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Abstract

Surveys do! We examine the forecasting power of four altereanethods of forecasting U.S.
inflation out-of-sample: time-series ARIMA models; regriesis using real activity measures
motivated from the Phillips curve; term structure modebst timclude linear, non-linear, and
arbitrage-free specifications; and survey-based measWeslso investigate several methods
of combining forecasts. Our results show that surveys ofdpa the other forecasting methods
and that the term structure specifications perform relgtipeorly. We find little evidence that
combining forecasts produces superior forecasts to suméeymation alone. When combining
forecasts, the data consistently places the highest veeaghsurvey information.



1 Introduction

Obtaining reliable and accurate forecasts of future imftais crucial for policymakers conduct-
ing monetary and fiscal policy; for investors hedging thk osnominal assets; for firms making
investment decisions and setting prices; and for labor aadagement negotiating wage con-
tracts. Consequently, it is no surprise that a conside@dademic literature evaluates different
inflation forecasts and forecasting methods. In particdaonomists use four main methods
to forecast inflation. The first method is atheoretical, ggime series models of the ARIMA
variety. The second method builds on the economic modelefthillips curve, leading to
forecasting regressions that use real activity measurksd,Twe can forecast inflation using
information embedded in asset prices, in particular tha t&ructure of interest rates. Finally,
survey-based measures use information from agents (cansuwn professionals) directly to
forecast inflation.

In this article, we comprehensively compare and contrasatiility of these four methods
to forecast inflation out of sample. Our approach makes faainroontributions to the litera-
ture. First, our analysis is the first to comprehensively para the four methods: time-series
forecasts, forecasts based on the Phillips curve, foredamn the yield curve, and all three
available surveys (the Livingston, Michigan, and SPF sysye The previous literature has
concentrated on only one or two of these different forengsthethodologies. For example,
Stockton and Glassman (1987) show that pure time-serieglsiodt-perform more sophisti-
cated macro models, but do not consider term structure madelurveys. Fama and Gibbons
(1984) compare term structure forecasts with the Livingstorvey, but they do not consider
forecasts from macro factors. Whereas Grant and Thoma®),18Bomas (1999) and Mehra
(2002) show that surveys out-perform simple time-seriegbmarks for forecasting inflation,
none of these studies compares the performance of survesunesavith forecasts from Phillips
curve or term structure models.

The lack of a study comparing these four methods of inflattwadasting implies that there
is no well-accepted set of findings regarding the supeyiofita particular forecasting method.
The most comprehensive study to date, Stock and Watson X1888s that Phillips curve-
based forecasts produce the most accurate out-of-sanmpleagis of U.S. inflation compared
with other macro series and asset prices, using data up . 198wever, Stock and Watson
only briefly compare the Phillips-curve forecasts to the iNgan survey and to simple regres-
sions using term structure information. Stock and Watsomatoconsider no-arbitrage term
structure models, non-linear forecasting models, or caetbforecasts from all four forecast-



ing methods. Recent work also casts doubts on the robusth#ses Stock-Watson findings. In
particular, Atkeson and Ohanian (2001), Fisher, Liu anduiZ{&902), Sims (2002), and Cec-
chetti, Chu and Steindel (2000), among others, show thaa¢beracy of Phillips curve-based
forecasts depends crucially on the sample period. ClarkMe@racken (2006) address the
issue of how instability in the output gap coefficients of Biallips curve affects forecasting
power. To assess the stability of the inflation forecastesacdifferent samples, we consider
out-of-sample forecasts over both the post-1985 and [@85%-feriods.

Our second contribution is to evaluate inflation forecastiplied by arbitrage-free asset
pricing models. Previous studies employing term struatiate mostly use only the term spread
in simple OLS regressions and usually do not use all avalédyim structure data (see, for
example, Mishkin, 1990, 1991; Jorion and Mishkin, 1991;c&tand Watson, 2003). Frankel
and Lown (1994) use a simple weighted average of differemt tgpreads, but they do not
impose no-arbitrage restrictions. In contrast to theseagmhes, we develop forecasting models
that use all available data and impose no-arbitrage rastisc Our no-arbitrage term structure
models incorporate inflation as a state variable becausaiorflis an integral component of
nominal yields. The no-arbitrage framework allows us taaott forecasts of inflation from
data on inflation and asset prices taking into account paleimhe-varying risk premia.

No-arbitrage constraints are reasonable in a world whetgéinds and investment banks
routinely eliminate arbitrage opportunities in fixed ina@securities. Imposing theoretical no-
arbitrage restrictions may also lead to more efficient estiion. Just as Ang, Piazzesi and Wei
(2004) show that no-arbitrage models produce superiocésts of GDP growth, no-arbitrage
restrictions may also produce more accurate forecastélafion. In addition, this is the first ar-
ticle to investigate non-linear, no-arbitrage models @aion. We investigate both an empirical
regime-switching model incorporating term structure infation and a no-arbitrage, non-linear
term structure model following Ang, Bekaert and Wei (200@&inflation as a state variable.

Our third contribution is that we thoroughly investigaterdmned forecasts. Stock and Wat-
son (2002a, 2003), among others, show that the use of aggriegéces of many macro series
measuring real activity produces better forecasts of iofiathan individual macro series. To
investigate this further, we also include the (Phillipsvaibased) index of real activity con-
structed by Bernanke, Boivin and Eliasz (2005) from 65 macomomic series. In addition,
several authors (see, e.g., Stock and Watson, 1999; Bravé&iaher, 2004; Wright, 2004)
advocate combining several alternative models to foranélation. We investigate five differ-
ent methods of combining forecasts: simple means or med@inS based combinations, and
Bayesian estimators with equal or unit weight priors.



Finally, our main focus is forecasting inflation rates. Besmof the long-standing debate in
macroeconomics on the stationarity of inflation rates, vge akplicitly contrast the predictive
power of some non-stationary models to stationary modedscansider whether forecasting
inflation changes alters the relative forecasting abilftgliierent models.

Our major empirical results can be summarized as follows. firet major result is that sur-
vey forecasts outperform the other three methods in fotecpsflation. That the median Liv-
ingston and SPF survey forecasts do well is perhaps notisungprbecause presumably many
of the best analysts use time-series and Phillips Curve leodewever, even participants in the
Michigan survey who are consumers, not professionals,ym®a@ccurate out-of-sample fore-
casts, which are only slightly worse than those of the psifgmls in the Livingston and SPF
surveys. We also find that the best survey forecasts are theysmedian forecasts themselves;
adjustments to take into account both linear and non-libie&ryield worse out-of-sample fore-
casting performance.

Second, term structure information does not generallyteaetter forecasts and often leads
to inferior forecasts than models using only aggregateiictneasures. Whereas this confirms
the results in Stock and Watson (1999), our investigatioteoh structure models is much
more comprehensive. The relatively poor forecasting perémce of term structure models
extends to simple regression specifications, iterated-lamzon VAR forecasts, no-arbitrage
affine models, and non-linear no-arbitrage models. Thesdteesuggest that while inflation is
very important for explaining the dynamics of the term stuoe (see, e.g., Ang, Bekaert and
Wei, 2006), yield curve information is less important fordoasting future inflation.

Our third major finding is that combining forecasts does restegally lead to better out-of-
sample forecasting performance than single forecastirdgisoln particular, simple averaging,
like using the mean or median of a number of forecasts, doeseuessarily improve the fore-
cast performance, whereas linear combinations of foreaaith weights computed based on
past performance and prior information generate the biggges. Even the Phillips curve
models using the Bernanke, Boivin and Eliasz (2005) forwaaking aggregate measure of
real activity mostly does not perform well relative to simpPhillips curve models and never
outperforms the survey forecasts. The strong success efitiieys in forecasting inflation out-
of-sample extends to surveys dominating other models gchmst combinination methods. The
data consistently place the highest weights on the survecésts and little weight on other
forecasting methods.

The remainder of this paper is organized as follows. SeQidescribes the data set. In
Section 3, we describe the time-series models, predicti@eronregressions, term structure



models, and forecasts from survey data, and detail the detiegy methodology. Section 4
contains the empirical out-of-sample results. We exameerbbustness of our results to a
non-stationary inflation specification in Section 5. FipaBiection 6 concludes.

2 Data

2.1 Inflation

We consider four different measures of inflation. The first¢ghare consumer price index (CPI)
measures, including CPI-U for All Urban Consumers, All Ie(@UNEW), CPI for All Ur-
ban Consumers, All Items Less SheltetJXHS) and CPI for All Urban Consumers, All Iltems
Less Food and EnergyUXX), which is also called core CPI. The latter two measureg stri
out highly volatile components in order to better reflectenygng price trends (see the discus-
sion in Quah and Vahey, 1995). The fourth measure is the Rar€opnsumption Expenditure
deflator PCE). While all three surveys forecast a CPI-based inflationsueg PCE inflation
features prominently in policy work at the Federal Reser&i.measures are seasonally ad-
justed and obtained from the Bureau of Labor Statistics webEhe sample period is 1952:Q2
to 2002:Q4 for PUNEW and PUXHS, 1958:Q2 to 2002:Q4 for PUXXJ 4960:Q2 to 2002:Q4
for PCE.

We define the quarterly inflation rate,, from¢ — 1 to ¢ as:

P
m = In (Pt—l) , (1)

whereP, is the level of one of the four inflation indices at timéWe use the terms “inflation”

and “inflation rate” interchangeably as defined in equatijn (Ve take one quarter to be our
base unit for estimation purposes, but forecast annuatiolar; 4 4, from¢ to ¢ + 4:

T4 q = T4l + Mepo + T3 + Tiia, (2)

wherer, is the quarterly inflation rate in equation (1).

Empirical work on inflation has failed to come to a consen®garding its stationarity
properties. For example, Bryan and Cecchetti (1993) assustationary inflation process,
while Nelson and Schwert (1977) and Stock and Watson (123®)rae that the inflation process
has a unit root. Most of our analysis assumes that inflatistaisonary for two reasons. First,
it is difficult to generate non-stationary inflation in stand economic models, whether they
are monetary in nature, or of the New Keynesian variety (sged¥ and Moore, 1995; Holden
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and Driscoll, 2003). Second, the working paper version afdda Ng (2004) recently rejects
the null of non-stationarity for inflation. That being saithgley and Sargent (2005) and Stock
and Watson (2005) find evidence of changes in inflation persie over time, with a random
walk or integrated MA-process providing an accurate dpsion of inflation dynamics during
certain times. Furthermore, the use of a parsimonious tetiesary model may be attractive
for forecasting. In particular, Atkeson and Ohanian (20@Me made the random walk a natural
benchmark to beat in forecasting exercises. Therefore, omsider whether our results are
robust to assuming non-stationary inflation in Section 5.

Table 1 reports summary statistics for all four measuresiftdtion for the full sample in
Panel A, and the post-1985 sample and the post-1995 sampkmnigls B and C, respectively.
Our statistics pertain to annual inflatian,., ., but we sample the data quarterly. Therefore, we
report the fourth autocorrelation for quarterly inflatiovhich corresponds to the first autocor-
relation for annual inflation. Table 1 shows that all fouratittn measures are lower and more
stable during the last two decades, in common with many otta@roeconomic series, includ-
ing output (see Kim and Nelson, 1999; McConnell and Pereze®u2000; Stock and Watson,
2002b). Core CPI (PUXX) has the lowest volatility of all tmélation measures. PUXX volatil-
ity ranges from 2.56% per annum over the full sample to o2 @ per annum post-1996. The
higher variability of the other measures in the latter pathe sample must be due to food and
energy price changes. In the later sample periods, PCEianflet, on average, lower than CPI
inflation, which may be partly due to its use of a chain weightin contrast to the other CPI
measures which use a fixed basket (see Clark, 1999).

Inflation is somewhat persistent (0.79% for PUNEW over thiessample), but its persistence
decreases over time, as can be seen from the lower aut@tmnatoefficients for the PUNEW
and the PUXHS measures after 1986, and for all measures1&f®s. The correlations of
the four measures of inflation with each other are all over ©&r the full sample. The
comovement can be clearly seen in the top panel of Figurdlatibm is lower prior to 1969 and
after 1983, but reaches a high of around 14% during the @ilscof 1973-1983. PUXX tracks
both PUNEW and PUXHS closely, except during the 1973-19Tlg@ewhere it is about 2%
lower than the other two measures, and after 1985, whergédap to be more stable than the
other two measures. During the periods when inflation is ldeatng, such as in 1955-1956,
1987-1988, 1998-2000 and most recently 2002—2003, PUNEhds more gradually than
PUXHS, suggesting that housing prices are less volatile tha prices of other consumption
goods during these periods.



2.2 Real Activity Measures

We consider six individual series for real activity alongiwbne composite real activity factor.
We compute GDP growtif3DPG) using the seasonally adjusted data on real GDP in billions
of chained 2000 dollars. The unemployment rdNEMP) is also seasonally adjusted and
computed for the civilian labor force aged 16 years and oBeth real GDP and the unem-
ployment rate are from the Federal Reserve Economic Dat&[ffRlatabase. We compute
the output gap either as the detrended log real GDP by rem@vouadratic trend as in Gali
and Gertler (1999), which we ter@APL, or by using the Hodrick-Prescott (1997) filter (with
the standard smoothness parameter of 1,600), which we@&fR2. At time ¢, both measures
are constructed using only current and past GDP values esfiltérs are run recursively. We
also use the labor income shate&¥iR), defined as the ratio of nominal compensation to total
nominal output in the U.S. nonfarm business sector. We usefdvwvard-looking indicators:
the Stock-Watson (1989) Experimental Leading Indé€xi | and their Alternative Nonfinancial
Experimental Leading Index-X[I-2).

Because Stock and Watson (2002a), among others, show tip&gading the information
from many factors has good forecasting power, we also usegéesiactor aggregating the in-
formation from 65 individual series constructed by Berrgrioivin and Eliasz (2005). This
single real activity series, which we terRAC, aggregates real output and income, employ-
ment and hours, consumption, housing starts and salesinwesgtories, and average hourly
earnings. The sample period for all the real activity measis 1952:Q2 to 2001:Q4, except
the Bernanke-Boivin-Eliasz real activity factor, whichasig 1959:Q1 to 2001:Q3. We use the
composite real activity factor at the end of each quartefdogcasting inflation over the next
year!

The real activity measures have the disadvantage that thgyuse information that is not
actually available at the time of the forecast, either tgfodata revisions, or because of full
sample estimation in the case of the Bernanke-Boivin-Elmsasure. This biases the forecasts
from Phillips curve models to be better than what could baallt forecasted using a real-time
data set. The use of real time economic activity measuredupes much worse forecasts of

To achieve stationarity of the underlying individual masegies, various transformations are employed by
Bernanke, Boivin and Eliasz (2005). In particular, manyeseare first differenced at a monthly frequency. Better
forecasting results might be potentially obtained by tgkariong 12-month difference to forecast annual inflation
(see comments by, among others, Plosser and Schwert, 187&)e-screening the variables to be used in the
construction of the composite factor (see Boivin and Ng,6)0@/e do not consider these adjustments and use the
original Bernanke-Boivin-Eliasz series.



future inflation compared to the use of revised economi@sen Orphanides and van Norden
(2001) but only slightly worse forecasts for both inflatiamdareal activity in Bernanke and

Boivin (2003). Nevertheless, our forecast errors usingjaetivity measures are likely biased
downwards.

2.3 Term Structure Data

The term structure variables are zero-coupon yields fomhbeurities of 1, 4, 8, 12, 16, and
20 quarters from CRSP spanning 1952:Q2 to 2001:Q4. The oadeg rate is from the CRSP
Fama risk-free rate file, while all other bond yields are frima CRSP Fama-Bliss discount
bond file. All yields are continuously compounded and exggdsat a quarterly frequency. We
define the short rateRATE) to be the one-quarter yield and define the term spr&2®) to
be the difference between the 20-quarter yield and the satat Some of our term structure
models also use four-quarter and 12-quarter yields fomegiton.

