Table 7: Matlab Relative Errors in B: King & Watson and Sims Examples

34

|| B’L - Bemact ||
|| Bezact H

Model AIM KW Sims Klein BP Uhlig

(LvTv 9) (m,p) (LvMQ) (Lvnk) L (mvn)

Computes (B,9,¢,F) (B,9) (B,¢, F) (B) (B,9,¢,F) (B,9)
king 2 1:=0. || 3.6516910 '° | 1.6164210°° 0. 0. 0
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 3 1:=0. 0. | 2.2204510 '° | 2.4918310 *° 0. NA
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 4 1:=22510 ™ [[3.9919910 ™ | 1.4849210 ™ | 2.055210 ™ | 6.3833810 '° | 2.6396910 °
(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)
sims 0 1:=0. || 8.84516107 17 | 3.5778810 '° | 2.34864 10 '° NA | 5551121017
(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)
sims 1 1:=1.1860310" ™ || 7.58081 10 '° | 9.0868510 '° | 1.28298 10 '° NA | 81172910
(8,1,1) (16,8) (16,8) (16,6) 8 (6,2)
klein 1 1:=1.2939810~ 3.2259 10 ™ | 8.7211910 ™ | 1.7695710" ™ | 4.5474210°'° | 4.6152210" ™
(3,1,1) (6,3) (6,3) (6,1) 3 (1,2)
bp 1 1:=1.5460710" " || 2.8232510" ™ | 5.1087410 ™ | 1.2368510 ' | 5.9544310~ ™" | 1.06208 10~ ™*
(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
bp 2 1:=5.0076510"1° [[5.15101 10~ ™ | 5.5205310~ " | 5.2176410~1° | 7.1480110~1° | 3.9814810~ 1%
(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

L,7,0,B, 9,6, F Sece[Appendix B.1]
m.p Seo [Sppendi B
L. M; Sec[Sppendix B
Loni. See [Sppendix B
L Sce ppondi B
m.n See (ppendix BT

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

May 24, 2006

Table 8: Matlab Relative Errors in 9:

Uhlig Examples

L,7,0,B,9,4,F See[Appendix B.1|
. See FERERTE D

L, Mz Sec (ppend By
L Seo ppondx T

L Sce (ppendix B

m.n See (xppendix B

KW, Sims, Klein, BP, Uhlig column normalized

by dividing by comparable AIM value.

|| 191 - ﬂeract ||
|| 19ea:act ||

Model AIM KW Sims Klein BP Uhlig

(L’T’ 9) (m,p) (L7M2) (L,) L (mvn)

Computes (B,v,¢, 1) (B,9) | (B¢, F) (B) (B,v,¢,F) (B,9)
uhlig 0 :=9.6633110~1° || 0.532995 NA | 1.34518 159728. | 9.54822
(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 :=2.2593810 1 || 3.78248 NA | 2.32241 | 5.3045910° | 2.33909
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 = 5.0561410~ 1 || 0.43572 NA | 2.62987 | 1.5163710° 1.
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 1:=8.9310"° || 2.08127 NA | 1.39137 NA | 14.3934
(14,1,1) (28,14) (28,14) | (28,13) 14 (10,4)
uhlig 4 1:=0.0114423 1. NA 1. 0.999999 1.
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 :=1.3738810~ || 3.79327 NA | 9.97923 | 8.0393710° | 12.2245
(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 = 6.9724710~ ™ || 1.00929 NA | 1.83538 | 1.1289910™ | 27.5959
(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 = 74770810~ || 1.67717 NA | 0.131889 NA | 0.665332
(13,1,1) (26,13) (26,13) | (26,11) 13 (11,2)

Note:

May 24, 2006

Table 9: Matlab Relative Errors in ¥: King & Watson and Sims Examples

|| 191 - ﬂeract ||
|| 19ea:act ||

Model AIM KW Sims Klein BP Uhlig

(L,T,0) (m, p) (L, M2) (L,nk) L (m,n)

Computes (B,9,¢,F) (B,9) (B, ¢, F) (B) (B,9,¢,F) (B,9)
king 2 1:=4.99610 '° 4.99610°1° NA 4.99610°1° 4.99610°1° 4.99610° 16
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 3 1:=2.5829710 ™ [[5.0299910 ™ NA | 6.4234310 1 | 2.5829710 1° NA
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 4 1:=3.4568810 '° [[1.1244510 NA | 8.4011210 1% [2.6581110 ' | 2.4735510 7
(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)
sims 0 1:=7.6663810"1° || 7.8533710'° NA | 9.5362310°1° NA | 7.6663810 '°
(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)
sims 1 1:=9.7329410"1° || 1.5767110° ™ NA | 42358910~ 7 NA | 9.7329410 8
(8,1,1) (16,8) (16,8) (16,6) 8 (6,2)
klein 1 1:=2.3377910"1° 1.910710~ ™ NA | 1.0726910 2.396710 Y | 2.6682310 ©°
(3.1,1) (6,3) (6,3) (6,1) 3 (1,2)
bp 1 1:=1.480210"" [[8.9103910~ ™ NA [12016910~ | 5.55737107° | 1.1685810 ™
(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
bp 2 1:=6.180910"1° || 1.2534710 7 NA | 13268105 | 6.180910~'° | 8.902610~°
(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

36

Note:

