
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Solving Linear Rational Expectations Models:
A Horse Race

Gary S. Anderson
2006-26

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS)
are preliminary materials circulated to stimulate discussion and critical comment. The
analysis and conclusions set forth are those of the authors and do not indicate
concurrence by other members of the research staff or the Board of Governors.
References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character
of these papers.

Solving Linear Rational

Expectations Models:

A Horse Race

Gary S. Anderson∗

Board of Governors of the Federal Reserve System

May 24, 2006

Abstract

This paper compares the functionality, accuracy, computational efficiency, and practicalities of al-
ternative approaches to solving linear rational expectations models, including the procedures of (Sims,
1996), (Anderson and Moore, 1983), (Binder and Pesaran, 1994), (King and Watson, 1998), (Klein,
1999), and (Uhlig, 1999). While all six procedures yield similar results for models with a unique sta-
tionary solution, the AIM algorithm of (Anderson and Moore, 1983) provides the highest accuracy;
furthermore, this procedure exhibits significant gains in computational efficiency for larger-scale models.

∗I would like to thank Robert Tetlow, Andrew Levin and Brian Madigan for useful discussions and suggestions. I would like
to thank Ed Yao for valuable help in obtaining and installing the MATLAB code. The views expressed in this document are
my own and do not necessarily reflect the position of the Federal Reserve Board or the Federal Reserve System.

1

May 24, 2006 2

1 Introduction and Summary

Since (Blanchard and Kahn, 1980) a number of alternative approaches for solving linear rational expectations
models have emerged. This paper describes, compares and contrasts the techniques of (Anderson, 1997;
Anderson and Moore, 1983, 1985), (Binder and Pesaran, 1994), (King and Watson, 1998), (Klein, 1999),
(Sims, 1996), and (Uhlig, 1999). All these authors provide MATLAB code implementing their algorithm.1

The paper compares the computational efficiency, functionality and accuracy of these MATLAB implemen-
tations. The paper uses numerical examples to characterize practical differences in employing the alternative
procedures.

Economists use the output of these procedures for simulating models, estimating models, computing impulse
response functions, calculating asymptotic covariance, solving infinite horizon linear quadratic control prob-
lems and constructing terminal constraints for nonlinear models. These applications benefit from the use of
reliable, efficient and easy to use code.

A comparison of the algorithms reveals that:

• For models satisfying the Blanchard-Kahn conditions, the algorithms provide equivalent solutions.2

• The Anderson-Moore algorithm requires fewer floating point operations to achieve the same result.
This computational advantage increases with the size of the model.

• While the Anderson-Moore, Sims and Binder-Pesaran approaches provide matrix output for accom-
modating arbitrary exogenous processes, the King-Watson and Uhlig implementations only provide
solutions for VAR exogenous process.3 Fortunately, there are straightforward formulae for augmenting
the King-Watson Uhlig and Klein approaches with the matrices characterizing the impact of arbitrary
shocks.

• The Anderson-Moore suite of programs provides a simple modeling language for developing models. In
addition, the Anderson-Moore implementation requires no special treatment for models with multiple
lags and leads. To use each of the other algorithms, one must cast the model in a form with at most
one lead or lag. This can be a tedious and error prone task for models with more than a couple of
equations.

• Using the Anderson-Moore algorithm to solve the quadratic matrix polynomial equation improves the
performance of both Binder-Pesaran’s and Uhlig’s algorithms.

Section 2 states the problem and introduces notation. This paper divides the algorithms into three categories:
eigensystem, QZ, and matrix polynomial methods. Section 3 describes the eigensystem methods. Section 4
describes applications of the QZ algorithm. Section 5 describes applications of the matrix polynomial ap-
proach. Section 6 compares the computational efficiency, functionality and accuracy of the algorithms.
Section 7 concludes the paper. The appendices provide usage notes for each of the algorithms as well as
information about how to compare inputs and outputs from each of the algorithms.

1 Although (Broze, Gouriéroux, and Szafarz, 1995) and (Zadrozny, 1998) describe algorithms, I was unable to locate code
implementing the algorithms.

2 (Blanchard and Kahn, 1980) developed conditions for existence and uniqueness of linear rational expectations models. In
their setup, the solution of the rational expectations model is unique if the number of unstable eigenvectors of the system is
exactly equal to the number of forward-looking (control) variables.

3I modified Klein’s MATLAB version to include this functionality by translating the approach he used in his Gauss version.

May 24, 2006 3

2 Problem Statement and Notation

These algorithms compute solutions for models of the form

θ∑
i=−τ

Hixt+i = Ψzt, t = 0, . . . ,∞ (1)

with initial conditions, if any, given by constraints of the form

xi = xdata
i , i = −τ, . . . ,−1 (2)

where both τ and θ are non-negative, and xt is an L dimensional vector of endogenous variables with

lim
t→∞

‖xt‖ <∞ (3)

and zt is a k dimensional vector of exogenous variables.

(4)

Solutions can be cast in the form

(xt − x∗) =
−1∑

i=−τ

Bi(xt+i − x∗)

Given any algorithm that computes the Bi, one can easily compute other quantities useful for characterizing
the impact of exogenous variables. For models with τ = θ = 1 the formulae are especially simple.

Let

Φ = (H0 +H1B)−1

F = −ΦH1B

We can write

(xt − x∗) = B(xt−1 − x∗) +
∞∑

s=0

F sφψzt+s

and when

zt+1 = Υzt

vec(ϑ) = (I −ΥT ⊗ F)−1vec(ΦΨ)
(xt − x∗) = B(xt−1 − x∗) + ϑzt

Consult (Anderson, 1997) for other useful formulae concerning rational expectations model solutions.

I downloaded the MATLAB code for each implementation in July, 1999. See the bibliography for the relevant
URL’s.

May 24, 2006 4

3 Eigensystem Methods

3.1 The Anderson-Moore Algorithm

(Anderson, 1997; Anderson and Moore, 1985) developed their algorithm in the mid 80’s for solving rational
expectations models that arise in large scale macro models. Appendix B.1 on page 13 provides a synopsis of
the model concepts and algorithm inputs and outputs. Appendix A presents pseudocode for the algorithm.

The algorithm determines whether equation 1 has a unique solution, an infinity of solutions or no solutions at
all. The algorithm produces a matrixQ codifying the linear constraints guaranteeing asymptotic convergence.
The matrix Q provides a strategic point of departure for making many rational expectations computations.

The uniqueness of solutions to system 1 requires that the transition matrix characterizing the linear system
have appropriate numbers of explosive and stable eigenvalues (Blanchard and Kahn, 1980), and that the
asymptotic linear constraints are linearly independent of explicit and implicit initial conditions (Anderson
and Moore, 1985).

The solution methodology entails

1. Manipulating equation 1 to compute a state space transition matrix.

2. Computing the eigenvalues and the invariant space associated with explosive eigenvalues

3. Combining the constraints provided by:

(a) the initial conditions,

(b) auxiliary initial conditions identified in the computation of the transition matrix and

(c) the invariant space vectors

The first phase of the algorithm computes a transition matrix, A, and auxiliary initial conditions, Z. The
second phase combines left invariant space vectors associated with large eigenvalues of A with the auxiliary
initial conditions to produce the matrix Q characterizing the saddle point solution. Provided the right hand
half of Q is invertible, the algorithm computes the matrix B, an autoregressive representation of the unique
saddle point solution.

The Anderson-Moore methodology does not explicitly distinguish between predetermined and non-predetermined
variables. The algorithm assumes that history fixes the values of all variables dated prior to time t and that
these initial conditions, the saddle point property terminal conditions, and the model equations determine
all subsequent variable values.