2.4 Surveys

We examine three inflation expectation surveys: the Livimgsurvey, the Survey of Profes-
sional Forecasters (SPF), and the Michigan sufvBlye Livingston survey is conducted twice a
year, in June and in December, and polls economists fronsing@government, and academia.
The Livingston survey records participants’ forecastsaf-seasonally-adjusted CPI levels six
and twelve months in the future and is usually conductedénntiddle of the month. Unlike
the Livingston survey, participants in the SPF and the Mjahisurvey forecast inflation rates.
Participants in the SPF are drawn primarily from businessd, farecast changes in the quar-
terly average of seasonally-adjusted CPI-U levels. TheiSEBénducted in the middle of every
guarter and the sample period for the SPF median forecabtams1981:Q3 to 2002:Q4. In
contrast to the Livingston survey and SPF, the Michiganesyrs conducted monthly and asks
households, rather than professionals, to estimate exghpcice changes over the next twelve
months. We use the median Michigan survey forecast of infladver the next year at the end
of each quarter from 1978:Q1 to 2002:Q4.

2We obtain data for the Livingston survey and SPF data fronftiidelphia Fed website (http://www.phil.frb.
org/econ/liv and http://www.phil.frb.org/econ/spf, pestively). We take the Michigan survey data from the St.
Louis Federal Reserve FRED database (http://reseamhistd.org/fred2/series/MICH/). Median Michigan sur-
vey data is also available from the University of Michigamgbsite (http://www.sca.isr.umich.edu/main.php.
However, there are small discrepancies between the tweasilefore September 1996. We choose to use data
from FRED because it is consistent with the values reportétlirtin (1996).



There are some reporting lags between the time the surveysiken and the public dis-
semination of their results. For the Livingston and the Skveys, there is a lag of about one
week between the due date of the survey and their publicatliomwever, these reporting lags
are largely inconsequential for our purposes. What maiseitse information set used by the
forecasters in predicting future inflation. Clearly, syr¥erecasts must use less up to date in-
formation than either macro-economic or term structuredasts. For example, the Livingston
survey forecasters presumably use information up to at thedieginning of June and Decem-
ber, and mostly do not even have the May and November offid?hif@mbers available when
making a forecast. The SPF forecasts can only use informapdo at most the middle of the
qguarter and while we take the final month of the quarter foMighigan survey, consumers do
not have up-to-date economic data available at the end ajubeer. But, for the economist
forecasting annual inflation with the surveys, all survetada publicly available at the end of
each quarter for the SPF and Michigan surveys, and at thefezath semi-annual period for
the Livingston survey. Together with the slight data adages present in revised, fitted macro
data, we are in fact biasing the results against survey dstec

The Livingston survey is the only survey available for out §ample. In the top panel of
Figure 1, which graphs the full sample of inflation data, wsoahclude the unadjusted median
Livingston forecasts. We plot the survey forecast lagges year, so that in December 1990,
we plot inflation from December 1989 to December 1990 togetlith the survey forecasts of
December 1989. The Livingston forecasts broadly track tbeements of inflation, but there
are several large movements that the Livingston survey faitrack, for example the pickup in
inflation in 1956-1959, 1967-1971, 1972-1975, and 1978%188the bottom panel of Fig-
ure 1, we graph all three survey forecasts of future one-ydation together with the annual
PUNEW inflation, where the survey forecasts are lagged oaefpe direct comparison. After
1981, all survey forecasts move reasonably closely togetme track inflation movements rel-
atively well. Nevertheless, there are still some notablerfes, like the slowdowns in inflation
in the early 1980s and in 1996.

3 Forecasting Models and Methodology

In this section, we describe the forecasting models andridbesour statistical tests. In all
our out-of-sample forecasting exercises, we forecastdéuannual inflation. Hence, for all our



models, we compute annual inflation forecasts of:

Et(ﬂt+474) =E (Z 7Tt+z'> ) (3)

wherer,. 4 4 is annual inflation front to ¢ + 4 defined in equation (2).

In Sections 3.1 to 3.4, we describe our 39 forecasting modelde 2 contains a full nomen-
clature. Section 3.1 focuses on time-series models of iofiatvhich serve as our benchmark
forecasts; Section 3.2 summarizes our OLS regression sogéalg real activity macro vari-
ables; Section 3.3 describes the term structure modelsgacating inflation data; and finally,
Section 3.4 describes our survey forecasts. In Section® Blefine the out-of-sample periods
and list the criteria that we use to assess the performancataif-sample forecasts. Finally,
Section 3.6 describes our methodology to combine modet&sts.

For all models except OLS regressions, we compute impliag-tworizon forecasts from
single-period (quarterly) models. While Schorfheide @0€hows that in theory, iterated fore-
casts need not be superior to direct forecasts from hospacific models, Marcellino, Stock
and Watson (2006) document the empirical superiority ahit forecasts in predicting U.S.
macroeconomic series. For the OLS models, we compute teedsts directly from the long-
horizon regression estimates.

3.1 Time-Series Models

ARIMA Models

If inflation is stationary, the Wold theorem suggests thaaesimonious ARMAY, ¢) model
may perform well in forecasting. We consider two ARMA{) models: an ARMA(1,1) model
and a pure autoregressive model wittags, ARp). The optimal lag length for the AR model is
recursively selected using the Schwartz criterion (BIC}Ymin-sample data. The motivation
for the ARMA(1,1) model derives from a long tradition in @tial expectations macroeco-
nomics (see Hamilton, 1985) and finance (see Fama, 1975nibdels inflation as the sum of
expected inflation and noise. If expected inflation followsfdR (1) process, then the reduced-
form model for inflation is given by an ARMA(1,1) model. The MA(1,1) model also nicely
fits the slowly decaying autocorrelogram of inflation.

The specifications of the ARMA(1,1) model,

i1 = b+ O + e + €441, (4)



and the ARp) model,

41 = 1+ Q17 + Qo1 + ...+ GpT—pr1 + €141, (5)

are entirely standard. The ARMA(1,1) model is estimated laximum likelihood, conditional
on a zero initial residual. We compute the implied inflatiemdl forecast over the next year
expressed at a quarterly frequency. For the ARMA(1,1) mdtelforecast is:

1 ¢ (1—¢") p(1—¢")  (1-9¢Yv
E = |4— Al AV 479
t(Tivaa) 1— ¢ { 1-9¢) Mt 1—9) ¢ + 1—0) €t
To facilitate the forecasts of annual inflation, we write &(p) model in first-order companion
form:
Xip1 = A+ 0X; + Uy,
where
Tt 1% o1 P2 . ¢p &t
M1 0 1 0 ... O 0
X, = . , A= , = L . andU; =
| Topt1 | | 0 | 0 0 .. 0 | 0]

Then, the forecast for the AR(model is given by:
E(Tran) =i (I—®) (4TI —(I—-0) ' (I-3")) A+ €@ (1-®)" (I -0 X,

wheree; is ap x 1 selection vector containing a one in the first row and zeresvehere.

Our third ARIMA benchmark is a random walR\{V) forecast wherer,,; = 7, +¢,,1, and
Ei(mt+44) = 4m. Inspired by Atkeson and Ohanian (2001), we also forecdisition using a
random walk model on annual inflation, where the forecasiviergby E; (m144) = 4. We
denote this forecast a#ORW.

Regime-Switching Models

Evans and Wachtel (1993), Evans and Lewis (1995), and Andakdert (2004), among oth-
ers, document regime-switching behavior in inflation. Aimegrswitching model may poten-
tially account for non-linearities and structural changagh as a sudden shift in inflation ex-
pectations after a supply shock, or a change in inflationigtersce.

We estimate the following univariate regime-switching rabidr inflation, which we term
RGM:

Tis1 = (1 (Siq1) + @ (Se41) T + 0 (S41) Ee41 (6)
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The regime variable; = 1,2 follows a Markov chain with constant transition probalbé

P = Pr(s;41 = 1lsy = 1) and@ = Pr(s;.1 = 2|s; = 2). The model can be estimated using
the Bayesian filter algorithms of Hamilton (1989) and Gra998). We compute the implied

annual horizon forecasts of inflation from equation (6),uassg that the current regime is

the regime that maximizes the probabiliyr(s;|1;). This is a byproduct of the estimation
algorithm.

3.2 Regression Forecasts Based on the Phillips Curve

In standard Phillips curve models of inflation, expectedatndh is linked to some measure
of the output gap. There are both forward- and backwardiwpRhillips curve models, but
ultimately even forward-looking models link expected itifla to the current information set.
According to the Phillips curve, measures of real activiipd be an important part of this
information set. We avoid the debate regarding the actualore of the output gap (see, for
instance, Gali and Gertler, 1999) by taking an empiricaragph and using a large number of
real activity measures. We choose not to estimate strdehodels because the BIC criterion
is likely to choose the empirical model best suitable foetasting. Previous work often finds
that models with the clearest theoretical justificatioenfhave poor predictive content (see the
literature summary by Stock and Watson, 2003).
The empirical specification we estimate is:

Tipaa = o+ B(L)' Xy + €444 (7)

where X; combinesr; and one or two real activity measures. The lag length in thetdyno-
mial 3(L) is selected by BIC on the in-sample data and is set to be eguesaall the regressors
in X;. The chosen specification tends to have two or three lagsrifocecasting exercises. We
list the complete set of real activity regressors in Table R@l to PC10.

In our next section, we extend the information set to incligdm structure information. Re-
gression models where term structure information is inetLid X ; along with inflation and real
activity are potentially consistent with a forward-loogiRhillips curve that includes inflation
and real activity measures in the information set. Such isoten approximate the reduced
form of a more sophisticated, forward-looking rational esations Phillips curve model of
inflation (see, for instance, Bekaert, Cho and Moreno, 2005)
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3.3 Models Using Term Structure Data

We consider a variety of term structure forecasts, inclgdingmenting the simple Phillips
Curve OLS regressions with short rate and term spread Vesidiong-horizon VAR forecasts;

a regime-switching specification; affine term structure gledand term structure models in-
corporating regime switches. We outline each of these Bpations in turn.

Linear Non-Structural Models

We begin by augmenting the OLS Phillips Curve models in eqog{7) with the short rate,
RATE, and the term spread, SPD, as regressors; inSpecificationsTS1-TS8 add RATE to
the Phillips Curve Curve specificatioRC1-PC8. TSO andTS10 only use inflation and term
structure variables as predictor$§S9 uses inflation and the lagged term spread, producing a
forecasting model similar to the specification in Mishki@90, 1991).TS10 adds the short rate
to this specification. FinallyTS11 adds GDP growth to th&S10 specification.

We also consider forecasts with a VAR(1) M, where X, contains RATE, SPD, GDPG,
andr;:

Xiy1 = p+ Xy + e (8)

Although the VAR is specified at a quarterly frequency, we pate the annual horizon fore-
cast of inflation implied by the VAR. We denote this forecagtspecification a¥AR. As Ang,
Piazzesi and Wei (2004) and Cochrane and Piazzesi (2008) adfAR specification can be
economically motivated from the fact that a reduced-formRViS equivalent to a Gaussian
term structure model where the term structure factors aserghble yields and certain assump-
tions on risk premia apply. Under these restrictions, a VARcides with a no-arbitrage term
structure model only for those yields included in the VAR wéwer, the VAR does not impose
over-identifying restrictions generated by the term dtrcee model for yields not included as
factors in the VAR.

An Empirical Non-Linear Regime-Switching Model

A large empirical literature has documented the presencegime switches in interest rates
(see, among others, Hamilton, 1988; Gray, 1996; Bekaedrickoand Marshall, 2001). In par-
ticular, Ang and Bekaert (2002) show that regime-switchimgels forecast interest rates bet-
ter than linear models. As interest rates reflect infornmaitnoexpected inflation, capturing the
regime-switching behavior in interest rates may help ie¢asting potentially regime-switching
dynamics of inflation.
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We estimate a regime-switching VAR, denotedR&MVAR:
X1 = p(se41) + Xy + B(se41)€041, (9)

where X; contains RATE, SPD and,. Similar to the univariate regime-switching model in
equation (6),s; = 1 or 2 and follows a Markov chain with constant transition abttties.
We compute out-of-sample forecasts from equation (9) asguthat the current regime is the
regime with the highest probabilitiyr(s,|1;).

No-Arbitrage Term Structure Models

We estimate two no-arbitrage term structure models. Becaush models have implications
for the complete yield curve, it is straightforward to ingorate additional information from
the yield curve into the estimation. Such additional infation is absent in the empirical VAR
specified in equation (8). Concretely, both no-arbitragele®have two latent variables and
guarterly inflation as state variables, denotedXyy We estimate the models by maximum
likelihood, and following Chen and Scott (1993), assumettiione- and 20-quarter yields are
measured without error, and the other four- and 12-quaitdllsyare measured with error. The
estimated models build on Ang, Bekaert and Wei (2006), wimiédate a real pricing kernel
as:
j/\Zt—l—l = €exp (—Tt - %)\;)\t - )\t€t+1) . (10)

Here, \; is a3 x 1 real price of risk vector. The real short rate is an affine fiomc of
the state variables. The nominal pricing kernel is definethenstandard way as/,,; =
J\ZH exp(—m1). Bonds are priced using the recursion:

exp(—ny;") = E;[Myy1 exp(—(n — 1)y7)],

wherey; is the n-quarter zero-coupon bond yield.
The first no-arbitrage modeMDL1) is an affine model in the class of Duffie and Kan (1996)
with affine, time-varying risk premia (see Dai and Singlet2d02; Duffee, 2002) modelled as:

)\t == )\0 + )\1Xt. (11)

where) is a3 x 1 vector and\; a3 x 3 diagonal matrix. The state variables follow a linear
VAR:
Xe=p+PX; 1 + Xy (12)

The second modeMDL?2) incorporates regime switches and is developed by Ang, 8&¢tka
and Wei (2006). Ang, Bekaert and Wei show that this model fiesshoments of yields and
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inflation very well and almost exactly matches the autodogram of inflation. MDL2 replaces
equation (12) with the regime-switching VAR:

Xi = p(se41) + X1 + X(8141)€041, (13)
and also incorporates regime switches in the prices of migkacing equation (11) with
At = Ao(8e41) + A X (14)

There are four regime variables = 1, ..., 4 in the Ang, Bekaert and Wei (2006) model rep-
resenting all possible combinations of two regimes of ildlaand two regimes of a real latent
factor.

In estimatingMDL1 andMDL2, we impose the same parameter restrictions necessary for
identification as Ang, Bekaert and Wei (2006) do. For bgbL1 and MDL2, we compute
out-of-sample forecasts of annual inflation, but the modedsestimated using quarterly data.

3.4 Survey Forecasts

We produce estimates &f;(7;;44) from the Livingston, SPF, and the Michigan surveys. We
denote the actual forecasts from the SPF, Livingston andhiglém surveys aSPF1, LIV1, and
MCHL1, respectively.

Producing Forecasts from Survey Data

Participants in the Livingston survey are asked to foreaaSPI level (not an inflation rate).
Given the timing of the survey, Carlson (1977) carefullyds#s the forecasts of individual
participants in the Livingston survey and finds that theipguénts generally forecast inflation
over the next 14 months. We follow Thomas (1999) and Mehr&®Z2@&nd adjust the raw
Livingston forecasts by a factor of 12/14 to obtain an animfdtion forecast.