L,7,0,B, 9,6, F Sece[Appendix B.1]
m.p See [Sppendix B

L. M; See[Sppendix B

Loy See [Sppendix B

L See Xppondis B

m.n Sce [xppendix B

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

May 24, 2006

Table 10: Matlab Relative Errors in F':

Uhlig Examples

|| Fi - Fezact ”
|| Fea:act ||
Model AIM KW Sims Klein BP Uhlig
(L,T,a) (map) (L7M2) (L,’I’Lk) L (m,n)
Computes (B,Y,¢,F) (B,v) | (B,¢,F) (B) (B,Y,¢,F) | (B,9)
uhlig 0 1:=4.6041110"15 NA 38.383 NA 6280.03 NA
(4,1,1) (8,4) (8,4) (8,3) 41 (3,1)
uhlig 1 1:=6.1262210"1° NA | 4.25457 NA 3126.17 NA
(6,1,1) || (12,6) (12,6) | (12,5) 6| (5,1)
uhlig 2 1:=6.1324610"1° NA | 3.58093 NA 3918.23 NA
(6,1,1) | (12,6) (12,6) | (12,5) 6| (5,1)
uhlig 3 1:=7.2884310" 16 NA | 12.9392 NA | 1.4098610™ NA
(14,1,1) || (28,14) (28,14) | (28,13) 14 | (10,4)
uhlig 4 1:=6.0357310"1° NA | 2.73637 NA 1028.17 NA
(6,1,1) || (12,6) (12,6) | (12,5) 6| (5,1)
uhlig 5 1:=6.0357310" 16 NA | 2.73637 NA 1028.17 NA
(6,1,1) || (12,6) (12,6) | (12,5) 6| (5,1)
uhlig 6 1:=6.0499101° NA | 308.153 NA | 1.6529210™3 NA
(6,1,1) || (12,6) (12,6) | (124) 6 (42)
uhlig 7 1:=7.5242310" 1 NA | 1.72491 NA NA NA
(13,1,1) || (26,13) (26,13) | (26,11) 13 | (11,2)
Note:

L.7.0,B.9,6,F See [ppend BT

m.p Sce (ppondi B
L. M, Sce [ppend B
L.y, Sce [Xppendi B
L See [Xppendix B

m.n See [Xppendix B

KW, Sims, Klein, BP, Uhlig column normalized

by dividing by comparable AIM value.

May 24, 2006

Table 11: Matlab Relative Errors in F: King & Watson and Sims Examples

|| Fi - Fezact ”
|| Fea:act ||

Model AIM KW Sims Klein BP Uhlig
(L7T7 9) (map) (LaMQ) (Lank) L (mvn)
Computes (B,Y,¢,F) (B,9) (B,$,F) (B) (B,v%,¢,F) (B,9)
king 2 1:=7.4940110"1° NA | 1.3634910~1° NA | 7.4940110°'° NA
3,1,1) || (6,3) 6,3) | (6,1 30 (2,0)
king 3 1:=3.996810" 16 NA | 6.5347210°1° NA | 3.996810°1° NA
(3,1,1) || (6,3) (6,3) (6,1) 31 (2,1
king 4 1:=2.13838310 7 NA | 2.58686 10~ 1° NA | 7.29456 10~ 1° NA
(9,1,1) || (18,9) (18,9) | (18,5) 9| (3,6
sims 0 1:=7.1371510"1° NA | 119171071 NA NA NA
(5,1,1) || (10,5) (10,5) | (10,3) 51 (4,1)
sims 1 1:=2.4165110" 7 NA | 2.9215210°1° NA NA NA
(8,1,1) || (16,8) (16,8) | (16,6) 8| (62)
klein 1 1:=1.2438710"1° NA | 1669111013 NA | 3.7087310~1° NA
3,1,1) || (6,3) 6,3) | (6,1 31 (1,2
bp 1 1:=4.43937101° NA | 7.5127710° 15 NA | 5.03025 10~ 11 NA
(2,11) | (4.2) (4,2) (4,0) 2| (1,1
bp 2 1:=5.82645101° NA | 1.7128510° 15 NA | 5.8264510~ 16 NA
(5,1,1) || (10,5) (10,5) | (10,1) 50 (4,1)

Note:

L,7,0,B,9,4,F See[Appendix B.1|
. See FERERTE D

LMz Seo Fppondix B3

L. Seo Eppendix B

I, Sco [ppond= B

i, Seo e

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

	Introduction and Summary
	Problem Statement and Notation
	Eigensystem Methods
	The Anderson-Moore Algorithm
	King & Watson's Canonical Variables/System Reduction Method

	Applications of the QZ Algorithm
	Sims' QZ Method
	Klein's Approach

	Applications of the Matrix Polynomial Approach
	Binder & Pesaran's Method
	Uhlig's Technique

	Comparisons
	Computational Efficiency
	Numerical Accuracy

	Conclusions
	Bibliography
	The Anderson-Moore Algorithm(s)
	Model Concepts
	Anderson-Moore
	King-Watson
	King-Watson to Anderson-Moore
	Anderson-Moore to King-Watson

	Sims
	Sims to Anderson-Moore
	Anderson-Moore to Sims

	Klein
	Klein to Anderson-Moore
	Anderson-Moore to Klein

	Binder-Pesaran
	Binder-Pesaran to Anderson-Moore
	Anderson-Moore to Binder-Pesaran

	Uhlig
	Uhlig to Anderson-Moore
	Anderson-Moore to Uhlig

	Computational Efficiency
	Accuracy
	0626out.pdf
	Gary S. Anderson