3.2 King & Watson’s Canonical Variables/System Reduction Method

(King and Watson, 1998) describe another method for solving rational expectations models. Appendix B.2
provides a synopsis of the model concepts and algorithm inputs and outputs. The algorithm consists of two
parts: system reduction for efficiency and canonical variables solution for solving the saddle point problem.
Although their paper describes how to accommodate arbitrary exogenous shocks, the MATLAB function
does not return the relevant matrices.

King-Watson provide a MATLAB function, resolkw, that computes solutions. The MATLAB function trans-
forms the original system to facilitate the canonical variables calculations. The mdrkw program computes
the solution assuming the exogenous variables follow a vector autoregressive process.

Given:

AE(yt+1) = Byt + Cxt

May 24, 2006 5

system reduction produces an equivalent model of the form

0 = ft +Kdt + Ψf (F)E(xt)
E(dt+1) = Wdt + Ψd(F)E(xt)

Where dt are the “dynamic” variables and ft are the “flow” variables in the yt vector.

The mdrkw program takes the reduced system produced by redkw and the decomposition of its dynamic
subsystem computed by dynkw and computes the rational expectations solution. The computation can use
either eigenvalue-eigenvector decomposition or Schur decomposition.

Appendix B.2.1 shows one way to compute the King-Watson solution using the Anderson-Moore algorithm.
Appendix B.2.2 shows one way to compute the Anderson-Moore solution using the King-Watson algorithm.

4 Applications of the QZ Algorithm

Several authors exploit the properties of the Generalized Schur Form (Golub and van Loan, 1989).

Theorem 1 The Complex Generalized Schur Form – If A and B are in Cn×n, then there exist unitary Q
and Z such that QHAZ = T and QHBZ = S are upper triangular. If for some k, tkk and skk are both zero,
then λ(A,B) = C. Otherwise, λ(A,B) = { tii

sii
: sii 6= 0}

The algorithm uses the QZ decomposition to recast equation 5 in a canonical form that makes it possible
to solve the transformed system “forward” for endogenous variables consistent with arbitrary values of the
future exogenous variables.

4.1 Sims’ QZ Method

(Sims, 1996) describes the QZ Method. His algorithm solves a linear rational expectations model of the
form:

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt (5)

where t = 1, 2, 3, · · · ,∞ and C is a vector of constants, zt is an exogenously evolving, possibly serially
correlated, random disturbance, and ηt is an expectational error, satisfying Etηt+1 = 0.

Here, as with all the algorithms except the Anderson-Moore algorithm, one must cast the model in a form
with one lag and no leads. This can be problematic for models with more than a couple of equations.

Appendix B.3 summarizes the Sims’ QZ method model concepts and algorithm inputs and outputs.

The Π designation of expectational errors identifies the “predetermined” variables. The Anderson-Moore
technique does not explicitly require the identification of expectational errors. In applying the Anderson-
Moore technique, one chooses the time subscript of the variables that appear in the equations. All predeter-
mined variables have historical values available through time t − 1. The evolution of the solution path can
have no effect on any variables dated (t− 1) or earlier. Future model values may influence time t values of
any variable.

Appendix B.3.1 shows one way to transform the problem from Sims’ form to Anderson-Moore form and how
to reconcile the solutions. For the sake of comparison, the Anderson-Moore transformation adds Lθ variables
and the same number of equations, setting future expectation errors to zero.

Appendix B.3.2 shows one way to transform the problem from Anderson-Moore form to Sims form.

May 24, 2006 6

4.2 Klein’s Approach

(Klein, 1999) describes another method. Appendix B.4 summarizes the model concepts and algorithm
inputs and outputs.

The algorithm uses the Generalized Schur Decomposition to decouple backward and forward variables of the
transformed system.

Although the MATLAB version does not provide solutions for autoregressive exogenous variables, one can
solve the autoregressive exogenous variables problem by augmenting the system. The MATLAB program
does not return matrices for computing the impact of arbitrary exogenous factors.

Appendix B.4.1 describes one way to recast a model from a form suitable for Klein into a form for the
Anderson-Moore algorithm. Appendix B.4.2 describes one way to recast a model from a form suitable for
the Anderson-Moore methodology into a form for the Klein Algorithm.

5 Applications of the Matrix Polynomial Approach

Several algorithms rely on determining a matrix C satisfying

H1C
2 +H0C +H−1 = 0. (6)

They employ linear algebraic techniques to solve this quadratic equation. Generally there are many solutions.

When the homogeneous linear system has a unique saddle-path solution, the Anderson-Moore algorithm
constructs the unique matrix CAM = B that satisfies the quadratic matrix equation and has all roots inside
the unit circle.

H1C
2
AM +H0CAM +H−1 = 0

5.1 Binder & Pesaran’s Method

(Binder and Pesaran, 1994) describe another method.

According to Binder & Pesaran(1994), under certain conditions, the unique stable solution, if it exists, is
given by:

xt = Cxt−1 +
∞∑

i=0

F iE(wt+1)

where

F = (I −BC)−1B

and C satisfies a quadratic equation like equation 6.

Their algorithm consists of a “recursive” application of the linear equations defining the relationships between
C, H and F.

Appendix B.5.1 describes one way to recast a model from a form suitable for Binder-Pesaran into a form for
the Anderson-Moore algorithm. Appendix B.5.2 describes one way to recast a model from a form suitable
for the Anderson-Moore methodology into a form for the Binder-Pesaran Algorithm.

5.2 Uhlig’s Technique

(Uhlig, 1999) describes another method. The algorithm uses generalized eigenvalue calculations to obtain a
solution for the matrix polynomial equation.

May 24, 2006 7

One can view the Uhlig technique as preprocessing of the input matrices to reduce the dimension of the
quadratic matrix polynomial. It turns out that once the simplification has been done, the Anderson-Moore
algorithm computes the solution to the matrix polynomial more efficiently than the approach adopted in
Uhlig’s algorithm.

Uhlig’s algorithm operates on matrices of the form:[
B 0 A C 0 0
H 0 G K F J

]
Uhlig in effect pre-multiplies the equations by the matrix C0 0

C+

−KC+ I


where

C0C = 0, C+ = (CTC)−1CT

to get  C0B 0 C0A 0 0 0
C+B 0 C+A I 0 0

H −KC+B 0 G−KC+A 0 F J


one can imagine leading the second block of equations by one period and using them to annihilate J to get 0 0 C0B 0 C0A 0

H −KC+B 0 G−KC+A− JC+B 0 F − JC+A 0
0 0 C+B 0 C+A I


This step in effect decouples the second set of equations making it possible to investigate the asymptotic
properties by focusing on a smaller system.[

0 C0B C0A
H −KC+B G−KC+A− JC+B F − JC+A

]
Uhlig’s algorithm undertakes the solution of a quadratic equation like equation 6 with

H1 =
[

C0A
F − JC+A

]
,H0 =

[
C0B

G−KC+A− JC+B

]
,H−1 =

[
0

H −KC+B

]
Appendix B.6.2 describes one way to recast a model from a form suitable for Uhlig into a form for the
Anderson-Moore algorithm. Appendix B.6.1 describes one way to recast a model from a form suitable for
the Anderson-Moore methodology into a form for the Uhlig Algorithm.

6 Comparisons

Section 2 identified B,ϑ, φ and F as potential outputs of a linear rational expectation algorithm. Most of the
implementations do not compute each of the potential outputs. Only Anderson-Moore and Binder-Pesaran
provide all four outputs (See Table 6).

Generally, the implementations make restrictions on the form of the input. Most require the user to specify
models with at most one lag or one lead. Only Anderson-Moore explicitly allows multiple lags and leads.

Each of the authors provides small illustrative models along with their MATLAB code. The next two sections
present results from applying all the algorithms to each of the example models.

May 24, 2006 8

Table 1: Modeling Features
Technique B ϑ φ, F Usage Notes
Anderson-Moore 4 4 4 Allows multiple lags and leads.