Participants in both the SPF and the Michigan surveys do oreichst log year-on-year
CPI levels according to the definition of inflation in equatid). Instead, the surveys record
simple expected inflation changds,(P,.4/ P, — 1). This differs fromE,(log P,.4/F;) by a
Jensen’s inequality term. In addition, the SPF participant asked to forecast changes in
the quarterly average of seasonally-adjusted PUNEW (QPBbS opposed to end-of-quarter
changes in CPI levels. In both the SPF and the Michigan suweycannot directly recover
forecasts of expected log changes in CPI levels. Insteadjmetly use the SPF and Michigan
survey forecasts to represent forecasts of future annfiation as defined in equation (3). We
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expect that the effects of these measurement problems aik*simany case, the Jensen’s term
biases our survey forecasts upwards, imparting a conservugiward bias to our Root Mean
Squared Error (RMSE) statistics.

Adjusting Surveys for Bias

Several authors, including Thomas (1999), Mehra (2002),%wuleles (2004), document that
survey forecasts are biased. We take into account the shrasyy estimating; and; in the

regressions:
S
Tiyaa = a1+ Buff + €iaa, (15)

where 7 is the forecast from the candidate survgy For an unbiased forecasting model,
a; = 0andf; = 1. We denote survey forecasts that are adjusted using regneds) as
SPF2, LIV2, and MCH2 for the SPF, Livingston, and Michigan surveys, respectivelhe
bias adjustment occurs recursively, that is, we updateatpession with new data points each
guarter and re-estimate the coefficients.

Table 3 provides empirical evidence regarding these biasieg the full sample. For each
inflation measure, the first three rows report the results fregression (15). The SPF survey
forecasts producg;s that are smaller than one for all inflation measures, whiehwith the
exception of PUXX, significant at the 95% level. However, goént estimates ofi; are also
positive, although mostly not significant, which impliestfat low levels of inflation, the sur-
veys under-predict future inflation and at high levels ofatifin the surveys over-predict future
inflation. The turning pointi9.852/(1 — 0.694) = 2.8%, so that the SPF survey mostly over-
predicts inflation. The Livingston and Michigan surveysduoe largely unbiased forecasts
because the slope coefficients are insignificantly diffefiemm one and the constants are in-
significantly different from zero. Nevertheless, becatigantercepts are positive (negative) for
the Livingston (Michigan) survey, and the slope coefficselargely smaller (larger) than one,
the Livingston (Michigan) survey tends to produce mosthgtasts that are too low (high).

Thomas (1999) and Mehra (2002) suggest that the bias in tlveystorecasts may vary
across accelerating versus decelerating inflation enwiemts, or across the business cycle. To

%In the data, the correlation between log CPI changes P 4/ P;) and simple inflationP; 4/ P; — 1 is 1.000
for all four measures of inflation across our full sample périThe correlation between end-of-quarter log CPI
changes and quarterly average CPI changes is above 0.984liffdrences in log CPI changes, simple inflation,
and changes in quarterly average CPI are very small, anddam of magnitude smaller than the forecast RMSEs.
As an illustration, for PUNEW, the meanslog(P; 4/ P;), Pi+4/P: — 1, and changes in quarterly average CPI-U
are 3.83%, 3.82%, and 3.86%, respectively, while the \ilas are 2.87%, 2.86%, and 2.91%, respectively.
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take account of this possible asymmetry in the bias, we angewuation (15) with a dummy
variable,D;, which equals one if inflation at timeexceeds its past two-year moving average,

7
1
Wt—éjgoﬂ't_j >O,

otherwiseD, is set equal to zero. The regression becomes:
Tiyaa = Q1 + e Dy + ﬁ1fts + ﬁ2thts + Et+4,4- (16)

We denote the survey forecasts that are non-linearly liassted using equation (16) 88F3,
LIV3, andMCH3 for the SPF, Livingston, and Michigan surveys, respegyitel

The bottom three rows of each panel in Table 3 report restdta fegression (16). Non-
linear biases are reflected in significantor 3, coefficients. For the SPF survey, there is no
statistical evidence of non-linear biases. For all inflatieasures, the SPF’s negativeand
positive 3, coefficients indicates that accelerating inflation impkBesmaller intercept and a
higher slope coefficient, bringing the SPF forecasts clts@nbiasedness. For the Michigan
survey, the biases are larger in magnitude (except for th&XPhheasure) but there is only
one significant coefficient: accelerating inflation yieldsignificantly higher slope coefficient
for the PUXHS measure. Economically, the Michigan surveyeis/ close to unbiasedness in
decelerating inflation environments, but over- (undergdgsts future inflation at low (high)
inflation levels in accelerating inflation environments.

The Livingston survey has the strongest evidence of naggtlirbias, for which we also
have the longest data sample. The coefficients have the sgmassfor the other surveys, but
now the 3, slope coefficients significantly increase in acceleratimftaiion environments for
all inflation measures except PUXX. As in the case of the SR¥eguthe Livingston survey
is closer to being unbiased in accelerating inflation emrrents. Without accounting for non-
linearity, the Livingston survey produces largely unbthsarecasts in Table 3. However, the
results of regression (16) for the Livingston survey shopratduces mostly biased forecasts in

“We also examined bias adjustments using the change in aimfiagibn, using
Tipan — Toa = a1+ Bi(f — T4) + rraua
in place of equation (15) and
Tivas —Tea = a1 + oDy + B1(f7 — mea) + BaDi(fS — mia) + €t1aa

in place of equation (16). Like the bias adjustments in équat(15) and (16), these bias adjustments also do not
outperform the raw survey forecasts and generally perfoomsathan the bias adjustments using inflation levels.
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decelerating inflation environments, under-predictirtgfeinflation when inflation is relatively
low, and over-predicting future inflation when inflation eatively high.

3.5 Assessing Forecasting Models

Out-of-Sample Periods

We select two starting dates for our out-of-sample fore;d€985:Q4 and 1995:Q4. Our main
analysis focuses on recursive out-of-sample forecastghwise all the data available at time
t to forecast annual future inflation fromto ¢t + 4. Hence, the windows used for estimation
lengthen through time. We also consider out-of-samplectsts with a fixed rolling window.
All of our annual forecasts are computed at a quarterly feagy, with the exception of forecasts
from the Livingston survey, where forecasts are only atégl&or the second and fourth quarter
each year. The out-of-sample periods end in 2002:Q4, except for fatsoaith the composite
real activity factor, which end in 2001:Q3.

Measuring Forecast Accuracy

We assess forecast accuracy with the Root Mean Squared(RMSBE) of the forecasts pro-
duced by each model and also report the ratio of RMSEs rel&tiva time-series ARMA(1,1)
benchmark that uses only information in the past seriesftation. We show below that the
ARMA(1,1) model nearly always produces the lowest RMSE agnalhof the ARIMA time-
series models that we examine.

To compare the out-of-sample forecasting performanceef#nious models, we perform
a forecast comparison regression, following Stock and dve{$999):

Tita,4 = )\ftARMA + (L= A ff + cryaa, (17)

where f/AfM4 s the forecast ofr; 4 4 from the ARMA(1,1) time-series modef? is the fore-
cast from the candidate model ands,, 4 is the forecast error associated with the combined
forecast. IfA = 0, then forecasts from the ARMA(1,1) model add nothing to tre¢asts from
candidate modet, and we thus conclude that modebut-performs the ARMA(1,1) bench-
mark. If A = 1, then forecasts from model add nothing to forecasts from the ARMA(1,1)
time-series benchmark.

SWhile the RMSEs for the Livingston survey represent a differsample than those of all other models and
surveys, we also produced forecasts for a common semi-aeamgle. The results are robust and we do not
further comment on them.
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Stock and Watson (1999) note that inference aboig complicated by the fact that the
forecasts errors;..4 4, follow a MA(3) process because the overlapping annual mbgens
are sampled at a quarterly frequency. We compute standamg ¢hat account for the overlap
by using Hansen and Hodrick (1980) standard errors. To ale®into account the estimated
parameter uncertainty in one or both sets of the forecggts’4 and f*, we also compute
West (1996) standard errors. The Appendix provides a @etdiscription of the computations
involved.

3.6 Combining Models

A long statistics literature documents that forecast comtons typically provide better fore-
casts than individual forecasting modelg-or inflation forecasts, Stock and Watson (1999)
and Wright (2004), among others, show that combined fotsagsng real activity and finan-
cial indicators are usually more accurate than individoat€¢asts. To examine if combining
the information in different forecasts leads to gains inaotisample forecasting accuracy, we
examine five different methods of combining forecasts. Adige methods involve placing dif-
ferent weights om individual forecasting models. The five model combinaticetimods can be
summarized as follows:

Combination Methods
Mean

Median

OLS

Equal-Weight Prior
Unit-Weight Prior

o kw0

All our model combinations are ex-ante. That is, we compligeweights on the models
using the history of out-of-sample forecasts up to timélence, the ex-ante method assesses
actual out-of-sample forecasting power of combinationhmds. For example, the weights
used to construct the ex-ante combined forecast at 2008:RQesied on a regression of realized
annual inflation over 1985:Q4 to 2000:Q4 on the constructéebbsample forecasts over the
same period.

In the first two model combination methods, we simply lookatdverall mean and median,

6See the literature reviews by, among others, Clemen (1€36hold and Lopez (1996), and more recently
Timmermann (2006).
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respectively, over. different forecasting models. Equal weighting of many éass has been
used as early as Bates and Granger (1969) and, in practigelesequal-weighting forecasting
schemes are hard to beat. In particular, Stock and Wats@3)20ow that this method produces
superior out-of-sample forecasts of inflation.

In the last three combination methods, we compute diffarefividual model weights that
vary over time. These weights are estimated as slope ceeificin a regression of realized
inflation on model forecasts:

Tgyd,4 = Zwiftl + 5t,t+4, t = 1, e ,T, (18)

=1

where f! is thei-th model forecast at time Then x 1 weight vectorw; = {w!} is estimated
either by OLS, as in our third model combination specifigatior using the mixed regressor
method proposed by Theil and Goldberger (1961) and The@Z),%s in Combination Methods
4 and 5.

To describe the last two combination methods, we set up satation. Suppose we have
T forecast observations with individual models. Lef’ be theT" x n matrix of forecasts and
m theT' x 1 vector of actual future inflation levels that are being fasic Consequently, the
s-th row of Fis given byF, = {f!,...f"}. The mixed regression estimator can be viewed as a
Bayesian estimator with the priar~ N (11, 02 1), whereo? is a scalar and then x n identity
matrix. The estimator can be derived as:

O=(F'F+yD) " (F'm+p), (19)

where the parameter controls the amount of shrinkage towards the prior. In paldr, when

~v = 0, the estimator simplifies to standard OLS, and when oo, the estimator approaches the
weighted average of the forecasts, with the weights givetihéyrior weights. It is instructive
to re-write the estimator as a weighted average of the OLiSa&ir and the prior:

W= bOors wors + Oprior 11

With 6o = (F'F +~1) " (F'F) andf,,.,, = (F'F +~1)"" (v1), so that the weights add up
to the identity matrix.
We use empirical Bayes methods and estimate the shrinkagmpter as:

7=0"/5s, (20)

where



and

2 7'm — To? ‘

“  trace (F'F)

To interpret the shrinkage parameter, observe #iais simply the residual variance of the
regression; the numerator®f is the fitted variance of the regression and the denominstbei
average variance of the independent variables (the fagdasthe regression. Consequently,
the shrinkage parametey, in equation (20) increases when the variance of the indbpen
variables becomes larger, and decreases aBtiuf the regression increases. In other words,
if forecasts are (not) very variable and the regressiéis small (large), we trust the prior (the
regression).

We examine the effect of two priors. In Model Combination €, wge an equal-weight prior
where each element of, u; = 1/n,i = 1,...,n, which leads to the Ridge regressor used by
Stock and Watson (1999). In the second prior (Model Comhined), we assign unit weight
to one type of forecast, for example,= {0...1...0}. One natural choice for a unit weight
prior would be to choose the best performing univariatedasé model.

When we compute the model weights, we impose the constizanttihe weight on each
model is positive and the weights sum to one. This ensurgghbaveights represent the best
combination of models that produce good forecasts in tiveiraght, rather than place negative
weights on models that give consistently wrong forecadtss i also very similar to shrinkage
methods of forecasting (see Stock and Watson, 2005). FongeaBayesian Model Averaging
uses posterior probabilities as weights, which are, byttooson, positive and sum to orfe.

The positivity constraint is imposed by minimizing the ulslegs function, L, associated
with OLS for combination method 3:

L=(r—-Fuw)(r—Fuw),

and a loss function for the mixed regressor estimations ktoation methods 4 and 5):

(r = Fw) (1 = Fw)  (w—p) (W= p)

52 52 ’
o o;

I —

subject to the positivity constraints. These are standarstcained quadratic programming
problems.

’Diebold (1989) shows that when the target is persistent) #ei case of inflation, the forecast error from the
combination regression will typically be serially corrgld and hence predictable, unless the constraint that the
weights sum to one is imposed.
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4 Empirical Results

Section 4.1 lays out our main empirical results for the fasts of time-series models, OLS
Phillips curve regressions, term structure models, andeguiorecasts. We summarize these
results in Section 4.2. Section 4.3 investigates how cterdily the best models perform through
time and Section 4.4 considers the effect of rolling windo@&ection 4.5 reports the results of
combining model forecasts.

4.1 Forecast Accuracy

Time-Series Models

In Table 4, we report RMSE statistics, in annual percentageg, for the ARIMA model out-
of-sample forecasts over the the post-1985 and post-1985dse The ARIMA RMSEs gener-
ally range from around 0.4-0.7% for PUXX to around 1.4-2.2%RUXHS. For the post-1985
sample, the ARMA (1,1) model generates the lowest RMSE armb#dRIMA models in fore-
casting PUNEW and PUXHS, but the annual Atkeson-Ohania@l(P@ndom walk is superior
in forecasting core inflation (PUXX) and PCE. As the best tprr ARIMA model, we select
the ARMA(1,1) model for the remainder of the papén the post-1995 period, it beats both the
guarterly RW and AR models in forecasting the PUXHS and PCasmes, but the AR model
has a lower RMSE in forecasting PUNEW and PUXX, whereas tletgudy RW generates
a lower RMSE in forecasting PUXX . Yet, the improvements aieanand the ARMA(1,1)
model remains overall best among the three quarterly ARIM#dets. However, the annual
random walk is the best forecasting model for PUXX and PChe#ts the ARMA(1,1) model
for three of the four inflation measures and generates a nowetr IRMSE for forecasting core
inflation (PUXX).

Table 4 also reports the RMSESs of the non-linear regimeesivig model, RGM. Over the
post-1985 period, RGM generally performs in line with, atighgly worse than, a standard
ARMA model. There is some evidence that non-linearitiesmu@ortant for forecasting in the
post-1995 sample, where the regime-switching model ofdpas all the ARIMA models in
forecasting PUNEW and PUXHS. Both these inflation seriestmecmuch less persistent post-
1995, and the RGM model captures this by transitioning t@ame of less persistent inflation.
However, the Hamilton (1989) RGM model performs worse thdim@ar ARMA model for

8The estimated ARMA models contain large autoregressivisnwith negative MA roots. As Ng and Perron
(2001) comment, the negative MA components lead unit ra$ t® over-reject the null of non-stationarity.
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forecasting PUXX and PCE.
OLS Phillips Curve Forecasts

Table 5 reports the out-of-sample RMSEs and the model casgraregression estimates (equa-
tion (17)) for the Phillips curve models described in Satt®?2, relative to the benchmark of
the ARMA(1,1) model. The overall picture in Table 5 is tha¢ tARRMA(1,1) model typically
outperform the Phillips curve forecasts. Of the 80 comjpasg10 models, 2 out-samples, and
4 inflation measures), the model comparison regressioriicieet (1 — \) is not significantly
positive at the 95% level in any of 80 cases using West (19@@)dsaird errors! It must be said
that the coefficients are sometimes positive and far away #rero, but the standard errors are
generally rather large. When we compute Hansen-HodricRLStandard errors, we still only
obtain 14 cases of significafit — \) coefficients with p-values less than 5%, and of these 14
cases, only nine are positive.