Has modeling language.
King & Watson 4 4 one lead, no lags
Sims 4 4 one lag, no leads
Klein 4 4 one lead, no lags
Binder-Peseran 4 4 4 one lag, one lead; Ĉ must be non-

singular
Uhlig 4 4 one lag, one lead; constraint in-

volving choice of “jump” vari-
ables and rank condition on C.

Note:

• The Klein and Uhlig procedures compute ϑ by augmenting linear sys-
tem

• For the Uhlig procedure one must choose “jump” variables to guaran-
tee that the C matrix has full rank.

6.1 Computational Efficiency

Nearly all the algorithms successfully computed solutions for all the examples. Each of the algorithms, except
Binder-Pesaran’s, successfully computed solutions for all of Uhlig’s examples. Uhlig’s algorithm failed to
provide a solution for the given parametrization of one of King’s examples. However, Binder-Pesaran’s and
Uhlig’s routines would likely solve alternative parametrization of the models that had convergence problems.

Tables 2-4 present the MATLAB-reported floating point operations (flops) counts for each of the algorithms
applied to the example models.

The first column of each table identifies the example model. The second column provides the flops required
by the Anderson-Moore algorithm to compute B followed by the flops required to compute B, ϑ, φ, and F .
Columns three through seven report the flops required by each algorithm divided by the flops required by
the Anderson-Moore algorithm for a given example model.

Note that the Anderson-Moore algorithm typically required a fraction of the number of flops required by the
other algorithms. For example, King-Watson’s algorithm required more than three times the flops required
by the Anderson-Moore algorithm for the first Uhlig example. In the first row, one observes that Uhlig’s
algorithm required only 92% of the number of flops required by the Anderson-Moore algorithm, but this is
the only instance where an alternative to the Anderson-Moore algorithm required fewer flops.

In general, Anderson-Moore provides solutions with the least computational effort. There were only a few
cases where some alternative had approximately the same number of floating point operations. The efficiency
advantage was especially pronounced for larger models. King-Watson generally used twice to three times
the number of floating point operations. Sims generally used thirty times the number of floating point
operations – never fewer than Anderson-Moore, King-Watson or Uhlig. It had about the same performance
as Klein. Klein generally used thirty times the number of floating point operations. It never used fewer
than Anderson-Moore, King-Watson or Uhlig. Binder-Pesaran was consistently the most computationally
expensive algorithm. It generally used hundreds of times more floating point operations. In one case, it took
as many as 100,000 times the number of floating point operations. Uhlig generally used about twice the flops
of Anderson-Moore even for small models and many more flops for larger models.

Table 5 presents a comparison of the original Uhlig algorithm to a version using Anderson-Moore to solve
the quadratic polynomial equation. Employing the Anderson-Moore algorithm speeds the computation. The
difference was most dramatic for larger models.

May 24, 2006 9

6.2 Numerical Accuracy

Tables 6-11 presents the MATLAB relative errors. I have employed a symbolic algebra version of the
Anderson-Moore algorithm to compute solutions to high precision4. Although ϑ and F are relatively simple
linear transformations of B, each of the authors uses radically different methods to compute these quantities.
I then compare the matrices computed in MATLAB by each algorithm to the high precision solution.

Anderson-Moore always computed the correct solution and in almost every case produced the most accurate
solution. Relative errors were on the order of 10−16. King-Watson always computed the correct solution, but
produced solutions with relative errors generally 3 times the size of the Anderson-Moore algorithm. Sims
always computed correct solutions but produced solutions with relative errors generally 5 times the size of
the Anderson-Moore algorithm. 5 Sim’s F calculation produced errors that were 20 times the size of the
Anderson-Moore relative errors. Klein always computed the correct solution but produced solutions with
relative errors generally 5 times the size of the Anderson-Moore algorithm.

Uhlig provides accurate solutions with relative errors about twice the size of the Anderson-Moore algorithm
for each case for which it converges. It cannot provide a solution for King’s example 3 for the particular
parametrization I employed. I did not explore alternative parametrizations. For the ϑ computation, the
results were similar. The algorithm was unable to compute ϑ for King example 3. Errors were generally 10
times the size of Anderson-Moore relative errors.

Binder-Pesaran converges to an incorrect value for three of the Uhlig examples: example 3, 6 and example 7.
In each case, the resulting matrix solves the quadratic matrix polynomial, but the particular solution has an
eigenvalue greater than one in magnitude even though an alternative matrix solution exists with eigenvalues
less than unity. For Uhlig’s example 3, the algorithm diverges and produces a matrix with NaN’s. Even
when the algorithm converges to approximate the correct solution, the errors are much larger than the
other algorithms. One could tighten the convergence criterion at the expense of increasing computational
time, but the algorithm is already the slowest of the algorithms evaluated. Binder-Pesaran’s algorithm does
not converge for either of Sims’ examples. The algorithm provides accurate answers for King & Watson’s
examples. Although the convergence depends on the particular parametrization, I did not explore alternative
parametrization when the algorithm’s did not converge. The ϑ and F results were similar to the B results.
The algorithm was unable to compute H for Uhlig 3 in addition to Uhlig 7. It computed the wrong value
for Uhlig 6. It was unable to compute values for either of Sims’s examples.

7 Conclusions

A comparison of the algorithms reveals that:

• For models satisfying the Blanchard-Kahn conditions, the algorithms provide equivalent solutions.

• The Anderson-Moore algorithm proved to be the most accurate.

• Using the Anderson-Moore algorithm to solve the quadratic matrix polynomial equation improves the
performance of both Binder-Pesaran’s and Uhlig’s algorithms.

• While the Anderson-Moore, Sims and Binder-Pesaran approaches provide matrix output for accom-
modating arbitrary exogenous processes, the King-Watson and Uhlig implementations only provide
solutions for VAR exogenous process.6 Fortunately, there are straightforward formulae for augmenting

4I computed exact solutions when this took less than 5 minutes and solutions correct to 30 decimal places in all other cases.
5To compare F for Sims note that

Ψ = IL

F = (Θy .Θf)Φ−1
exact

6I modified Klein’s MATLAB version to include this functionality by translating the approach he used in his Gauss version.

May 24, 2006 10

the King-Watson, Uhlig and Klein approaches with the matrices characterizing the impact of arbitrary
shocks.

• The Anderson-Moore algorithm requires fewer floating point operations to achieve the same result.
This computational advantage increases with the size of the model.

• The Anderson-Moore suite of programs provides a simple modeling language for developing models. In
addition, the Anderson-Moore algorithm requires no special treatment for models with multiple lags
and leads. To use each of the other algorithms, one must cast the model in a form with at most one
lead or lag. This can be tedious and error prone task for models with more than a couple of equations.

May 24, 2006 11

8 Bibliography

Gary Anderson. A reliable and computationally efficient algorithm for imposing the sad-
dle point property in dynamic models. Unpublished Manuscript, Board of Governors
of the Federal Reserve System. Downloadable copies of this and other related papers at
http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html, 1997.

Gary Anderson and George Moore. An efficient procedure for solving linear perfect foresight models. 1983.

Gary Anderson and George Moore. A linear algebraic procedure for solving linear perfect foresight models.
Economics Letters, (3), 1985. URL http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html.

Michael Binder and M. Hashem Pesaran. Multivariate rational expectations models and macroeconometric
modelling: A review and some new results. URL http://www.inform.umd.edu/EdRes/Colleges/BSOS/
Depts/Economics/mbinder/research/matlabresparse.html. Seminar Paper, May 1994.

Olivier Jean Blanchard and C. Kahn. The solution of linear difference models under rational expectations.
Econometrica, 48, 1980.

Laurence Broze, Christian Gouriéroux, and Ariane Szafarz. Solutions of multivariate rational expectations
models. Econometric Theory, 11:229–257, 1995.

Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins, 1989.

Robert G. King and Mark W. Watson. The solution of singular linear difference systems under ra-
tional expectations. International Economic Review, 39(4):1015–1026, November 1998. URL http:
//www.people.virginia.edu/~rgk4m/kwre/kwre.html.