The OLS Phillips curve regressions are most successfur@tésting core inflation, PUXX.
Of the nine cases where the Phillips curve produces lower BMBan the ARMA(1,1) model,
five occur for PUXX. The best model forecasting PUXX inflatigses the composite Bernanke-
Boivin-Eliasz aggregate real activity factor (PC8). Whte (1 — \) coefficients are large for
PCS8, their West (1996) standard errors are also large, gatiednsignificant for both samples.
Another relatively successful Phillips curve specificatis the PC7 model that uses the Stock-
Watson nonfinancial Experimental Leading Index-2. Thiskdoes not embed asset pricing
information. PC7 for PUXHS post-1985 is the only case, ouB@fcases, that generates a
positive(1 — \) coefficient which is significant at a level higher than the 9@¥%el using West
standard errors, but its performance deteriorates for tise- 1095 sample. All of the RMSEs
of PC7 are also higher than the RMSE of an ARMA(1,1) model.dntast, the PC1 model,
which simply uses past inflation and past GDP growth, dedifige of the nine relative RMSEs
below one and beats PC7 in all but one case.

Among the various Phillips curve models, it is also strikingt the PC4 model consistently
beats the PC2 and PC3 models, sometimes by a wide margirms tdrRMSE. The PC2 and
PC3 models use detrended measures of output that are oéidriauproxy for the output gap.
PC4 uses the labor share as a real activity measure, whiomistenes used as a proxy for the
marginal cost concept in New Keynesian models. This is @stiang because the recent Phillips
curve literature (see Gali and Gertler, 1999) stressesrthedinal cost measures provide a better
characterization of (in-sample) inflation dynamics thatreteded output measures. Our results
suggest that the use of marginal cost measures also leadstés but-of-sample predictive
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power. However, the use of GDP growth leads to significangiigds forecasts than the labor
share measure, but GDP growth remains, so far, conspiguabsknt in the recent Phillips
curve literature.

Finally, using Table 4 together with Table 5, it is easy tafyaxhether the Atkeson-Ohanian
(2001) results hold up for our models and data. Essentihlgy do: the annual random walk
beats the Phillips curve models in 72 out of 80 cases. All #ses where a Phillips curve model
beats the annual random walk occur in forecasting the PUNERIUXHS measures.

Term Structure Forecasts

In Table 6, we report the out-of-sample forecasting regattthe various term structure models
(see Section 3.3). Generally, the term structure baseddste perform worse than the Phillips-
curve based forecasts. Over a total of 120 statistics (15etapd inflation measures, 2 sample
periods), term structure based-models beat the ARMA(1dhehin only eight cases in terms of
producing smaller RMSE statistics. The— \) coefficients are usually positive for forecasting
PUXX in the post-1985 period, but half are negative in thet{i®95 sample. Unfortunately,
the use of West (1996) standard errors turns 10 cases ofisagrily positive(1 — \) coefficients
using Hansen-Hodrick (1980) standard errors into insigaifi coefficients. The performance
of the term structure forecasts is so poor that using Weggjl&tandard errors, in none of the
120 cases is th@ — \) parameters significant at the 95% level. This may be causethiny of
the term structure models, especially the no-arbitrageatsotiaving relatively large numbers
of parameters.

The term structure models most successfully forecast odlaion, PUXX, which delivers
six of the eight cases with smaller RMSEs than an ARMA(1,13etolIn particular, the TS1
model that includes inflation, GDP growth, and the short batats an ARMA(1,1) model and
has a positivél — \), but insignificant, coefficient in both the post-1985 andi{®#95 samples.
The other models with term structure information that arecessful at forecasting PUXX are
TS6 and TS8, both of which also include short rate infornmatio

The finance literature has typically used term spreads, hmmt sates, to predict future in-
flation changes (see, for example, Mishkin, 1990, 1991). dmtrast to the relative success
of the models with short rate information, models TS9-TSAfich incorporate information
from the term spread, perform badly. They produce higher RMgtatistics than the benchmark
ARMA(1,1) model for all four inflation measures. This is catent with Estrella and Mishkin
(1997) and Kozicki (1997), who find that the forecastingipdf the term spread is diminished
after controlling for lagged inflation. However, we showtttiee short rate still contains modest
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predictive power even after controlling for lagged inflatiorhus, the short rate, not the term
spread, contains the most predictive power in simple f@taog regressions.

Table 6 shows that the performance of iterated VAR foregastsxed. VARs produce lower
RMSEs than ARMA(1,1) models. The relatively poor performanf long-horizon VAR fore-
casts for inflation contrasts with the good performance #®RY in forecasting GDP (see Ang,
Piazzesi and Wei, 2004) and for forecasting other macragoantime series (see Marcellino,
Stock and Watson, 2006). The non-linear empirical regimigebing VAR (RGMVAR) gener-
ally fares worse than the VAR. This result stands in contaste relatively strong performance
of the univariate regime-switching model using only infbatidata (RGM in Table 4) for fore-
casting PUNEW and PUXX. This implies that the non-lineastin term structure data have
no marginal value for forecasting inflation above the nowdirities already present in inflation
itself.

The last two lines of each panel in Table 6 shows that ther@nsesevidence that no-
arbitrage forecasts (MDL1-2) are useful for forecasting<Xun the post-1985 sample. While
the(1—\) coefficients are significant using Hansen-Hodrick (198 déard errors, they are not
significant with West (1996) standard errors. Moreovemimat-arbitrage term structure models
always fail to beat the ARMA(1,1) forecasts in terms of RMSHile the finance literature
shows that inflation is a very important determinant of y@ldve movements, our results show
that the no-arbitrage cross-section of yields appearsowigbe little marginal forecasting ability
for the dynamics of future inflation over simple time-semnesdels.

Surveys

Table 7 reports the results for the survey forecasts anélesgeveral notable results. First, sur-
veys perform very well in forecasting PUNEW, PUXHS, and PUXMth only one exception,
the raw survey forecasts SPF1, LIV1 and MICH1 have lower REI8an ARMA(1,1) fore-
casts over both the post-1985 and the post-1995 samplesxtegtion is MICH1 for PUXX
over the post-1985 sample). For example, for the post-19&&{1995) sample, the RMSE ratio
of the raw SPF forecasts relative to an ARMA(1,1) is 0.778Q) when predicting PUNEW.
The horse races always assign large, positive \) weights to the pure survey forecasts (the
lowest one is 0.383) in both out-of-sample periods. Igrpparameter uncertainty, the coef-
ficients are significantly different from zero in every cabai taking into account parameter
uncertainty, statistical significance disappears for {1995 samples, and in the case of the
PUXX measure, even for the post-1985 sample. This is trualfbinree surveys.

Second, while the SPF and Livingston surveys do a good jobratésting all three mea-
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sures of CPI inflation (PUNEW, PUXHS, and PUXX) out-of-samphe Michigan survey is
relatively unsuccessful at forecasting core inflation, ’UX is not surprising that consumers
in the Michigan survey fail to forecast PUXX, since PUXX exdés food and energy which are
integral components of the consumer’s basket of goods. thatewhile the annual PUNEW
and PUXHS measures have the highest correlations with éaeh @9% in both out-samples),
core inflation is less correlated with the other CPI measureparticular, post-1995, the cor-
relation of annual PUXX with annual PUNEW (PUXHS) is only 332d.%). Surveys do less
well at forecasting PCE inflation, always producing worseéasts in terms of RMSE than an
ARMA(1,1). This result is expected because the survey @pents are asked to forecast CPI
inflation, rather than the consumption deflator PCE.

Third, the raw survey forecasts outperform the linear or-lnogar bias adjusted forecasts
(with the only notable exception being the bias-adjusteedasts for PCE). As a specific exam-
ple, for PUNEW, the relative RMSE ratios are always highetlie models with suffix 2 (linear
bias adjustment) or the models with suffix 3 (non-linear laidgistment) compared to the raw
survey forecasts across all three surveys. This resultrisaps not surprising given the mixed
evidence regarding biases in the survey data (see Table B)le Wiere are some significant
biases, these biases must be small, relative to the totalisinod forecast error in predicting
inflation.

Finally, we might expect that the Livingston and SPF suryaygluce good forecasts be-
cause they are conducted among professionals. In cormgeatitipants in the Michigan survey
are consumers, not professionals. It is indeed the caséhhatofessionals uniformly beat the
consumers in forecasting inflation. Nevertheless, in maseés, the Michigan forecasts are of
the same order of magnitude as the Livingston and SPF suriveygexample, for PUNEW over
the post-1995 sample, the Michigan RMSE ratio is 0.862 glightly above the RMSE ratio of
0.861 for the SPF survey. It is striking that information eeggated over non-professionals also
produces accurate forecasts that beat ARIMA time-seriegeiso

It is conceivable that consumers simply extrapolate pdstnmation to the future and that
the Michigan survey forecasts are simply random walk faseszasimilar to the Atkeson and
Ohanian (2001) (AORW) random walk forecasts. Indeed, Ta8ldemonstrated the relatively
good forecasting performance of the annual random walk madech beats the ARMA(1,1)
model in a number of cases. Nevertheless, comparing therpeahce of the survey forecasts
relative to the AORW model, we find that the random walk modetipces smaller RMSESs than
the Michigan survey only for PUXX and PCE inflation, which somers are not directly asked
to forecast. The AORW also outperforms the SPF survey for Ruation over the post-1995
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period, but the AORW model always performs worse than théngston survey for the CPI
inflation measures. Looking at PUNEW, the inflation measurekwvthe survey participants are
actually asked to forecast, the AORW model performs worae #il the surveys, including the
Michigan surveys. Thus, survey forecasts clearly are mopki random walk forecasts!

4.2 Summary

Let us summarize the results so far. First, among ARIMA tgeees models, the ARMA (1,1)
model is the best overall quarterly model, but the annualsamwalk also performs very well.
Nevertheless, some models that incorporate real actnftyrination, term structure informa-
tion, or, especially, survey information, beat the ARMA(Lmodel, even when ARMA(1,1)
forecasts are used as the benchmark in a forecast compegg@ssion. Second, the simplest
Phillips curve model using only past inflation and GDP growgta good predictor. Third,
adding term structure information occasionally leads tingprovement in inflation forecasts,
but generally only for core inflation. No-arbitrage regioos do not improve forecasting per-
formance. Fourth, the survey forecasts perform very welbrecasting all inflation measures
except PCE inflation.

To get an overall picture of the relative forecasting powkethe various models, Table 8
reports the relative RMSE ratios of the best models from edthe first three categories (pure
time-series, Phillips-curve, and term structure modets) af each raw survey forecast. The
most remarkable result in Table 8 is that for CPI inflation RBW, PUXHS, and PUXX),
the survey forecasts completely dominate the Phillips €unvterm structure models in both
out-of-sample periods. For the post-1985 sample, the RM8E&saround 20% smaller for
the survey forecasts compared to forecasts from Phillipgecor term structure models. The
natural exception is PCE inflation, where the best model ith Isamples is just the annual
random walk model!

For the post-1985 sample, a survey forecast delivers thelbvewvest RMSE for all CPI
inflation measures. The performance of the survey forecastgins impressive in the post-
1995 sample, but the Hamilton (1989) regime-switching nh@gB&M) has a slightly lower
RMSE for PUNEW and PUXHS. Impressively, the Livingston syrcontinues to deliver the
most accurate forecast of PUXX post-1995.

For the Phillips curve forecasts, the simple PC1 regresssang only past inflation and
GDP growth frequently outperforms more complicated mottei®oth PUNEW and PUXHS.
Other measures of economic growth are more successfuletasting PUXX and PCE. For
PUXX inflation, PC8 produces forecasts that beat an ARMA(fhadel for both the post-1985
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and post-1995 sample. The PCB8 forecasting model uses tinarmer et al. (2005) composite
indicator. For the PCE measure, models combining multipte series (PC6 through 8) con-
tinue to do well, and the PC6 measure, which uses the StockVaitgbn experimental leading
index (XLI), produces the lowest RMSE for the post-1995 si@mpor the post-1985 sample,
PC4, which uses the labor share performs best. HowevetealPhillips curve models are
always beaten by time-series models or surveys.

Among the term structure models, models incorporating jpéisition, the short rate, and
one of the combination real activity measures (TS6 throug8)Tperform relatively well. TS7
(using XLI-2) is best for the PUNEW and PCE measure for the-fp885 sample, whereas TS8
(using the Bernanke et al., 2005, composite indicator) & fog all measures except PUXX in
the post-1995 sample. For PUXX, the TS6 model (which usesaslthe real activity measure)
produces the lowest RMSE. Like the Phillips curve modelghalterm structure forecasts are

also soundly beaten by time-series models or survey faiecas

4.3 Stability of the Best Forecasting Models

One requirement for a good forecasting model is that it mussistently perform well. In Table
9, we report the ex-ante best models within each categane{series, Phillips curve, term
structure, and surveys) and across all models over thel@@&-sample. Since we record the
best models at the end of each quarter, we include only theaBBMichigan survey forecasts
because the Livingston survey is only available semi-aliyiuihis understates the performance
of the surveys as the Livingston survey sometimes outpaddhe other two survey measures,
especially for PUXX (see Table 8). The best models are etedugcursively, so at each point
in time, we select the model within each group that yieldsltweest forecast RMSEs over
the sample from 1985:0Q4 to the present. Naturally, as wethotlugh the sample, the best
ex-ante models up to the end of each quarter converge to stenoelels reported for the post-
1985 period in Table 8. If the best ex-ante models for 2002¢@#e reported, these would
be identical to the best models in the post-1985 sample ife®&hwith the exception that the
Livingston survey is excluded.

Table 9 shows that for PUNEW and PUXHS, the ARMA(1,1) modebssistently the best
time-series model, whereas for PUXX and PCE, the Atkesoan@im (2001) model is always
best. Given the good forecasting performance of these $inies models, this implies that the
time-series models represent extremely good benchmarksontrast, there is little stability
for the best ex-ante Phillips curve model, which is alsossted by Brave and Fisher (2004).
For PUNEW, the best Phillips curve models alternate betweh (using GDP growth) and
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PC5 (using unemployment). For PUXHS, the best Phillips eusPC7 (using XLI-2) at the
beginning of the period, but transitions to PC1 at the enchefdample. For core inflation,
PUXX, PC8 (using the composite Bernanke, Boivin and Eli@€)5, factor) alternates with
PC1. This instability further reduces the usefulness ofRh#lips curve forecasts and hence,
the knowledge that sometimes these Phillips curve forscaal beat an ARMA(1,1) model is
hard to translate into consistent, accurate forecasts.

The best term structure models are also generally unstalgletone for PUNEW and
PUXX. While the VAR model is consistently the best perfornier PUXHS and TS7 (us-
ing XLI-2 with the short rate) is always the best term struetmodel for PCE, this consistent
performance is less useful because both of these modelstdagat an ARMA(L,1). A sharp
contrast to the unstable Phillips curve and term structwdets are the survey results. For all
three CPI measures (PUNEW, PUXHS, and PUXX), professicalalays forecast better than
consumers, with the SPF beating the Michigan survey. A rkeaide result is that the raw SPF
survey always dominates all other models throughout thegéor the CPl measures. Surveys
consistently deliver superior inflation forecasts!