Paul Klein. Using the generalized schur form to solve a multivariate linear rational expectations model.
Journal of Economic Dynamics and Control, 1999. URL http://www.iies.su.se/data/home/kleinp/
homepage.htm.

Christopher A. Sims. Solving linear rational expectations models. URL http://www.econ.yale.edu/~sims/
#gensys. Seminar paper, 1996.

Harald Uhlig. A toolkit for analyzing nonlinear dynamic stochastic models easily. URL http://cwis.kub.
nl/~few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm. User’s Guide, 1999.

Peter A. Zadrozny. An eigenvalue method of undetermined coefficients for solving linear rational expectations
models. Journal of Economic Dynamics and Control, 22:1353–1373, 1998.

http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html
http://www.inform.umd.edu/EdRes/Colleges/BSOS/Depts/Economics/mbinder/research/matlabresparse.html
http://www.inform.umd.edu/EdRes/Colleges/BSOS/Depts/Economics/mbinder/research/matlabresparse.html
http://www.people.virginia.edu/~rgk4m/kwre/kwre.html
http://www.people.virginia.edu/~rgk4m/kwre/kwre.html
http://www.iies.su.se/data/home/kleinp/homepage.htm
http://www.iies.su.se/data/home/kleinp/homepage.htm
http://www.econ.yale.edu/~sims/#gensys
http://www.econ.yale.edu/~sims/#gensys
http://cwis.kub.nl/~few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm
http://cwis.kub.nl/~few5/center/STAFF/uhlig/toolkit.dir/toolkit.htm

May 24, 2006 12

Appendix A The Anderson-Moore Algorithm(s)

Algorithm 1

1 Given H, compute the unconstrained autoregression.
2 funct F1(H) ≡
3 k := 0
4 Z0 := ∅
5 H0 := H
6 Γ := ∅
7 while Hk

θ is singular ∩ rows(Zk) < L(τ + θ)
8 do

9 Uk =
[
Uk

Z

Uk
N

]
:= rowAnnihilator(Hk

θ)

10 Hk+1 :=
[

0 Uk
ZHk

τ . . . Uk
ZHk

θ−1

Uk
NHk

τ . . . Uk
NHk

θ

]
11 Zk+1 :=

[
Qk

Uk
ZHk

τ . . . Uk
ZHk

θ−1

]
12 k := k + 1
13 od
14 Γ = −H−1

θ

[
H−τ . . . Hθ−1

]
15 A =

[
0 I

Γ

]
16 return{

[
Hk
−τ . . . Hk

θ

]
, A,Zk}

17 .

Algorithm 2

1 Given V,Z],∗,
2 funct F2(A,Z],∗)
3 Compute V , the vectors spanning the left
4 invariant space associated with eigenvalues
5 greater than one in magnitude

6 Q :=
[
Z],∗

V

]
7 return{Q}
8 .

Algorithm 3

1 Given Q,
2 funct F3(Q)
3 cnt = noRows(Q)

4 return



{Q,∞} cnt < Lθ

{Q, 0} cnt > Lθ

{Q,∞} (QRsingular)
{B = −Q−1

R QL, 1} otherwise

5 .

May 24, 2006 13

Appendix B Model Concepts

The following sections present the inputs and outputs for each of the algorithms for the following simple
example:

Vt+1 = (1 +R)Vt −Dt+1

D = (1− δ)Dt−1

Appendix B.1 Anderson-Moore

Inputs

θ∑
i=−τ

Hixt+i = Ψzt

Model Variable Description Dimensions
xt State Variables L(τ + θ)× 1
zt Exogenous Variables M × 1
θ Longest Lead 1× 1
τ Longest Lag 1× 1
Hi Structural Coefficients Matrix (L× L)(τ + θ + 1)
Ψ Exogenous Shock Coefficients Matrix L×M
Υ Optional Exogenous VAR Coefficients

Matrix(zt+1 = Υzt)
M ×M

Outputs

xt = B

xt−τ

...
xt−1

 +
[
0 . . . 0 I

] ∞∑
s=0

(F s

[
0

ΦΨzt+s

]
)

Model Variable Description Dimensions
B reduced form coefficients matrix L× L(τ + θ)
Φ exogenous shock scaling matrix L× L
F exogenous shock transfer matrix Lθ × Lθ
ϑ autoregressive shock transfer matrix when

zt+1 = Υzt the infinite sum simplifies to give

xt = B

xt−τ

...
xt−1

 + ϑzt

L×M

May 24, 2006 14

Anderson-Moore input:
AIM Modeling Language Input

1 MODEL> FIRMVALUE
2 ENDOG>
3 V
4 DIV
5 EQUATION> VALUE
6 EQ> LEAD(V,1) = (1+R)*V - LEAD(DIV,1)
7 EQUATION> DIVIDEND
8 EQ> DIV = (1-DELTA)*LAG(DIV,1)
9 END

Parameter File Input

1 DELTA=0.3;
2 R=0.1;
3 psi=[4. 1.;3. -2.];
4 upsilon=[0.9 0.1;0.05 0.2];

H =
[
0 0 −1.1 0 1 1.
0 −0.7 0 1 0 0

]
,Ψ =

[
4. 1.
3. −2.

]
,Υ

[
0.9 0.1
0.05 0.2

]
produces output:

B =
[
0. 1.225
0. 0.7

]
F =

[
0.909091 0.909091

0. 0.

]
Φ =

[
−0.909091 1.75

0. 1.

]
ΦΨ =

[
1.61364 −4.40909

3. −2.

]
ϑ =

[
21.0857 −3.15714

3. −2.

]
Usage Notes for Anderson-Moore Algorithm

1. “Align” model variables so that the data history (without applying model equations), completely
determines all of xt−1, but none of xt.

2. Develop a “model file” containing the model equations written in the “AIM modeling language”

3. Apply the model pre-processor to create MATLAB programs for initializing the algorithm’s input
matrix,(H). Create Ψ and, optionally, Υ matrices.

4. Execute the MATLAB programs to generate B, φ, F and optionally ϑ

Users can obtain code for the algorithm and the preprocessor from the author7

7 http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html July, 1999.

May 24, 2006 15

Appendix B.2 King-Watson

Inputs

AEtyt+1 = Byt +

θX
i=0

CiEt(xt+i)

xt = Qδt

δt = ρδt−1 + Gεt

yt =

»
Λt

kt

–

Model Variable Description Dimensions

θ longest lead 1× 1

yt Endogenous Variables m× 1

Λt Non-predetermined Endogenous Variables (m− p)× 1

kt Predetermined Endogenous Variables p× 1

xt Exogenous Variables nx × 1

δt Exogenous Variables nδ × 1

A Structural Coefficients Matrix associated with lead
endogenous variables, yt+1

m×m

B Structural Coefficients Matrix associated with con-
temporaneous endogenous variables, yt

m×m

Ci Structural Coefficients Matrix associated with con-
temporaneous and lead exogenous variables, xt

m× n

Q Structural Coefficients Matrix associated with con-
temporaneous exogenous variables, xt

nx × nδ

ρ Vector Autoregression matrix for exogenous variables nδ × nδ

G Matrix multiplying Exogenous Shock nδ × 1

Outputs

yt = Πst

st = Mst−1 + Ḡεt

st =

»
kt

δt

–

Model Variable Description Dimensions

st Exogenous Variables and predetermined variables (nx + p)× 1

Π Matrix relating endogenous variables to exogenous
and predetermined variables

m× (p + nx)

M (p + nx)× (p + nx)

Ḡ Matrix multiplying Exogenous Shock (nx + p)× l

May 24, 2006 16

King-Watson input:

A =


1 0 0 0
0 1 0 0
0 0 −1 −1.
0 0 0 0

 , B =


0 0 1 0
0 0 0 1
0 0 −1.1 0
0 −0.7 0 1

 , C =


0 0
0 0
4. 1.
3. −2.

 ,
Q =

[
1 0
0 1

]
, ρ =

[
0.9 0.1
0.05 0.2

]
, G =

[
0
0

]
produces output:

Π =


1. 0. 0. 0.
0. 1. 0. 0.
0. 1.225 −21.0857 3.15714
0. 0.7 −3. 2.

 ,M =


0. 1.225 −21.0857 3.15714
0. 0.7 −3. 2.
0. 0. 0.9 0.1
0. 0. 0.05 0.2


Usage Notes for King-Watson Algorithm

1. Identify predetermined variables

2. Cast the model in King-Watson form: endogenous variable must have at most one lead and no lag.

3. Create matlab “system” and “driver” programs generating the input matrices. “system” generates
(A,B,Ci, nx = nx, ny = m), and a matlab vector containing indices corresponding to predetermined
variables. “driver” generates (Q, ρ,G).

4. Call resolkw with sytem and driver filenames as inputs to generate Π,M, Ḡ

Appendix B.2.1 King-Watson to Anderson-Moore

Obtaining Anderson-Moore inputs from King-Watson inputs

θ := θ, xt :=

2664
Λt

kt

xt

δt

3775 , zt :=

240
0
εt

35 ,

Ψ :=
ˆ
0 0 G

˜
Υ :=

ˆ
0 0 ρ

˜ˆ
B1 B2

˜
:= B,

ˆ
A1 A2

˜
:= A

H :=

240 −B2 0 0 −B1 A2 −C0 0
0 0 0 0 0 0 −I Q . . .
0 0 0 0 −ρ 0 0 I

A1 0 −C1 0 0 0 −Cθ 0
0 0 0 0 . . . 0 0 0 0
−G 0 0 0 0 0 0 0

35

May 24, 2006 17

Obtaining King-Watson outputs from Anderson-Moore outputs

2664
0 Π̂Λk 0 Π̂Λδ

0 Mkk 0 Mkδ

0 Π̂xk 0 Π̂xδ

0 0 0 ρ

3775 := B

M :=

»
Mkk Mkδ

0 ρ

–
Π :=

ˆ
Π̂Λk Π̂Λδ

˜
M−1

Ḡ :=
ˆ
0 0 0 I

˜
ΦΨ

Appendix B.2.2 Anderson-Moore to King-Watson

Obtaining King-Watson inputs from Anderson-Moore inputs

yt :=

264 xt−τ

...
xt+θ−1

375 ,Λt :=

264 xt

...
xt+θ−1

375 kt :=

264xt−τ

...
xt−1

375 , xt := zt

A :=

26664
I 0

. . .
...

I 0
0 . . . 0 −Hθ

37775

B :=

26664
0 I
...

. . .

0 I
H−τ H−τ+1 . . . Hθ−1

37775
C :=

»
0
Ψ

–
, Q := I, ρ := 0, G := 0, p := Lτ, θ := 1, m := L(τ + θ)

Obtaining Anderson-Moore outputs from King-Watson outputs

»
B ϑ
0 ρ

–
:= M,

26664
I 0

B1 ϑ
...

...
Bθ B(θ−1)Rϑ

37775 := Π

May 24, 2006 18

Appendix B.3 Sims

Inputs

Γ0yt = Γ1yt−1 + C + Ψzt + Πηt

Model Variable Description Dimensions
yt State Variables L× 1
zt Exogenous Variables M1 × 1
ηt Expectational Error M2 × 1
Γ0 Structural Coefficients Matrix L× L
Γ1 Structural Coefficients Matrix L× L
C Constants L× 1
Ψ Structural Exogenous Variables Coefficients Ma-

trix
L×M1

Π Structural Expectational Errors Coefficients Ma-
trix

L×M2

Outputs

yt = Θ1yt−1 + Θc + Θ0zt + Θy

∞∑
s=1

Θs−1
f ΘzEtzt+s

Model Variable Description Dimensions
Θ1 L× L
Θc L× 1
Θ0 L×M1

Θy L×M2

Θf M2 ×M2

Θz M2 ×M1

May 24, 2006 19

Sims input:

Γ0 =


1 0 0 0
0 1 0 0

−1.1 0 1 1.
0 1 0 0

 ,Γ1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0.7 0 0

 , C =


0
0
0
0

 ,

Ψ =


0 0
0 0
4. 1.
3. −2.

 ,Π =


1 0
0 1
0 0
0 0



produces output:

Θc


0.
0.
0.
0.

 ,Θ0 =


1.61364 −4.40909

3. −2.
3.675 −2.45
2.1 −1.4

 ,Θf =
[
0.909091 1.23405

0. 0.

]
,

Θy =


1.28794 1.74832

−2.2204510−16 −1.1102210−16

1.41673 0.702491
−1.1102210−16 1.22066

 ,Θz =
[
−0.0796719 −2.29972

2.4577 −1.63846

]

ΘyΘz =


4.19421 −5.82645

−2.5516810−16 6.9254610−16

1.61364 −4.40909
3. −2.

 ,
Usage Notes for Sims Algorithm

1. Identify predetermined variables

2. Cast the model in Sims form: at most 1 lag and 0 leads of endogenous variables.

3. Create the input matrices Γ0,Γ1, C,Ψ, and Π

4. Call gensys to generate Θ1,Θc,Θ0,Θy,Θf ,Θz

Appendix B.3.1 Sims to Anderson-Moore

Obtaining Anderson-Moore inputs from Sims inputs

xt+s :=

»
yt+s

ηt+s

–
− x∗, zt :=

»
zt

1

–
,Ψ :=

»
Ψ C
0 0

–
H :=

»
−Γ1 0 Γ0 −Π 0 0

0 0 0 0 0 I

–

May 24, 2006 20

Obtaining Sims outputs from Anderson-Moore outputs

Θ1 :=

26664
0L(τ−1)×L IL(τ−1)

B
...

Bθ

0L(τ+θ)×Lθ

37775

ˆ
Θ0 Θc

˜
:=

2666664
0L(τ−1)×L

I
BR

...
BθR

3777775 ΦΨ

∃S 3 Θf = SFS−1, ΘyΘz =

26664
0L(τ−1)×L

x̂t

...
x̂t+θ+1

37775
where x̂t’s come from iterating equation Appendix B.1 forward θ + 1 time periods with zt+s = 0, s 6= 1

and zt+1 = I

Appendix B.3.2 Anderson-Moore to Sims

Obtaining Sims inputs from Anderson-Moore inputs

yt :=

264 xt−τ

...
xt+θ−1

375 , zt := zt

Γ0 :=

26664
I 0

. . .
...

I 0
0 H0 . . . −Hθ

37775 Γ1 :=

26664
0 I
...

. . .

0 I
H−τ . . . H−1 0 0

37775
Π :=

240L(τ−1)×Lθ

ILθ

0L×Lθ

35 Ψ :=

»
0Lτ×Lθ

Ψ

–

Obtaining Anderson-Moore outputs from Sims outputs

ˆ
B

˜
:= Θ1,

ˆ
ΦΨ

˜
:= ΘyΘf

May 24, 2006 21

Appendix B.4 Klein

Inputs

AExt+1 = Bxt + Czt+1 +Dzt

zt+1 = φzt + εtxt =
[
kt

ut

]

Model Variable Description Dimensions
xt Endogenous Variables L× 1
zt Exogenous Variables M × 1
nk The number of state Variables M × 1
kt State Variables nk × 1
ut The Non-state Variables (L− nk)× 1
A Structural Coefficients Matrix for Future Vari-

ables
L× L

B Structural Coefficient Matrix for contemporane-
ous Variables

L× L

Outputs

ut = Fkt

kt = Pkt−1

Model Variable Description Dimensions
F Decision Rule (L− nk)× nk

P Law of Motion nk × nk

Klein input:

A =


1 0 0 0
0 1 0 0
0 0 −1 −1.
0 0 0 0

 , B =


0 0 1 0
0 0 0 1
0 0 −1.1 0
0 −0.7 0 1

 , C =


0 0
0 0
4. 1.
3. −2.