4.4 Rolling Window Forecasts

McConnell and Perez-Quiros (2000) and Stock and Watsor2(0@mong others, document
that there has been a structural break since the mid-1980s. has been called the “Great
Moderation” because it is characterized by lower volgtitit many macro variables. It is con-
ceivable that professional forecasters fast adapt totstralachanges. In contrast, the models
use relatively long windows (necessary to retain some esitm efficiency and power) to esti-
mate parameters. These model parameters would respondlowly to a structural break as
new data points are added. If changes in the time series piegpef inflation play a role in
the relative forecasting prowess of models versus the gsradlowing the model parameters to
change more quickly through rolling windows should gereesatperior model performance.

In Table 10, we use a constant 10-year rolling window to estiEnall the linear time-series,
Phillips curve, and term structure models. We do not comdiue regime-switching models
(RGM, RGMVAR) and the no-arbitrage term structure modeMD[1, which is an affine
model, and MDL2, which is a regime-switching model). Theimegrswitching data generat-
ing processes in the RGM, RGMVAR, and MDL2 models producedasts that may already
potentially account for structural breaks. We report thatiee RMSES of the ex-post best mod-
els in each category together with the raw survey forecastslts, using the same recursively
estimated ARMA(1,1) model as the benchmark.

28



Table 10 shows that over both the post-1985 and post-199pleansurveys still provide
the best forecasts for all CPI inflation measures. Note tlitt av10-year rolling window, the
post-1995 sample results involve models estimated onlyherpbst-Great Moderation sam-
ple. Thus, surveys still out-perform even when the modedseatimated only with data from
the Great Moderation regime. But, estimating the modelk witly post-1985 data does im-
prove their performance, as a comparison between the RM&IS fzetween Tables 8 and 10
reveals, especially for the PUXX and PCE measures. Thisi@mphat the model parame-
ters may indeed only have adjusted to the new situation by 89@ raises the possibility that
the out-performance of the surveys may not last. In facs gtriking that an older literature,
summarized by Croushore (1998), stressed that the sureefgsimed relatively poorly in fore-
casting compared to models.

To investigate this, we use the Livingston survey, whiclesdnly survey available over our
full sample, from 1952-2002. We compute the RMSE ratio ofthieof-sample forecasts for the
Livingston survey relative to an ARMA(1,1) model for 196086 and 1986-2002, where the
first eight years are used as an in-sample estimation peyiadé ARMA(1,1) model. Over the
pre-1985 sample, the Livingston RMSE ratio is 1.046 (with\&SE level of 2.324), while over
the post-1985 sample, the RMSE ratio is 0.789 (with a RMSEIllef/0.896). Consequently,
professionals are more adept at forecasting inflation ipts-1985 period.

4.5 Combining Model Forecasts

Surveys may be averaging information from many differentreses, whereas our models im-
plicitly always constrain the information set to a limiteaimber of variables. If this is the source
of the out-performance of the surveys, the model combinagohniques should perform better
than any individual model by itself.

Table 11 investigates whether we can improve the foregagtmformance by combining
different models. We first combine models within each of tberfcategories (time-series,
Phillips curve, term structure, and survey models), thanliae the four ex-ante best models
from each category in the column labelled “Best Models,” &indlly combine across all the
models in the last column labelled “All Models.” The modeigihe survey category comprise
only the SPF and Michigan surveys because the Livingstoregus conducted at a semiannual
frequency. Table 7 shows that the Livingston forecasts angsimilar to the SPF and Michigan

%In contrast to the superior performance of surveys relativeodels for forecasting inflation, Campbell (2004)
finds that for forecasting GDP post-1985, surveys performseoelative to a simple AR(1). However, Campbell
shows that for forecasting GDP, surveys outperform an AR€hchmark prior to 1985.
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surveys for PUNEW and PUXHS, and that the Livingston surgethe best single forecaster
for PUXX. Thus, excluding the Livingston survey places asmmative higher bound on the
RMSEs for the forecast combinations involving surveys.

We use five methods of model combination: means or mediansadivéhe models, lin-
ear combinations using weights recursively computed by @In8 linear combinations using
weights recursively computed by mixed combination regoesseither with an equal-weight
prior or a prior that places a unit weight on the ex-ante besieh We start the model com-
bination regressions at 1995:Q4 using realized inflaticoh thie out-of-sample forecasts over
1985:Q4 to 1995:Q4. At each subsequent period, we advaecgatia sample by one quarter
and re-run the model combination regression to obtain thy@estoefficient estimates. For com-
parison, the last row in each panel reports the RMSE ratiative to an ARMA(1,1) forecast,
of the recursively-updated ex-ante best performing imtligi model, as reported in Tableé®.

There are three main findings in Table 11. First, using meamexian forecasts mostly
does not improve the forecast performance relative to teeibdividual ex-ante model. There
are 24 cases to consider: four inflation measures and sereift sets of model combinations.
Combining forecasts by taking their means only improvesaftgample forecasts in six out of
24 cases. Taking medians produces the same results, imgrorecasts for exactly the same
cases as taking means. The mean or median combination rsetlooki best for PUNEW and
PUXHS using time-series models. However, when these feticaimprovements occur for
model combinations, the improvements are small. Thus,lsimpthods of combining forecasts
provide little additional predictive power relative to thest model.

Second, updating the model weights based on previous medermance does not always
lead to superior performance. For the Phillips Curve mqd2lsS model combinations outper-
form means and medians for all inflation measures. HoweveeMOLS model combinations
are taken across all models, using an OLS combination isri@teer than the best individual
model.

Finally, the performance of the equal-weight prior and thi prior that places weight only
the best ex-ante model are generally close to the OLS fdreoasbination method. Across
all models, the unit weight prior produces lower RMSE ratiosn the OLS or equal-weight

10we also ask the question whether ex-post, a particular awatibn of models would have performed better
than individual forecasts. This ex-post analysis cannatdsl for actual forecasting, but indicates which models
would have been most successful forecasting inflation &gample ex-post. For the ex-post combinations, we
find that the improvement generated by the combined foredésastso relatively minor, even for the unit-weight
prior model, which uses forward-looking information to fitice best performing model over the whole sample.
These results are available upon request.
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priors. However, it is only for PUXX that the various regressbased model combination
methods produce better forecasts than the best individuatésts. For PUNEW, PUXHS, and
PCE, the best individual models beat the model combinatiamd for PUNEW and PUXHS,
the best individual ex-ante forecasts are surveys.

To help interpret the results, we investigate the ex-ant® @kights on some selected mod-
els. In Figure 2, we plot the OLS slope estimates of regregdi8) for various inflation mea-
sures over the period of 1995:Q4 to 2002:Q4. For clarity, @strict the regression to combina-
tions of the ex-ante best model within each category (tierées, Phillips Curve, term structure)
together with the SPF survey. Note that by choosing the bedehin each category, we handi-
cap the survey forecasts. We compute the weights in theggigrerecursively like the forecasts
in Table 11; that is, we start in 1995:Q4, and recursively pota forecasts from 1985:Q4 to
1995:Q4.

Figure 2 shows that when forecasting all the CPI inflation sness (PUNEW, PUXHS,
and PUXX), the data consistently place the largest ex-antghts on survey forecasts and very
little weight on the other models. The weights on the SPFesuferecast are generally constant
and lie around 0.8 for PUNEW, PUXX, and PUXHS. There is no iaat, best model that
dominates for the remaining 0.1-0.2 weights. The weightthertime-series models are always
zero for PUNEW, but temporarily spike upward in the middletloé sample to around 0.15
for PUXHS and 0.20 for PUXX. For PUNEW and PUXHS, the Phillqusves fare best at the
beginning of the sample, but the regressions place velg Vittight on Phillips curve forecasts
at the end of the sample. For PCE inflation, surveys conttile information. The weight on
the best survey stays close to zero until late 1999, thes t@s@.2. For forecasting PCE among
the other categories of models, the Phillips Curve forestmtds out, with weights ranging
from 0.2 to 0.6. Term structure models receive the highegihtat the end of the sample. We
conclude that combining model forecasts, at least usinggttfeniques here, is not a very useful
forecasting tool, especially compared to using just sudag for forecasting CPI inflation.

5 Robustness to Non-Stationary Inflation

5.1 Definition and Models

In this section we investigate the robustness of our resolthe alternative assumption that
quarterly inflation is difference stationary. Our exerds@&ow to forecast four-quarter ahead
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inflation changes:
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wherer,.4 4 is annual inflation defined in equation (2).

We now replace quarterly inflatiom,, by quarterly inflation change®\m, .1 = .1 —
in all the models considered in Sections 3.1 to 3.3. For examye estimate an ARMA(1,1)
on first differences of inflation:

ATy = p+ QAT +be; + 11
and an ARY) on first differences of inflation:
Amr = i+ O1AT + AT+ GpAT 1 g

The OLS Phillips Curve and term structure regressions delguarterly inflation changes as
one of the regressors, rather than quarterly inflation. Rtoermodels estimated afvr;, we
compute forecasts of inflation changes over the next Ygéi, .4 4 — 7m:4).

There are three models for which we do not estimate a couartanping quarterly inflation
differences. We do not consider a random walk model for iioftathanges and do not specify
the no-arbitrage term structure models (MLD1 and MLD2) teehaon-stationary inflation
dynamics, although we still consider the forecasts of ahmfiation changes implied by the
original stationary models. In all other cases, we examirgeforecasts of both the original
stationary models and the new non-stationary models tlegfings differences of inflation.

The original models estimated on inflation levels generd#SEs for forecasting annual
inflation changes that are identical to the RMSEs for foreegsnnual inflation levels. Hence,
the question is whether models estimated on differenceddesuperior forecasts to models
estimated on levels. By including a new set of models esé@thain inflation changes, we
also enrich the set of forecasts which we can combine. Wetaiaithe ARMA(1,1) model
estimated on inflation rate levels as a benchmark.

5.2 Performance of Individual Models

Table 12 reports the RMSE ratios of the best performing nwdstimated on levels or dif-
ferences within each model category. Time-series modélm&®d on levels always provide
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lower RMSEs than time-series models estimated on diffeagné&or both Phillips curve and
term structure models, using inflation differences or Ieygbduces similar forecasting perfor-
mance for both the PUNEW and PUXHS measures. For these anflateasures, the Phillips
curve models are slightly better estimated on levels, butdom structure models, there is
no clear overall winner. However, for the PUXX and PCE measuPhillips curve and term
structure regressions using past inflation changes are acoteate than regressions with past
inflation levels.

Our major finding that surveys generally outperform othedeldorecasts is robust to spec-
ifying the models in inflation differences. For the CPI inftet measures (PUNEW, PUXHS,
PUXX) over the post-1985 sample, surveys deliver lower RBI8tan the best time-series,
Phillips curve, and term structure forecasts. First déffeie models are most helpful for low-
ering RMSEs for core inflation (PUXX) over the post-1995 skemphere the best time-series
model estimated on differences (ARMA) produces a relativiSE ratio of 0.649. This is still
beaten by the raw Livingston survey, with a RMSE ratio of .55

5.3 Performance of Combining Models

In this section, we run forecast combination regressiorgetermine the best combination of
models to forecast inflation changes (similar to Sectionf@t@nflation levels). The model
weights are computed from the regression:

n
i £
Tstd,4 — g4 = 5 sts + Es,5+4y S = 1, . ,t. (22)
i=1

We repeat the exercise of Table 11 and compute ex-ante nezweights over 1995:Q4-
2002:Q4 using the best ex-ante forecasting models in edelgary and across all models.
In unreported results available upon request, we find thabdginal results for forecasting
inflation levels also extends to forecasting inflation clemgSpecifically, there is generally
no improvement in combining model forecasts, or when modehlinations result in out-
performance, the improvement is small. Specifically, foNEW and PUXHS, using means,

\We also ran model comparison regressions as in equationidfayith inflation changes on the left hand side,
and keeping the stationary ARMA(1,1) model as the benchmmexttel. These results are available upon request.
We find that while generally the models specified in diffeesido not fare any better than the models specified
in levels in terms of beating the RMSE of a stationary ARMA{1there are more 1(1) models with significant
(1—)) coefficients using Hansen-Hodrick (1980) standard eriie.largest increase occurs for PUXX inflation.
Like the model comparisons for forecasting inflation leyelgveys consistently provide significant improvement
in forecasting CPI inflation changes above an ARMA(1,1) niatelevels, especially for the post-1985 sample
period.
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medians, OLS, or an equal-weight prior produces higher R818&n the best individual model.
For these inflation measures, all model combinations p@@MSEs that are higher than the
survey forecasts. This result is robust to both combiningl@in levels and also combin-
ing models in differences. There are some improvementsoi@chasting PCE inflation using
models in differences, but the forecasting gains are vellsm

In Figures 3 and 4, we plot the OLS coefficient estimates oagqn (22) for the models
specified in differences and the models specified in levelpectively, together with the best
survey forecast. We consider only the SPF and the Michigewegs at the end of each quarter,
and the SPF survey always dominates the Michigan surveyiléBita Figure 2, we choose the
best ex-ante performing time-series, Phillips Curve, anahtstructure models at each time, and
compute the OLS ex-ante weights recursively over 1995:@@062:Q4. Both Figures 3 and 4
confirm that the surveys produce superior forecasts of ioflathanges.

In Figure 3, the weight on the SPF survey for PUNEW and PUXH&nhges is above or
around 0.8. The surveys clearly dominate the I(1) timeeseRhillips Curve, and term structure
models. For PUXX changes, the regressions still place tigesaweight on the survey, but the
weight is around 0.5. In contrast, for forecasting PUXX itifla levels, the weights on the
survey range from 0.6 to above 0.9. Thus, there is now additimformation in the other
models for forecasting PUXX changes, most particularlyRhélips Curve PC1 model, which
has a weight around 0.4. Nevertheless, surveys still re¢br highest weight. Consistent with
the results for forecasting inflation levels, surveys pdeviittle information to forecast PCE
changes. For PCE changes, the largest ex-ante weight inleakt combination regression is
for the ARMA(1,1) estimated on inflation differences.

Figure 4 combines the surveys with stationary models. WHelele 12 reveals that the
RGM model estimated on inflation levels yields the lowest FAvifver the post-1995 sample
in forecasting PUNEW and PUXHS differences, there appealtlittle additional value in
the RGM forecast once surveys are included. Figure 4 shoatsthle forecast combination
regression places almost zero ex-ante weight on the RGM Indde weights on the other
1(0) models are also low, whereas the survey weights arendrOB or higher. Compared to
the other stationary model categories, surveys also haed@mat forecasting PUXX inflation.
Again, surveys do not perform well relative to 1(0) modelsflarecasting PCE changes.
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6 Conclusions

We conduct a comprehensive analysis of different inflatamed¢asting methods using four in-
flation measures and two different out-of-sample periodstfi985 and post-1995). We in-
vestigate forecasts based on time-series models; Phillip® inspired forecasts; and forecasts
embedding information from the term structure. Our analgsiterm structure models includes
linear regressions, non-linear regime switching modeld,abitrage-free term structure mod-
els. We compare these model forecasts with the forecastenigrmance of three different
survey measures (the SPF, Livingston, and Michigan sujyveyxsmining both raw and bias-
adjusted survey measures.