 ,
produces output:

P =
[

0.9 0.1
0.05 0.2

]
, F =

[
−21.0857 3.15714
−3. 2.

]
,

Usage Notes for Klein Algorithm

1. Identify predetermined variables. Order the system so that predetermined variables come last.

2. Create the input matrices A,B.a

3. Call solab with the input matrices and the number of predetermined variables to generate F and P
aThe Gauss version allows additional functionality.

May 24, 2006 22

Appendix B.4.1 Klein to Anderson-Moore

Obtaining Anderson-Moore inputs from Klein inputs

θ := θ, xt :=

24kt

ut

zt

35 , zt :=

»
zt

zt+1

–
Ψ :=

ˆ
D C

˜
, Υ :=

»
φ

φ

–
ˆ
B1 B2

˜
:= B,

ˆ
A1 A2

˜
:= A

H :=

240 −B2 0 0 −B1 A2 −C0 0
0 0 0 0 0 0 −I Q . . .
0 0 0 0 −ρ 0 0 I

A1 0 −C1 0 0 0 −Cθ 0
0 0 0 0 . . . 0 0 0 0
−G 0 0 0 0 0 0 0

35

Obtaining Klein outputs from Anderson-Moore outputs

2664
0 F̂Λk 0 F̂Λδ

0 Pkk 0 Pkδ

0 F̂xk 0 F̂xδ

0 0 0 ρ

3775 := B

P :=

»
Pkk Pkδ

0 ρ

–
F :=

ˆ
F̂Λk F̂Λδ

˜
P−1

Ḡ :=
ˆ
0 0 0 I

˜
ΦΨ

Appendix B.4.2 Anderson-Moore to Klein

Obtaining Klein inputs from Anderson-Moore inputs

yt :=

264 xt−τ

...
xt+θ−1

375 ,Λt :=

264 xt

...
xt+θ−1

375 kt :=

264xt−τ

...
xt−1

375

A :=

26664
I 0

. . .
...

I 0
0 . . . 0 −Hθ

37775

B :=

26664
0 I
...

. . .

0 I
H−τ H−τ+1 . . . Hθ−1

37775
C :=

»
0
Ψ

–
, Q := I, ρ := 0, G := 0

May 24, 2006 23

Obtaining Anderson-Moore outputs from Klein outputs

240 I 0
B ΦΨ
0 0

35 := P,

26664
I 0

B1L B1R ΦΨ
...

...
...

BθL BθR B(θ−1)RΦΨ

37775 := F

May 24, 2006 24

Appendix B.5 Binder-Pesaran

Inputs

Ĉxt = Âxt−1 + B̂Ext+1 +D1wt +D2wt+1

wt = Γwt−1

Model Variable Description Dimensions
xt State Variables L× 1
wt Exogenous Variables M × 1
Â Structural Coefficients Matrix L× L

B̂ Exogenous Shock Coefficients Matrix L× L

Ĉ Exogenous Shock Coefficients Matrix L×M
D1 Exogenous Shock Coefficients Matrix L×M
D2 Exogenous Shock Coefficients Matrix L×M
Γ Exogenous Shock Coefficients Matrix L×M

Outputs

xt = Cxt−1 +Hwt

xt = Cxt−1 +
∞∑

i=0

F iE(wt+1)

Model Variable Description Dimensions
C reduced form codifying convergence constraints L× L(τ + θ)
H exogenous shock scaling matrix L×M

Binder-Peseran input:

A =
[
0 0
0 0.7

]
B =

[
−1 −1.
0 0

]
C =

[
−1.1 0

0 1

]
D1 =

[
4. 1.
3. −2.

]
D2 =

[
0 0
0 0

]
Γ =

[
0.9 0.1
0.05 0.2

]
produces output:

C =
[
0. 1.225
0. 0.7

]
H =

[
21.0857 −3.15714

3. −2.

]
Usage Notes for Binder-Pesaran Algorithm

1. Cast model in Binder-Pesaran form: at most one lead and one lag of endogenous variables. The matrix
Ĉ must be nonsingular.

2. Modify existing Matlab script implementing Binder-Pesaran’s Recursive Method to create the input
matrices Â, B̂, Ĉ,D1, D2Γ and to update the appropriate matrices in the “while loop.”8

3. Call the modified script to generate C and H and F .

May 24, 2006 25

Appendix B.5.1 Binder-Pesaran to Anderson-Moore

Obtaining Anderson-Moore inputs from Binder-Pesaran inputs

xt := xt, zt :=

»
wt

wt+1

–
H :=

ˆ
−Â Ĉ B̂

˜
Υ :=

»
Γ

Γ

–
,Ψ :=

ˆ
D1 D2

˜

Obtaining Binder-Pesaran outputs from Anderson-Moore outputs

C := B, H := ΦΨ

Appendix B.5.2 Anderson-Moore to Binder-Pesaran

Obtaining Binder-Pesaran inputs from Anderson-Moore inputs

A :=

24−IL(τ−1) 0L(τ−1)×L(θ−1)

0L(θ−1) 0L(θ−1)×L(θ−1)

H−τ 0L×L(τ+θ−2)

35
B :=

24 0L(τ−1) 0L(τ−1)×L(θ−1)

IL(θ−1)×L 0L(θ−1)

0L×L(θ+τ−2) Hθ

35
C :=

24 IL(τ−1) 0L(τ−1)×L(θ−1) 0L(τ−1)×L

0L(θ−1)×L 0L(θ−1) IL(θ−1)×L(θ−1)

H−τ+1 . . . Hθ−1

35
D1 :=

»
0
Ψ

–
, D2 = 0, Γ = 0

Obtaining Anderson-Moore outputs from Binder-Pesaran outputs

2666664
0

ΦΨ
BRΦΨ

...
B(θ−1)RΦΨ

3777775 := H

26664
0 I 0
B 0
... 0

Bθ 0

37775 := C

May 24, 2006 26

Appendix B.6 Uhlig

Inputs

Axt +Bxt−1 + Cyt +Dzt = 0
E(Fxt+1 +Gxt +Hxt−1 + Jyt+1 +Kyt + Lzt+1 +Mzt)

zt+1 = Nzt + εt+1

Eεt+1 = 0

Model Variable Description Dimensions
xt State Variables m× 1
yt Endogenous “jump” Variables n× 1
zt Exogenous Variables k × 1
A,B Structural Coefficients Matrix l ×m
C Structural Coefficients Matrix l × n
D Structural Coefficients Matrix l × k
F,G,H Structural Coefficients Matrix (m+ n− l)×m
J,K Structural Coefficients Matrix (m+ n− l)× n
L,M Structural Coefficients Matrix m+ n− l × k
N Structural Coefficients Matrix k × k

Outputs

xt = Pxt−1 +Qzt

yt = Rxt−1 + Szt

Model Variable Description Dimensions
P m×m
Q m× k
R n×m
S n× k

For Uhlig cannot find C with the appropriate rank condition without augmenting the system with a “dummy
variable” and equation like Wt = Dt + Vt.
Uhlig input:

A =
[
1 0
1 −1

]
B =

[
−0.7 0

0 0

]
C =

[
0
1

]
D =

[
−3. 2.
0 0

]
F =

[
1. 0

]
G =

[
0 0

]
H =

[
0 0

]
J =

[
1
]
K =

[
−1.1

]
L =

[
0 0

]
M =

[
−4. −1.

]
N =

[
0.9 0.1
0.05 0.2

]
produces output:

P =
[

0.7 0.
1.925 6.1629810−33

]
Q =

[
3. −2.

24.0857 −5.15714

]
R =

[
1.225 6.1629810−33

]
S =

[
21.0857 −3.15714

]

May 24, 2006 27

Usage Notes for Uhlig Algorithm

1. Cast model in Uhlig Form. One must be careful to choose endogenous “jump” and and “non jump” variables to
guarantee that the C matrix is appropriate rank. The rank null space must be (l−n) where l is the number of
equations with no lead variables,(the row dimension of C) and n is the total number of “jump” variables(thee
column dimension of C).

2. Create matrices A, B, C, D, F, G, H, J, K, L, M, N

3. Call the function do it to generate P, Q, R, S, W

Appendix B.6.1 Uhlig to Anderson-Moore

Obtaining Anderson-Moore inputs from Uhlig inputs

xt :=

»
xt

yt

–
H :=

»
B 0 A C D 0 0
H 0 G K F J 0

–
Υ := N,Ψ := L,

Obtaining Uhlig outputs from Anderson-Moore outputs

»
R
P

–
:= B,

»
Q
S

–
:= ΦΨ

Appendix B.6.2 Anderson-Moore to Uhlig

Obtaining Uhlig inputs from Anderson-Moore inputs

A :=

24−IL(τ−1) 0L(τ−1)×L(θ−1)

0L(θ−1) 0L(θ−1)×L(θ−1)

H−τ 0L×L(τ+θ−2)

35
B :=

24 0L(τ−1) 0L(τ−1)×L(θ−1)

IL(θ−1)×L 0L(θ−1)

0L×L(θ+τ−2) Hθ

35
C :=

24 IL(τ−1) 0L(τ−1)×L(θ−1) 0L(τ−1)×L

0L(θ−1)×L 0L(θ−1) IL(θ−1)×L(θ−1)

H−τ+1 . . . Hθ−1

35
find permutation matrices %L, %R»

B 0 A C 0 0
H 0 G K F J

–
= %LH(I3 ⊗ %R)

and such that with l row dimension of C and n the column dimension of C

rank(nullSpace(CT)) = l − nˆ
DM

˜
=

»
0

%LΨ

–

May 24, 2006 28

Obtaining Anderson-Moore outputs from Uhlig outputs

B :=

»
P
R

–
ΦΨ :=

»
Q
S

–

May 24, 2006 29

Appendix C Computational Efficiency

Table 2: Matlab Flop Counts: Uhlig Examples
Model AIM KW Sims Klein BP Uhlig

(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)
Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
uhlig 0 (2514, 4098) 3.38385 23.9387 28.8007 88.7832 0.922832

(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 (6878, 9817) 3.81346 46.9301 29.1669 15347.3 1.88979

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 (6798, 9773) 3.292 52.2499 35.7318 6468.78 1.80494

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 (112555, 276912) 3.62782 40.5874 22.6611 205753. 16.7633

(14,1,1) (28,14) (28,14) (28,13) 14 (10,4)
uhlig 4 (6850, 9789) 3.58292 45.675 29.5441 16250.5 1.89752

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 (6850, 9789) 3.58292 45.675 29.5441 16250.5 1.89752

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 (7809, 26235) 2.53182 47.5947 46.3196 190.905 3.42169

(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 (82320, 108000) 2.8447 48.1792 28.9946 131.785 2.60423

(13,1,1) (26,13) (26,13) (26,11) 13 (11,2)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 30

Table 3: Matlab Flop Counts: King & Watson, Klein, Binder & Peseran and Sims Examples
Model AIM KW Sims Klein BP Uhlig

(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)
Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
king 2 (2288, 2566) 2.36713 9.64904 20.7072 165.623 1.76311

(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 3 (1028, 2306) 2.81809 21.1284 77.1858 368.545 NA

(3,1,1) (6,3) (6,3) (6,-1) 3 (2,1)
king 4 (40967, 146710) 5.2211 39.8819 30.493 185.299 14.2569

(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)
sims 0 (3501, 5576) 4.70923 59.9526 59.2871 NA 5.72694

(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)
sims 1 (16662, 39249) 4.20292 56.8375 48.4135 NA 9.2849

(8,1,1) (16,8) (16,8) (16,5) 8 (6,2)
klein 1 (3610, 15147) 2.13213 10.2756 16.7828 35555.2 2.30526

(3,1,1) (6,3) (6,3) (6,2) 3 (1,2)
bp 1 (533, 1586) 3.1257 13.8987 59.7749 613.814 2.88743

(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
bp 2 (3510, 5659) 3.5265 77.2456 67.7846 800.98 21.4259

(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 31

Table 4: Matlab Flop Counts: General Examples
Model AIM KW Sims Klein BP Uhlig

(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)
Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
firmValue 1 (535, 1586) 2.90467 11.5252 92.9738 534.686 NA

(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
athan 1 (18475, 70162) 3.75578 135.329 113.463 1385.73 196.251

(9,1,1) (18,9) (18,9) (18,1) 9 (8,1)
fuhrer 1 (352283, 1885325) NA 125.141 148.459 NA NA

(12,1,4) (60,12) (60,48) (60,1) 48 (9,39)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 32

Table 5: Using Anderson-Moore to Improve Matrix Polynomial Methods
Model(m,n) Uhlig AM/Uhlig
uhlig 0(3,1) 2320 2053
uhlig 1(5,1) 12998 12731
uhlig 2(5,1) 12270 12003
uhlig 3(10,4) 1886798 304534
uhlig 4(5,1) 12998 12731
uhlig 5(5,1) 12998 12731
uhlig 6(4,2) 26720 24233
uhlig 7(11,2) 214380 213450

Note:

m, n See Appendix B.6

May 24, 2006 33

Appendix D Accuracy

Table 6: Matlab Relative Errors in B: Uhlig Examples

‖ Bi −Bexact ‖
‖ Bexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)

Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
uhlig 0 1 := 1.69446 10−16 8. 40. 11. 134848. 49.

(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 1 := 3.82375 10−15 0.518098 2.63371 0.617504 10217.1 3.32793

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 1 := 4.88785 10−15 1. 2.00589 6.43964 9520.85 2.82951

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 1 := 1.15015 10−15 2.65517 1.78046 1.45676 8.57994 1014 20.9358

(14,1,1) (28,14) (28,14) (28,13) 14 (10,4)
uhlig 4 1 := 1.18357 10−15 2.2561 1.00348 14.7909 10673.4 34.6115

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 1 := 1.18357 10−15 2.2561 1.00348 14.7909 10673.4 34.6115

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 1 := 1.60458 10−15 7.32281 38.3459 13.4887 7.63524 1013 203.291

(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 1 := 2.33332 10−14 7.59657 4.15248 0.335751 NA 2.63499

(13,1,1) (26,13) (26,13) (26,11) 13 (11,2)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 34

Table 7: Matlab Relative Errors in B: King & Watson and Sims Examples

‖ Bi −Bexact ‖
‖ Bexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L, M2) (L, nk) L (m, n)

Computes (B, ϑ, φ, F) (B, ϑ) (B, φ, F) (B) (B, ϑ, φ, F) (B, ϑ)

king 2 1 := 0. 3.65169 10−16 1.61642 10−16 0. 0. 0
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)

king 3 1 := 0. 0. 2.22045 10−16 2.49183 10−15 0. NA
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)

king 4 1 := 2.25 10−15 3.99199 10−15 1.48492 10−15 2.0552 10−15 6.38338 10−16 2.63969 10−9

(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)

sims 0 1 := 0. 8.84516 10−17 3.57788 10−16 2.34864 10−16 NA 5.55112 10−17

(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)

sims 1 1 := 1.18603 10−15 7.58081 10−16 9.08685 10−16 1.28298 10−15 NA 8.11729 10−16

(8,1,1) (16,8) (16,8) (16,6) 8 (6,2)

klein 1 1 := 1.29398 10−14 3.2259 10−14 8.72119 10−14 1.76957 10−13 4.54742 10−10 4.61522 10−13

(3,1,1) (6,3) (6,3) (6,1) 3 (1,2)

bp 1 1 := 1.54607 10−15 2.82325 10−15 5.10874 10−15 1.23685 10−14 5.95443 10−10 1.06208 10−14

(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)

bp 2 1 := 5.00765 10−16 5.15101 10−15 5.52053 10−15 5.21764 10−15 7.14801 10−16 3.98148 10−14

(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

May 24, 2006 35

Table 8: Matlab Relative Errors in ϑ: Uhlig Examples

‖ ϑi − ϑexact ‖
‖ ϑexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)

Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
uhlig 0 1 := 9.66331 10−16 0.532995 NA 1.34518 159728. 9.54822

(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 1 := 2.25938 10−15 3.78248 NA 2.32241 5.30459 106 2.33909

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 1 := 5.05614 10−15 0.43572 NA 2.62987 1.51637 106 1.