Our results can be summarized as follows. First, the bests$enies model is mostly a sim-
ple ARMA(1,1) model, which can be motivated by thinking ofiion comprising stochastic
expected inflation following an AR(1) process, and shocksflation. Post-1995, the annual
random walk used by Atkeson and Ohanian (2001) is a serioogpetitor. Second, while
the ARMA(1,1) model is hard to beat in terms of RMSE forecastuaacy, it is never the
best model. For CPI measures, the survey measures cotiyisteliver better forecasts than
ARMA(1,1) models, and in fact, much better forecasts thaitlip$ curve-based regressions,
term structure models based on OLS regressions, non-limedels, iterated VAR forecasts,
and even no-arbitrage term structure models that use irfitomfrom the entire cross-section
of yields. Naturally, surveys do a relatively poor job atdoasting PCE inflation, which they
are not designed to forecast.

Some of our results shed light on the validity of some simplganations of the superior
performance of survey forecasts. One possibility is thatstlrveys simply aggregate informa-
tion from many different sources, not captured by a singlel@ho The superior information
in median survey forecasts may be due to an effect similaraygeBian Model Averaging, or
averaging across potentially hundreds of different irdinal forecasts and extracting common
components (see Stock and Watson, 2002a; Timmermann, .20@t) example, it is strik-
ing that the Michigan survey, which is conducted among ire#gt unsophisticated consumers,
beats time-series, Phillips curve, and term structurectsts. The Livingston and SPF surveys,
conducted among professionals, do even better.

If there is information in surveys not included in a singledah combining model forecasts
may lead to superior forecasts. However, when we examime#&sts that combine information
across models or from various data sources (like the Bemeandl., 2005, index of real activity
that uses 65 macro factors measuring real activity), we fiad the surveys still outperform.
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Across all models, combination methods of simple means alians, or forecast combination
regressions which use prior information never outperfounvesy forecasts. In ex-ante model
combination exercises for forecasting CPI inflation, altredksthe weight is placed on survey
forecasts. One avenue for future research is to investighéther alternative techniques for
combining forecasts perform better (see Inoue and Kill5, for a survey and study of one
promising technique).

Another potential reason why surveys outperform is becauseey information is not cap-
tured in any of the variables or models that we use. If thisescise, our results strongly suggest
that there would be additional information to include syrigrecasts in the large datasets used
to construct a small number of composite factors, which asghed to summarize aggregate
macroeconomic dynamics (see, among others, Bernanke 20@%; Stock and Watson, 2005).

Our results also have important implications for term dtrteemodelling. Extant sophisti-
cated no-arbitrage term structure models, while perfogwall in sample, seem to provide rel-
atively poor forecasts relative to simpler term structur®lillips curve models out-of-sample.
A potential solution is to introduce the information prelsenthe surveys as additional state
variables in the term structure models. Pennacchi (199%)ameaearly attempt in that direction
and Kim (2004) is a recent attempt to build survey expeatatioto a no-arbitrage quadratic
term structure model. Brennan, Wang and Xia (2004) alsontgcase the Livingston survey
to estimate an affine asset pricing model.

Finally, surveys may forecast well because they quicklgtremchanges in the data generat-
ing process for inflation in the post-1985 sample. In paldiGisince the mid-1980s, the volatil-
ity of many macroeconomic series, including inflation, haslished. This “Great Moderation”
may also explain why a univariate regime-switching modeirifiation provides relatively good
forecasts over this sample period. Nevertheless, whenade mur forecasting exercises using
a 10-year rolling window, the surveys forecasts remain sape

We conjecture that the surveys likely perform well for alltbése reasons: the pooling of
large amounts of information; the efficient aggregationhait information; and the ability to
quickly adapt to major changes in the economic environmecoh ss the Great Moderation.
While our analysis shows that surveys provide superiorctsts of CPI inflation, the PCE de-
flator is often the Federal Reserve’s preferred inflationcair for the conduct of monetary
policy. Since existing surveys target only the CPI indewf@ssional surveys designed to fore-
cast the PCE deflator may also deliver superior forecastS€&fiRflation.
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Appendix: Computation of West (1996) Standard Errors

By subtractingf/*#**4 from both sides of equation (17) and letting/}’{* denote the forecast residuals of the
ARMA(1,1) model anc:f, . , denote the forecast residuals of candidate modele can write:

eéﬁkj\fA =(1- )‘)(eftlﬂlm —€i1ia) *Etraa (A-1)
The estimated slope coefficiehthas the asymptotic distribution:
VP = A) 5 N (0, E(diyadyyy) " pE(dryady) ) (A-2)

whereP is the length of the out-sampl; = var(f i44), fri4a = e T4 (e FA — €f,y4) anddy s =
eg‘}ﬁﬁﬁf A et 1+4- West (1996) derives the long-run asymptotic variafige after taking into account parameter
uncertainty.

We use the notation based on West (2006). The forecast ImdgZour quarters ahead. For each madékre
are P out-of-sample forecasts in all, which rely on estimates &f a 1 unknown parameter vectéf. The first
forecast uses data from a sample of len@tto predict a time¢ = (R+4) variable, while the last forecast uses data
fromtimet = R+ P—1 = T toforecastatimeé = T'+4 variable. The total sample sizefs+ P—1+4 = T +4.

For theith candidate moded?n-, the small-sample estimate of the paramefigssatisfies:

0i(t) — 0; = Bi(t)Hi(t), (A-3)
whereB;(t) is ak; x ¢; matrix andH;(¢) is ag; x 1 vector. The vectof];(t) represents orthogonality conditions of
the model and the matri®; (¢) is a linear combination of the orthogonality conditionsecaver the parameters.
We assume thaB; (t) 2, B;, whereB; is a matrix with rankk;. The moment condition&;(t) are given by*?

Hi(t) = % Z h(0:), (A-4)
s=1

for the recursive forecast case which we investigate, whg ) areq; x 1 orthogonality conditions. For models
estimated by maximum likelihood, the matii (¢) is the inverse of the Hessian ahfl ;) is the score. For linear
models in the form ofy, = X/'0" + &, B;(t) = E(X}X)~ andhi(0;) = X (y: — X/0;).

We stack the parameters of the ARMA(1,1) benchmark modetlaagarameters of thith candidate model
in the vector = (A.arara, 6;). Then, we can writé(t) = B(t)H(t), whereH (t) = 1 St h,(6), where:

)

B t 0
B(t) - ARMA(1) 7
0 Bi()
hARMA 0
o) = l o W) ] , *-5)
ht(oi)
andB(t) & B, where
B 0
B— ARMA (A'G)
0 B;

12West and McCracken (1998) derive similar forms for; under the cases of rolling and fixed out-of-sample
forecasts.
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We define the derivativé’ of the moment conditions with respecté@s:

Ofte+a(0) Fy
F=E|————~| = A-7
|2t ol (a-7)
whereF; andF; are given by:
o ARMA
F, = E Oft144 (0) - FE (26?£—A4{A _ eft+4) Ct,t+4
90ARM A ’ ’ 90ARM A
a xT
mo= o[G0 el ). o
Finally, for the asymptotic results, we ne€d— oo andR — oo with
p= Tlim % < 00. (A-9)
Following West (2006), we define the constahfs andAp:
A= 1=p tIn(1+p),
Awn = 21— pt In(1 + p)]. (A-10)
Under these assumptions, West (1996) derives that the dsyionariance? s is given by:
Qe =Srs+ Asn (FBS}h + thBIFI) + MpFBVy, B'F’ (A-11)
where
Srp = Y, Bl(furra —Bfrora)(fiju—ja — Bfrara)],
j=—00
Stn = Z E [(ft,t44 — Bfrara)hi_;]
j=—00
Swn = > E[hhj_j]. (A-12)
j=—o00

Note that the estimate without parameter uncertainty iplsiri; /, and taking into account parameter uncertainty
can increase or decrease the long-run variancedsfpending on the covariancesfof 14 with iy 4.

A consistent estimator can be constructed using the smaipke counterparts. In particular, we compﬁ;g
and\,;, settingp = P/R,

T
L 1= 0f(0)
o= fZ 06 ‘0:@’
t=R
B = B(T)% B, (A-13)

and construcf; .4 = fi.114(A(t)) andh, = hy(A(t)) using the estimatek(t), which are recursively updated each
time using data up to time The sample covariance,ééff, S*fh and Sy, converge to their population equivalents

in equation (A-12). To estimate these, we define the vectormhents:

gt: ft,t+4 FB}A% . (A'14)
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To construct a non-singular estimate for the covariangg,afhich we denote a8, we use a Newey-West (1987)
covariance estimator with three lags. We partitioas the2 x 2 matrix:

. Qi Q
_ X 11 X 12 . (A-15)
Q21 Q22
Then, a consistent estimatef is given by:
Q= + j\fh(Qw + Q1) + Aoz (A-16)
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Table 1: Summary Statistics

PUNEW PUXHS PUXX PCE

Panel A: 1952:Q2 — 2002:Q4

Mean 3.84 3.60 4.24 3.84
(0.20) (0.20) (0.19) (0.19)
Standard Deviation 2.86 2.78 2.56 2.45
(0.14) (0.14) (0.14) (0.13)
Autocorrelation 0.78 0.74 0.77 0.79
(0.08) (0.09) (0.11) 0.09)
Correlations

PUXHS 0.99
PUXX 0.94 0.91
PCE 0.98 0.98 0.93

Panel B: 1986:Q1-2002:Q4

Mean 3.09 2.87 3.21 2.58
(0.14) (0.17) 0.12) (0.14)

Standard Deviation 1.12 1.37 0.97 1.08
(0.10) (0.12) (0.09) (0.10)

Autocorrelation 0.47 0.37 0.77 0.69

(0.07) (0.10) (0.08) (0.07)
Correlations

PUXHS 0.99
PUXX 0.85 0.79
PCE 0.95 0.93 0.90

Panel C: 1996:Q1-2002:Q4

Mean 2.27 1.84 2.32 1.70
(0.17) (0.25) (0.05) (0.13)

Standard Deviation 0.81 1.19 0.24 0.62
(0.12) (0.17) (0.03) (0.09)

Autocorrelation -0.13 -0.19 -0.38 0.05

0.23) (0.23) (0.14) (0.18)
Correlations

PUXHS 0.99
PUXX 0.33 0.21
PCE 0.89 0.88 0.19

This table reports various moments of different measuresnotial inflation sampled at a quarterly frequency for
different sample periods. PUNEW is CPI-U All Items; PUXHSOBI-U Less Shelter; PUXX is CPI-U All Items
Less Food and Energy, also called core CPI; and PCE is themdr€onsumption Expenditure deflator. All
measures are in annual percentage terms. The autocamealatiorted is the fourth order autocorrelation with the
quarterly inflation data, representing the first-order eatrelation of annual inflation. Standard errors reponted i
parentheses are computed by GMM.

* For PUXX, the start date is 1958:Q2 and for PCE, the startidait®60:Q2.
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Table 2: Forecasting Models

Abbreviation Specification

Time-Series Models ~ ARMA ARMA(1,1)

AR Autoregressive model

RW Random walk on quarterly inflation

AORW Random walk on annual inflation

RGM Univariate regime-switching model
Phillips Curve (OLS) PC1 INFL + GDPG

PC2 INFL + GAP1

PC3 INFL + GAP2

PC4 INFL + LSHR

PC5 INFL + UNEMP

PC6 INFL + XLI

PC7 INFL + XLI-2

PC8 INFL + FAC

PC9 INFL + GAP1 + LSHR

PC10 INFL + GAP2 + LSHR
OLS Term TS1 INFL + GDPG + RATE
Structure Models TS2 INFL + GAP1 + RATE

TS3 INFL + GAP2 + RATE

TS4 INFL + LSHR + RATE

TS5 INFL + UNEMP + RATE

TS6 INFL + XLI + RATE

TS7 INFL + XLI-2 + RATE

TS8 INFL + FAC + RATE

TS9 INFL + SPD

TS10 INFL + RATE + SPD

TS11 INFL + GDPG + RATE + SPD
Empirical Term VAR VAR(1) on RATE, SPD, INFL, GDPG
Structure Models RGMVAR Regime-switching model on RATELSINFL
No-Arbitrage Term MDL1 Three-factor affine model
Structure Models MDL2 General three-factor regime-switghmodel
Inflation Surveys SPF1 Survey of Professional Forecasters

SPF2 Linear bias-corrected SPF

SPF3 Non-linear bias-corrected SPF

LIV1 Livingston Survey

LIV2 Linear bias-corrected Livingston

LIV3 Non-linear bias-corrected Livingston

MICH1 Michigan Survey

MICH2 Linear bias-corrected Michigan

MICH3 Non-linear bias-corrected Michigan

INFL refers to the inflation rate over the previous quarteDR& to GDP growth; GAP1 to detrended log real
GDP using a quadratic trend; GAP2 to detrended log real Ghiyuke Hodrick-Prescott filter; LSHR to the
labor income share; UNEMP to the unemployment rate; XLI ® $ttock-Watson Experimental Leading Index;
XLI-2 to the Stock-Watson Experimental Leading Index-2;0=#0 an aggregate composite real activity factor
constructed by Bernanke, Boivin and Eliasz (2005); RATEh® one-quarter yield; and SPD to the difference
between the 20-quarter and the one-quarter yield.
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Table 3: Bias of Survey Forecasts

a Qo B1 B2
PUNEW SPF 1.321 0.482
(0.694) (0.190)
Livingston  0.637 0.993
(0.375) (0.161)
Michigan  -0.823 1.276
(0.658) (0.205)

SPF 1.437 -0.188 0.41#4 0.128

(0.671) (0.585) (0.180) (0.140)
Livingston 0.589* -0.295 0.806* 0.461*

(0.184) (0.506) (0.068) (0.160)
Michigan 0.039 -1.261  0.959 0.482

(0.429) (0.822) (0.099) (0.249)

PUXHS SPF 0.638 0.601
(0.803) (0.199)
Livingston  0.561 0.942
(0.337) (0.130)
Michigan  -0.741 1.167
(0.621) (0.166)
SPF 0.612 -0.269  0.580 0.147

(0.717) (1.085) (0.164) (0.279)
Livingston 0.568* -0.191 0.765* 0.389*

(0.202) (0.576) (0.070) (0.129)
Michigan  -0.267 -0.723 1.002 0.262

(0.613) (0.571) (0.143) (0.132)

PUXX SPF 0.852 0.694
(0.612) (0.179)
Livingston  0.381 1.055
(0.429) (0.133)
Michigan  -0.279 1.194
(0.466) (0.124)
SPF 0.966 -0.201  0.643 0.100

(0.662) (0.495) (0.192) (0.123)
Livingston  0.433 0.124 0.931 0.165
(0.303) (0.558) (0.104) (0.136)
Michigan  -0.160 -0.042 1.137 0.059
(0.579) (0.842) (0.146) (0.245)

PCE SPF 0.041 0.728
(0.500) (0.125)
Livingston  0.234 0.949
(0.479) (0.136)
Michigan  -0.547 1.058
(0.521) (0.139)
SPF 0.122 -0.571  0.689 0.213

(0.482)  (0.751) (0.108) (0.187)
Livingston 0.278  -0.094 0.785 0.399*

(0.453)  (0.480) (0.087)  (0.085)
Michigan -0.061  -0.688 0.900  0.228

(0.581) (0.559) (0.145) (0.117)

This table reports the coefficient estimates in equatiobsdthd (16). We denote standard errorsw@f oz andjs
that reject the hypothesis that the coefficients are diffieieezero and standard errors@f that reject thats; = 1

at the 95% and 99% level byand**, respectively, based on Hansen and Hodrick (1980) staredests (reported
in parentheses). For the SPF survey, the sample is 1981:Q30@:Q4; for the Livingston survey, the sample
is 1952:Q2 to 2002:Q4 for PUNEW and PUXHS, 1958:Q2 to 200X®p4ALUXX, and 1960:Q2 to 2002:Q4 for
PCE; and for the Michigan survey, the sample is 1978:Q1 t@ ZD4.
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Table 4: Time-Series Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample

RMSE ARMA=1 RMSE ARMA=1

PUNEW ARMA 1.136 1.000 1.144 1.000
AR 1.140 1.003 1.130 0.988
RGM 1.420 1.250 0.873 0.764
AORW  1.177 1.036 1.128 0.986
RW 1.626 1.431 1.529 1.337
PUXHS ARMA 1.490 1.000 1.626 1.000
AR 1.515 1.017 1.634 1.005
RGM 1.591 1.068 1.355 0.833
AORW  1.580 1.061 1.670 1.027
RW 2.172 1.458 2.146 1.320
PUXX ARMA  0.630 1.000 0.600 1.000
AR 0.644 1.023 0.593 0.988
RGM 0.677 1.075 0.727 1.211
AORW  0.516 0.819 0.372 0.620
RW 0.675 1.072 0.549 0.915
PCE ARMA  0.878 1.000 0.944 1.000
AR 0.942 1.073 1.014 1.074
RGM 0.945 1.077 1.081 1.145
AORW  0.829 0.945 0.869 0.921
RW 1.140 1.298 1.215 1.288

We forecast annual inflation out-of-sample from 1985:Q4062Q4 and from 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the time-senmxlels. Numbers in the RMSE columns are reported in
annual percentage terms. The column labeled ARMA = 1 refiugtgatio of the RMSE relative to the ARMA(1,1)
specification.
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Table 5: OLS Phillips Curve Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample
Relative HH West Relative HH West
RMSE 1-\ SE SE RMSE 1- ) SE SE
PUNEW PC1 0.979 0.639 0.392 0.596 0.977 0.673 0.624 0.984
PC2 1.472 0.066 0.145 0.155 1956 -0.117 0.199 0.169
PC3 1.166 0.269 0.233 0.258 1.295 0.171 0.349 0.344
PC4 1.078 -1.043 0.632 1.266 1.025 0.046 0.890 1.389
PC5 1.032 0.354 0.288 0.372 1.115 -0.174 0.222 0.458
PC6 1.103 -0.303 0.575 0.634 1.086 -0.633 0.488 1.054
PC7 1.022 0.460 0.161 0.283 1.040 0.367 0.406 0.531
PC8 1.039 0.319 0.477 0.515 0.993 0.468 0.793 0.901
PC9 1.576 0.006 0.119 0.144 1.994 -0.121 0.174 0.159
PC10 1.264 0.146 0.205 0.235 1.426 0.119 0.246 0.287
PUXHS PC1 1.000 0.498 0.458 0.758 0.992 0.618 0.814 1.182
PC2 1.328 -0.022 0.218 0.239 1586 -0.192 0.317 0.266
PC3 1.113 0.200 0.310 0.329 1.105 0.239 0.522 0.519
PC4 1.096 -0.988 0.497 1.064 1.029 0.008 0.745 1.229
PC5 1.083 -0.080 0.299 0.491 1.076  -0.411 0.358 0.708
PC6 1.131 -1.074 0.519 0.822 1.061 -1.316 0512 1.463
PC7 1.001 0.498 0.186 0.301 1.070 0.085 0.529 0.590
PC8 1.094 -0.325 0.466 0.713 1.007 0.101 1.259 1.337
PC9 1.394 -0.055 0.186 0.224 1.624 -0.204 0.290 0.254
PC10 1.165 0.125 0.273 0.308 1.202 0.150 0.340 0.392
PUXX PC1 0.866 1.432 0.340 1.632 0.825 1.182 0.120 1.384
PC2 2.463 -0.120 0.072 0.100 3.257 -0.227 0%0930.119
PC3 1.664 0.054 0.213 0.190 2.076  -0.063 0.275 0.226
PC4 1.234 0.126 0.143 0.261 1.330 0.187 0.214 0.230
PC5 1.024 0.460 0.207 0.370 1.185 0.134 0.445 0.551
PC6 1.005 0.479 0.477 1.053 0.916 1.009 0%2771.935
PC7 1.074 0.381 0.277 0.426 1.089 0.293 0.500 0.731
PC8 0.862 0.809 0.297 0.751 0.767 1.127 0.275 1.340
PC9 2.485 -0.076 0.069 0.100 3.262 -0.168 0%0690.120
PC10 1.873 0.079 0.136 0.153 2.562 0.038 0.150 0.151
PCE PC1 1.053 0.029 0.469 0.972 1.088 -0.240 0.434 1.119
PC2 1.698 -0.136 0.141 0.178 1.997 -0.240 0.223 0.218
PC3 1.274  -0.031 0.280 0.252 1.407 -0.239 0.354 0.340
PC4 1.027 0.343 0.392 1.004 1.031 0.339 0.535 1.138
PC5 1.125 -0.080 0.327 0.434 1.214 -0.635 0.389 0.629
PC6 1.053 0.036 0.484 1.233 1.020 0.273 0.509 1.795
PC7 1.033 0.436 0.175 0.359 1.116 0.034 0.334 0.651
PC8 1.040 0.269 0.476 0.807 1.044 0.044 1.101 2.018
PC9 1518 -0.100 0.166 0.193 1.786 -0.282 0.258 0.258
PC10 1.247 0.120 0.201 0.297 1432 -0.068 0.235 0.322

We forecast annual inflation out-of-sample over 1985:Q40022Q4 and over 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the Phillips @umodels. The column labelled “Relative RMSE” reports
the ratio of the RMSE relative to the ARMA(1,1) specificatiofhe column titled “1A” reports the coefficient

(1 — \) from equation (17). Standard errors computed using the éfahtodrick (1980) method and the West
(1996) method are reported in the columns titled “HH SE” angst SE,” respectively. We denote standard errors
that reject the hypothesis ¢f — \) equal to zero at the 95% (99%) level by**).
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Table 6: Term Structure Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample
Relative HH West Relative HH West
RMSE 1-2)\ SE SE RMSE 1-)\ SE SE
PUNEW TS1 1.096 0.137 0.332 0.393 1.030 0.362 0.410 0.653
TS2 1.444 0.019 0.145 0.148 1.826 -0.147 0.229 0.182
TS3 1.176 0.193 0.229 0.259 1.226 0.156 0.335 0.358
TS4 1.166 -0.108 0.249 0.321 1.018 0.370 0.474 0.959
TS5 1.134 0.088 0.186 0.278 1.122 0.006 0.187 0.429
TS6 1.194 -0.241 0.326 0.371 1.112 -0.162 0.406 0.578
TS7 1.091 0.309 0.252 0.290 1.039 0.373 0.434 0.523
TS8 1.119 0.116 0.332 0.365 1.010 0.380 0.816 0.864
TS9 1.363 0.086 0.085 0.129 1.229 -0.008 0.083 0.305
TS10 1.196 -0.024 0.143 0.220 1.043 0.132 0.639 0.685
TS11 1.198 -0.124 0.431 0.414 1.052 0.286 0.318 0.611
VAR 1.106 0.307 0.187 0.225 1.328 -0.101 0.259 0.270
RGMVAR 1.647 0.050 0.050 0.090 1.518 -0.170 0.198 0.226
MDL1 1.323 0.161 0.064 0.356 1.345 -0.088 0.192 0.247
MDL2 1.192 0.225 0.117 0.392 1.329 -0.118 0.251 0.278
PUXHS TS1 1.080 -0.025 0.413 0.508 1.014 0.373 0.553 0.824
TS2 1.345 -0.017 0.205 0.216 1.584 -0.197 0.329 0.265
TS3 1.116 0.186 0.278 0.309 1.118 0.195 0.435 0.463
TS4 1.085 -0.275 0.499 0.670 0.996 0.542 0.592 1.077
TS5 1.113 -0.082 0.214 0.358 1.094 -0.191 0.265 0.557
TS6 1.140 -0.566 0.342 0.534 1.069 -0.360 0.419 0.776
TS7 1.081 0.161 0.298 0.342 1.070 0.089 0.410 0.564
TS8 1.083 -0.054 0.411 0.497 0.975 0.559 1.057 1.055
TS9 1.173 0.114 0.105 0.201 1.130 -0.123 0.211 0.478
TS10 1.140 -0.594 0.468 0.658 1.032 -0.034 0.090 0.855
TS11 1.102 -0.121 0.423 0.482 1.049 0.093 0.164 0.667
VAR 1.001 0.496 0.264 0.354 1.137 0.041 0.426 0.433
RGMVAR 1.363 0.070 0.085 0.159 1.285 -0.149 0.366 0.383
MDL1 1.225 0.127 0.081 0.263 1.186 -0.048 0.266 0.320
MDL2 1.047 0.395 0.203 0.702 1.156 0.000 0.406 0.386
PUXX TS1 0.945 0.667 0.322 0.655 0.945 0.665 0.317 0.924
TS2 2.262 -0.092 0.084 0.100 2.982 -0.225 0:0990.117
TS3 1.399 0.121 0.260 0.249 1.698 -0.057 0.344 0.288
TS4 1.232 0.260 0.156 0.229 1.268 0.319 0.225 0.248
TS5 1.081 0.392 0.203 0.299 1.258 0.085 0.407 0.454
TS6 0.969 0.567 0.294 0.601 0.866 0.788 0:0780.882
TS7 1.068 0.419 0.263 0.354 1.118 0.342 0.289 0.505
TS8 0.948 0.568 0.197 0.459 0.958 0.520 0.253 0.832
TS9 1.372 0.050 0.239 0.247 1.282 -0.101 0.457 0.504
TS10 1.034 0.433 0.284 0.467 1.208 -0.048 0.548 0.737
TS11 1.017 0.474 0.246 0.439 1.192 0.099 0.502 0.686
VAR 1.651 0.041 0.178 0.154 2.238 -0.276 0.151 0.183
RGMVAR 1.572 0.120 0.138 0.147 1.622 -0.211 0.340 0.278
MDL1 1.506 0.253 0.09F 0.381 1.593 -0.004 0.280 0.303
MDL2 1.834 0.262 0.039 0.443 1.329 0.355 0.069 0.298
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Table 6 Continued

Post-1985 Sample Post-1995 Sample
Relative HH  West Relative HH West
RMSE 1-) SE SE RMSE 1-)\ SE SE
PCE TS1 1.075 -0.073 0.453 0.847 1.078 -0.207 0.433 1.192

TS2 1.670 -0.149 0.145 0.181 1.966 -0.247 0.226 0.221
TS3 1.279 -0.053 0.288 0.259 1.373 -0.245 0.376 0.360
TS4 1.075 0.018 0.372 0.864 1.059 0.234 0.442 0.816
TS5 1.126  -0.115 0.331 0.456 1.202 -0.645 0.383 0.663
TS6 1.094 -0.149 0.428 0.896 1.100 -0.358 0.397 1.322
TS7 1.018 0.443 0.271 0.481 1.106 0.033 0.303 0.673
TS8 1.027 0.374 0.414 0.720 1.025 0.346 1.058 1.855
TS9 1.141 -0.024 0.192 0.304 1.121 -0.825 0.584 0.939
TS10 1.087 -0.569 0.549 0.992 1.110 -0.850 0.638 1.177
TS11 1.086 0.006 0.418 0.665 1132 -0.396 0.288 0.878
VAR 1.286 -0.179 0.274 0.298 1511 -0.337 0.392 0.327
RGMVAR 1507 -0.242 0.131 0.237 1461 -0.356 0.233 0.424
MDL1 1.169 0.144 0.235 0.432 1271 -0.374 0.284 0.481
MDL2 1.314 -0.205 0.159 1.220 1.339 -0.331 0.120 0.589

We forecast annual inflation out-of-sample over 1985:Q40022Q4 and over 1995:Q4 to 2002:Q4 at a quarterly
frequency. Table 2 contains full details of the term streetanodels. The column labelled “Relative RMSE” reports
the ratio of the RMSE relative to the ARMA(1,1) specificatiofihe column titled “1A” reports the coefficient

(1 — \) from equation (17). Standard errors computed using the éfehtodrick (1980) method and the West
(1996) method are reported in the columns titled “HH SE” aneét SE,” respectively. We denote standard errors
that reject the hypothesis ¢f — \) equal to zero at the 95% (99%) level by**).
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Table 7: Survey Forecasts of Annual Inflation

Post-1985 Sample Post-1995 Sample
Relative HH West Relative HH West
RMSE 1-2) SE SE RMSE 1- A\ SE SE
PUNEW SPF1 0.779 1.051 0.177 0.439 0.861 0.869 0.407 0.554
SPF2 0.964 0.564 0.216 0.308 0.902 0.745 0.377 0.484
SPF3 0.976 0.541 0.207 0.302 0.915 0.728 0.414 0.479
LIV1 0.789 1.164 0.102 0.585 0.792 1.140 0.203 0.913
LIV2 1.180 0.335 0.177 0.281 1.092 0.403 0.437 0.550
LIV3 1.299 0.251 0.163 0.226 1.152 0.275 0.517 0.549
MICH1  0.902 0.771 0.324 0.379 0.862 1.113 0.520 0.684
MICH2  0.961 0.675 0.327 0.370 0.930 0.861 0.644 0.609
MICH3  0.968 0.655 0.347 0.375 0.947 0.776 0.653 0.567
PUXHS SPF1 0.819 0.939 0.171 0.430 0.914 0.773 0.394 0.546
SPF2 0.924 0.666 0.227 0.312 0.888 0.825 0.357 0.504
SPF3 1.348 0.103 0.183 0.193 0.958 0.582 0.323 0.362
LIV1 0.844 1.098 0.099 0.573 0.856 1.072 0.214 0.878
LIV2 1.054 0.554 0.178 0.386 1.031 0.550 0.366 0.615
LIV3 1.199 0.327 0.156 0.299 1.053 0.502 0.443 0.605
MICH1  0.881 0.876 0.273 0.398 0.937 0.750 0.434 0.476
MICH2  0.918 0.815 0.290 0.395 0.932 0.814 0.515 0.528
MICH3  0.970 0.608 0.251 0.347 0.953 0.684 0.492 0.474
PUXX SPF1 0.691 0.968 0.140 0.654 0.699 1.260 0.225 1.437
SPF2 1.145 0.125 0.362 0.555 1.104 0.091 0.852 1.177
SPF3 1.179 0.035 0.373 0.555 1.180 -0.358 0.956 1.390
LIV1 0.655 0.803 0.192 0.730 0.557 1.227 0.134 1.453
LIV2 1.355 -0.185 0.177 0.185 1.387 -0.423 0.415 0.557
LIV3 1.289 -0.095 0.259 0.262 1.278 -0.496 0.735 0.850
MICH1  1.185 0.383 0.159 0.301 0.822 1.041 0.208 2.124
MICH2  1.343 -0.153 0.248 0.272 1566 -0.385 0.286 0.356
MICH3  1.360 -0.242 0.253 0.285 1.617 -0.493 0.273 0.363
PCE SPF1 1.199 0.147 0.267 0.241 1.250 0.090 0.395 0.349
SPF2 0.980 0.537 0.206 0.375 0.924 0.655 0.325 0.570
SPF3 1.034 0.454 0.180 0.306 1.040 0.453 0.234 0.362
LIV1 1.082 0.175 0.325 0.300 1.101 0.132 0.412 0.400
LIV2 1.397 -0.050 0.189 0.234 1.303 -0.026 0.265 0.358
LIV3 1.380 -0.123 0.149 0.212 1.341 -0.191 0.272 0.375
MICH1  1.217 0.108 0.216 0.192 1.338 -0.030 0.327 0.283
MICH2  1.194 0.039 0.253 0.216 1.205 0.056 0.415 0.350
MICH3  1.248 -0.022 0.239 0.200 1.255 -0.003 0.399 0.334