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 1 := 8.93 10−16 2.08127 NA 1.39137 NA 14.3934

(14,1,1) (28,14) (28,14) (28,13) 14 (10,4)
uhlig 4 1 := 0.0114423 1. NA 1. 0.999999 1.

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 1 := 1.37388 10−15 3.79327 NA 9.97923 8.03937 106 12.2245

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 1 := 6.97247 10−14 1.00929 NA 1.83538 1.12899 1013 27.5959

(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 1 := 7.47708 10−14 1.67717 NA 0.131889 NA 0.665332

(13,1,1) (26,13) (26,13) (26,11) 13 (11,2)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 36

Table 9: Matlab Relative Errors in ϑ: King & Watson and Sims Examples

‖ ϑi − ϑexact ‖
‖ ϑexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L, M2) (L, nk) L (m, n)

Computes (B, ϑ, φ, F) (B, ϑ) (B, φ, F) (B) (B, ϑ, φ, F) (B, ϑ)

king 2 1 := 4.996 10−16 4.996 10−16 NA 4.996 10−16 4.996 10−16 4.996 10−16

(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)

king 3 1 := 2.58297 10−15 5.02999 10−15 NA 6.42343 10−15 2.58297 10−15 NA
(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)

king 4 1 := 3.45688 10−16 1.12445 10−15 NA 8.40112 10−16 2.65811 10−16 2.47355 10−9

(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)

sims 0 1 := 7.66638 10−16 7.85337 10−16 NA 9.53623 10−16 NA 7.66638 10−16

(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)

sims 1 1 := 9.73294 10−16 1.57671 10−15 NA 4.23589 10−15 NA 9.73294 10−16

(8,1,1) (16,8) (16,8) (16,6) 8 (6,2)

klein 1 1 := 2.33779 10−15 1.9107 10−14 NA 1.07269 10−13 2.3967 10−9 2.66823 10−13

(3,1,1) (6,3) (6,3) (6,1) 3 (1,2)

bp 1 1 := 1.4802 10−15 8.91039 10−15 NA 1.20169 10−14 5.55737 10−9 1.16858 10−14

(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)

bp 2 1 := 6.1809 10−16 1.25347 10−15 NA 1.3268 10−15 6.1809 10−16 8.9026 10−15

(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

May 24, 2006 37

Table 10: Matlab Relative Errors in F : Uhlig Examples

‖ Fi − Fexact ‖
‖ Fexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)

Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
uhlig 0 1 := 4.60411 10−16 NA 38.383 NA 6280.03 NA

(4,1,1) (8,4) (8,4) (8,3) 4 (3,1)
uhlig 1 1 := 6.12622 10−16 NA 4.25457 NA 3126.17 NA

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 2 1 := 6.13246 10−16 NA 3.58093 NA 3918.23 NA

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 3 1 := 7.28843 10−16 NA 12.9392 NA 1.40986 1015 NA

(14,1,1) (28,14) (28,14) (28,13) 14 (10,4)
uhlig 4 1 := 6.03573 10−16 NA 2.73637 NA 1028.17 NA

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 5 1 := 6.03573 10−16 NA 2.73637 NA 1028.17 NA

(6,1,1) (12,6) (12,6) (12,5) 6 (5,1)
uhlig 6 1 := 6.0499 10−16 NA 308.153 NA 1.65292 1013 NA

(6,1,1) (12,6) (12,6) (12,4) 6 (4,2)
uhlig 7 1 := 7.52423 10−14 NA 1.72491 NA NA NA

(13,1,1) (26,13) (26,13) (26,11) 13 (11,2)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column normalized
by dividing by comparable AIM value.

May 24, 2006 38

Table 11: Matlab Relative Errors in F : King & Watson and Sims Examples

‖ Fi − Fexact ‖
‖ Fexact ‖

Model AIM KW Sims Klein BP Uhlig
(L, τ, θ) (m, p) (L,M2) (L, nk) L (m,n)

Computes (B,ϑ, φ, F) (B,ϑ) (B,φ, F) (B) (B,ϑ, φ, F) (B,ϑ)
king 2 1 := 7.49401 10−16 NA 1.36349 10−15 NA 7.49401 10−16 NA

(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 3 1 := 3.9968 10−16 NA 6.53472 10−15 NA 3.9968 10−16 NA

(3,1,1) (6,3) (6,3) (6,1) 3 (2,1)
king 4 1 := 2.13883 10−15 NA 2.58686 10−15 NA 7.29456 10−16 NA

(9,1,1) (18,9) (18,9) (18,5) 9 (3,6)
sims 0 1 := 7.13715 10−16 NA 1.1917 10−15 NA NA NA

(5,1,1) (10,5) (10,5) (10,3) 5 (4,1)
sims 1 1 := 2.41651 10−15 NA 2.92152 10−15 NA NA NA

(8,1,1) (16,8) (16,8) (16,6) 8 (6,2)
klein 1 1 := 1.24387 10−15 NA 1.66911 10−13 NA 3.70873 10−10 NA

(3,1,1) (6,3) (6,3) (6,1) 3 (1,2)
bp 1 1 := 4.43937 10−16 NA 7.51277 10−15 NA 5.03025 10−11 NA

(2,1,1) (4,2) (4,2) (4,0) 2 (1,1)
bp 2 1 := 5.82645 10−16 NA 1.71285 10−15 NA 5.82645 10−16 NA

(5,1,1) (10,5) (10,5) (10,1) 5 (4,1)

Note:

L, τ, θ, B, ϑ, φ, F See Appendix B.1

m, p See Appendix B.2

L, M2 See Appendix B.3

L, nk See Appendix B.4

L See Appendix B.5

m, n See Appendix B.6

KW, Sims, Klein, BP, Uhlig column not nor-
malized by dividing by comparable AIM value.

	Introduction and Summary
	Problem Statement and Notation
	Eigensystem Methods
	The Anderson-Moore Algorithm
	King & Watson's Canonical Variables/System Reduction Method

	Applications of the QZ Algorithm
	Sims' QZ Method
	Klein's Approach

	Applications of the Matrix Polynomial Approach
	Binder & Pesaran's Method
	Uhlig's Technique

	Comparisons
	Computational Efficiency
	Numerical Accuracy

	Conclusions
	Bibliography
	The Anderson-Moore Algorithm(s)
	Model Concepts
	Anderson-Moore
	King-Watson
	King-Watson to Anderson-Moore
	Anderson-Moore to King-Watson

	Sims
	Sims to Anderson-Moore
	Anderson-Moore to Sims

	Klein
	Klein to Anderson-Moore
	Anderson-Moore to Klein

	Binder-Pesaran
	Binder-Pesaran to Anderson-Moore
	Anderson-Moore to Binder-Pesaran

	Uhlig
	Uhlig to Anderson-Moore
	Anderson-Moore to Uhlig

	Computational Efficiency
	Accuracy
	0626out.pdf
	Gary S. Anderson