We forecast annual inflation out-of-sample over 1985:Q40022Q4 and from 1995:Q4 to 2002:Q4 at a quarterly
frequency for the SPF survey (SPF1-3) and the Michigan sufM@CH1-3). The frequency of the Livingston
survey (LIV1-3) is biannual and forecasts are made at theoétite second and end of the fourth quarter. Table 2
contains full details of the survey models. The column lkdoeiRelative RMSE” reports the ratio of the RMSE
relative to the ARMA(1,1) specification. The column titletl-A” reports the coefficienfl — A\) from equation
(17). Standard errors computed using the Hansen-Hodr@8()imethod and the West (1996) method are reported
in the columns titled “HH SE” and “West SE,” respectively. \dienote standard errors that reject the hypothesis
of (1 — \) equal to zero at the 95% (99%) level by**).
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Table 8: Best Models in Forecasting Annual Inflation

PUNEW PUXHS PUXX PCE

Panel A: Post-1985 Sample

Best Time-Series Model ARMA 1.000 ARMA 1.000 AORW 0.819 AORWO0.945*
Best Phillips-Curve Model PC1 0.979 PC1 1.000 PCS8 0.862 PC4 .0271
Best Term-Structure Model TS7 1.091 VAR 1.001 TS1 0.945 TS7 .0184

Raw Survey Forecasts SPF1 0.779* SPF1 0.819* SPF1 0.691 SPFIL199
LIVl 0.789 LIVl 0.844 LIVl 0.655* LIVl 1.082
MICH1 0.902 MICH1 0.881 MICH1 1.185 MICH1 1.217

Panel B: Post-1995 Sample

Best Time-Series Model RGM 0.764* RGM 0.833* AORW 0.620 AORW0.921*
Best Phillips-Curve Model PC1 0.977 PC1 0.992 PC8 0.767 PC6 .0201
Best Term-Structure Model TS8 1.010 TS8 0.975 TS6 0.866 TS8 .0251

Raw Survey Forecasts SPF1 0.861 SPF1 0.914 SPF1 0.699 SPF1250 1.
LIVl 0.792 LIvV1 0.856 LIVl 0.557* LIVl 1.101
MICH1 0.862 MICH1 0.937 MICH1 0.822 MICH1 1.338

The table reports the best time-series model, the best OllBRurve model, the best model using term structure
data, along with SPF1, LIV1, and MCH1 forecasts for out-afaple forecasting of annual inflation at a quarterly
frequency. Each entry reports the ratio of the model RMSBedRMSE of an ARMA(1,1) forecast. The smallest
RMSEs for each inflation measure are marked with an asterisk.
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Table 9: Ex-Ante Best Models in Forecasting Annual Inflation

PUNEW PUXHS
Time  Phillips Term All Time  Phillips Term All
Date Series  Curve  Structure Surveys Models Series  Curveuct8te Surveys Models
1995Q4 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1996Q1 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1996Q2 ARMA  PC5 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1996Q3 ARMA  PC1 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1996Q4 ARMA  PC5 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1997Q1 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1997Q2 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1997Q3 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1997Q4 ARMA  PC1 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1998Q1 ARMA  PC1 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1998Q2 ARMA  PC1 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1998Q3 ARMA  PC1 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1998Q4 ARMA  PC1 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1999Q1 ARMA  PC5 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
1999Q2 ARMA  PC5 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1999Q3 ARMA  PC5 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
1999Q4 ARMA  PC5 VAR SPF1 SPF1 ARMA  PCY VAR SPF1 SPF1
2000Q1 ARMA  PC1 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
2000Q2 ARMA  PC1 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
2000Q3 ARMA  PC1 VAR SPF1 SPF1 ARMA PC7 VAR SPF1 SPF1
2000Q4 ARMA  PC1 TS1 SPF1 SPF1 ARMA  PC1 VAR SPF1 SPF1
2001Q1 ARMA PC1 TS1 SPF1 SPF1 ARMA  PC1 VAR SPF1 SPF1
2001Q2 ARMA PC1 TS1 SPF1 SPF1 ARMA  PC1 VAR SPF1 SPF1
2001Q3 ARMA  PC1 TS1 SPF1 SPF1 ARMA  PC1 VAR SPF1 SPF1
2001Q4 ARMA PC1 TS7 SPF1 SPF1 ARMA  PC1 VAR SPF1 SPF1
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Table 9 Continued

PUXX PCE
Time  Phillips Term All Time  Phillips Term All
Date Series  Curve  Structure Surveys Models Series  Curveuct8te Surveys Models

1995Q4 AORW PC1 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1  TS7
1996Q1 AORW PC1 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1  TS7
1996Q2 AORW PC1 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1  TS7
1996Q3 AORW PC1 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1  TS7
1996Q4 AORW PC8 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1 AORW
1997Q1 AORW PC1 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1 AORW
1997Q2 AORW PC8 TS11 SPF1 SPF1 AORW PC7 TS7 MICH1 AORW
1997Q3 AORW PC8 TS11 SPF1 SPF1 AORW PC4 TS7 MICH1 AORW
1997Q4 AORW PC8 TS11 SPF1 SPF1 AORW PC4 TS7 MICH1 AORW
1998Q1 AORW PC8 TS1 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
1998Q2 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
1998Q3 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
1998Q4 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
1999Q1 AORW PC8 TS8 SPF1 SPF1 AORW  PC7 TS7 MICH1 TS7
1999Q2 AORW PC8 TS8 SPF1 SPF1 AORW  PC7 TS7 MICH1 TS7
1999Q3 AORW PC8 TS8 SPF1 SPF1 AORW  PC7 TS7 MICH1 TS7
1999Q4 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 TS7
2000Q1 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
2000Q2 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
2000Q3 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
2000Q4 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 MICH1 AORW
2001Q1 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 SPF1  AORW
2001Q2 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 SPF1  AORW
2001Q3 AORW PC8 TS8 SPF1 SPF1 AORW  PC4 TS7 SPF1  AORW
2001Q4 AORW PC8 TS1 SPF1 SPF1 AORW  PC4 TS7 SPF1  AORW

The table reports the ex-ante best model within each cateddime-series, Phillips curve, and term structure modelgether with the SPF and Michigan surveys. We
also report the best ex-ante model across all models. Therwekels within each category, and across all models, yielddwest out-of-sample RMSE for forecasting
annual inflation at a quarterly frequency during the posi5l8ample period. The ex-ante best models are evaluatedsrady through the sample starting with the
first forecast in 1985:Q4 and the last forecast ending on &te given in the first column.



Table 10: Best Models in Forecasting Annual Inflation: RgjlEstimation

PUNEW PUXHS PUXX PCE
Panel A: Post-1985 Sample
Best Time-Series Model AR 0.967 AR 1.002 AORW 0.819 AORW 694
Best Phillips-Curve Model PC7 1.070 PC1 1.068 PC8 1.179 PC8 .082
Best Term-Structure Model TS1 1199 TS9 1.073 TS6 1.350 TS6 .1821
Raw Survey Forecasts SPF1 0.779SPF1 0.819 SPF1 0.691 SPF1 1.199
LIVl 0.789 LIV1 0.844 LIV1 0.655 LIVl 1.082
MICH1 0.902 MICH1 0.881 MICH1 1.185 MICH1 1.217
Panel B: Post-1995 Sample
Best Time-Series Model AR 0.879 AR 0.914 ARMA 0.635 ARMA (@73
Best Phillips-Curve Model PC6 0.951 PCé6 0.955 PC7 0.560 PC6 .7990
Best Term-Structure Model VAR 0.987 VAR 0.998 TS5 0.881 TS3 .990
Raw Survey Forecasts SPF1 0.861SPF1 0.914 SPF1 0.699 SPF1 1.250
LIVl 0.792 LIV1 0.856 LIV1 0.557¢ LIVl 1.101
MICH1 0.862 MICH1 0.937 MICH1 0.822 MICH1 1.338

The table reports the ex-post best ARIMA and random walk tmges models, the best OLS Phillips Curve
model, the best linear model using term structure datagalath SPF1, LIV1, and MCH1 forecasts for out-of-
sample forecasting of annual inflation at a quarterly freqye All models are estimated using a rolling window
of 10 years. We do not consider the regime-switching modeGM and RGMVAR) and the no-arbitrage term
structure models (MDL1 and MLD2). Each entry reports thmratthe model RMSE to the RMSE of a recursively
estimated ARMA(1,1) model. Models with the smallest RMSEesraarked with an asterisk.
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Table 11: Combined Forecasts of Annual Inflation

Model Time-  Phillips Term Best All
Combination Method  Series  Curve  Structure Surveys Modelsodd¥s
PUNEW Mean 0.898 1.123 1.057 0.851 0.992 0.998
Median 0.934 1.093 1.079 0.851 1.016 1.045
OoLS 0.970 1.007 1.116 0.858 0.867 0.876
Equal Weight Prior 0.955 1.007 1.102 0.858 0.861 0.879
Unit Weight Prior 0.977 0.951 1.115 0.859 0.862 0.873
Best Individual Model 1.000  0.960 1.207 0.861 0.861 0.861
PUXHS Mean 0.954 1.065 1.012 0.921 0.975 0.992
Median 0.953 1.082 1.053 0.921 1.009 1.039
OoLS 0.963 1.001 1.069 0.917 0.919 0.924
Equal Weight Prior 0.950 1.008 1.058 0.918 0.920 0.935
Unit Weight Prior 0.977 0.992 1.085 0.916 0.914 0.914
Best Individual Model 1.000 1.029 1.137 0.914 0.914 0.914
PUXX Mean 0.835 1.547 1.322 0.719 0.727 1.235
Median 0.940 1.167 1.211 0.719 0.735 1.052
OoLS 0.631 0.885 0.964 0.699 0.665 0.706
Equal Weight Prior 0.687 0.878 0.956 0.699 0.652 0.661
Unit Weight Prior 0.650 0.836 0.947 0.699 0.658 0.658
Best Individual Model 0.620  0.779 0.977 0.699 0.699 0.699
PCE Mean 0.968 1.160 1.127 1.285 0.999 1.105
Median 0.979 1.136 1.130 1.285 0.999 1.118
oLS 0.935 0.974 1.019 1.288 0.921 0.964
Equal Weight Prior 0.938 0.984 1.017 1.287 0.922 0.968
Unit Weight Prior 0.917 0.967 1.010 1.287 0.911 0.948

Best Individual Model 0.921  1.057 1.106 1.289 0.887 0.887

The table reports the RMSEs relative to the ARMA(1,1) modeférecasting annual inflation at a quarterly fre-
guency out-of-sample from 1995:Q4 to 2002:Q4 by combinimglets within each category (time-series, Phillips
curve, term structure, surveys), using the ex-ante besetda each category, or over all models. Forecasts re-
ported include the mean and median forecasts, and lineabioations of forecasts using recursively-computed
weights computed from OLS, or model combination regressioith various priors. We investigate an equal
weight prior and a prior that places only a unit weight on tlestlex-ante model. We consider only unadjusted
SPF and Michigan survey forecasts in the survey categorncdémparison, the last row in each panel reports the
relative RMSE of using the ex-ante best performing singtedast model at each period (as reported in Table 9).
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Table 12: Best Models in Forecasting Annual Inflation Change

Post-1985 Sample Post-1995 Sample
Estimated on Estimated on Estimated on Estimated on
Levels Differences Levels Differences

Model RMSE Model RMSE Model RMSE Model RMSE

PUNEW
Best Time-Series Model ARMA 1.000 ARMA 1.071 RGM 0.764* ARMA 1.025
Best Phillips-Curve Model PC1 0.979 PC7 1.005 PC1 0.977 PC7 .9760
Best Term-Structure Model TS7 1.091 TS7 1.023 TS8 1.010 TS1 .9680
Raw Survey Forecasts SPF1 0.779* SPF1 0.861

LIV1 0.789 LIV1 0.792

MICH1 0.902 MICH1 0.862
PUXHS
Best Time-Series Model ARMA 1.000 ARMA 1.098 RGM 0.833* ARMA 1.046
Best Phillips-Curve Model PC1 1.000 PC7 1.027 PC1 0.992 PC1 .02%
Best Term-Structure Model VAR 1.001 TS7 1.004 TS8 0.975 TS7 .98D
Raw Survey Forecasts SPF1 0.819* SPF1 0.914

LIV1 0.844 LIV1 0.856

MICH1  0.881 MICH1  0.937
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Table 12 Continued

Post-1985 Sample Post-1995 Sample
Estimated on Estimated on Estimated on Estimated on
Levels Differences Levels Differences

Model RMSE Model RMSE Model RMSE Model RMSE
PUXX
Best Time-Series Model AORW 0.819 ARMA 0.837 AORW 0.620 ARMAO0.649
Best Phillips-Curve Model PC8 0.862 PC1 0.722 PC8 0.767 PC1 .6520
Best Term-Structure Model TS1 0.945 TS8 0.861 TS6 0.866 TS6 .65%0
Raw Survey Forecasts SPF1 0.691 SPF1 0.699

LIV1 0.655* LIVl 0.557*

MICH1 1.185 MICH1  0.822
PCE
Best Time-Series Model AORW 0.945 ARMA 1.029 AORW 0.921 ARMA1.004
Best Phillips-Curve Model PC4 1.027 PC8 0.978 PC6 1.020 PC6 .0181
Best Term-Structure Model TS7 1.018 TS8 0.945* TS8 1.025 TS4 0.951*
Raw Survey Forecasts SPF1 1.199 SPF1 1.250

LIV1 1.082 LIV1 1.101

MICH1 1.217 MICH1 1.338

This table reports the relative RMSE for forecasting anmuition changes of the best performing out-of-sampledastéing model in each model category (time-
series, Phillips Curve, and term structure models) andetbbthe raw survey forecasts. The models are estimatechiereitflation levels or inflation differences. Table
2 contains full details of all the forecasting models. Weorépthe RMSE ratios relative to an ARMA(1,1) specificatiotiated on levels. Models with the smallest
RMSEs are marked with an asterisk.
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In the top panel, we graph the four inflation measures: CPIHUtdms, PUNEW; CPI-U Less SheltePUXHS;
CPI-U All Items Less Food and Energy, or core CPUXX; and the Personal Consumption Expenditure deflator,
PCE. We also plot the Livingston survey forecast. The survegdast is lagged one year, so that in December
1990, we plot inflation from December 1989 to December 19gettoer with the survey forecasts of December
1989. In the bottom panel, we plot all three survey forecg&®$-, Livingston, and the Michigan surveys), together
with PUNEW inflation. The survey forecasts are also laggesy@ar for comparison.

Figure 1: Annual Inflation and Survey Forecasts
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We graph the ex-ante OLS weights on models from regressi®ndier the period 1995:Q4 to 2002:Q4. We
combine the ex-ante best model within each category (tienes; Phillips Curve, and term structure) from Table

11 with the raw SPF survey. The weights are computed realydifirough the sample.

Ante Weights on Best Models for Forecasting éadrinflation
60

Figure 2: Ex
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stationary model within eactyocaggtime-series, Phillips Curve, and term structure)

We graph the ex-ante OLS weights on models from regress@jrofzr the period 1995:Q4 to 2002:Q4. We com-

bine the ex-ante best non
together with the raw SPF survey. The weights are computadsizely through the sample.

Figure 3: Ex-Ante Weights on Best I(1) Models for Forecagtmnual Inflation Changes
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We graph the ex-ante OLS weights on models from regressidhder the period 1995:Q4 to 2002:Q4. We
combine the ex-ante best stationary model within each oagegime-series, Phillips Curve, and term structure)

together with the raw SPF survey. The weights are computadsizely through the sample.

Figure 4: Ex-Ante Weights on Best 1(0) Models for Forecagtmnual Inflation Changes
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